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Abstract—In the federated learning scenario, geographically
distributed clients collaboratively train a global model. Data
heterogeneity among clients significantly results in inconsistent
model updates, which evidently slow down model convergence. To
alleviate this issue, many methods employ regularization terms
to narrow the discrepancy between client-side local models and
the server-side global model. However, these methods impose
limitations on the ability to explore superior local models and
ignore the valuable information in historical models. Besides,
although the up-to-date representation method simultaneously
concerns the global and historical local models, it suffers from
unbearable computation cost. To accelerate convergence with
low resource consumption, we innovatively propose a model
regularization method named FedTrip, which is designed to
restrict global-local divergence and decrease current-historical
correlation for alleviating the negative effects derived from data
heterogeneity. FedTrip helps the current local model to be close to
the global model while keeping away from historical local models,
which contributes to guaranteeing the consistency of local updates
among clients and efficiently exploring superior local models with
negligible additional computation cost on attaching operations.
Empirically, we demonstrate the superiority of FedTrip via
extensive evaluations. To achieve the target accuracy, FedTrip
outperforms the state-of-the-art baselines in terms of significantly
reducing the total overhead of client-server communication and
local computation.

Index Terms—Federated Learning, Data Heterogeneity, Re-
source Efficiency

I. INTRODUCTION

Over the last few decades, massive data have brought about
the dramatic development of extensive Artificial Intelligence
(AI) applications [1]–[4]. In real life, data are produced by
ubiquitous sensing and computing devices, such as mobile
phones and wearable devices [5]–[7]. However, in the tradi-
tional centralized learning paradigm, raw data are required to
be gathered from decentralized devices and transmitted to the
central server, which causes unavoidable privacy disclosure
and unreasonably high communication overhead.

To alleviate the above issue, Federated Learning (FL) [8]–
[10], a distributed learning paradigm that enables participants
to collaboratively train a global model without local data
exchange, has emerged as an important paradigm and attracted
a lot of research interest [11]–[13]. In the fundamental FL
algorithm, FedAvg [14], the clients in the FL system train the
local models on their private data for multiple local iterations,
and upload their updated models to the server for generating an
aggregated global model. With no data exchange and periodic

model aggregation, FL has significant potential to facilitate AI
applications in practice [15].

Nevertheless, FL confronts a key challenge of data hetero-
geneity [16]–[18], which means that data distributions among
clients follow the nonindependent and identically distributed
(non-IID) characteristic. This phenomenon inevitably causes
apparent update inconsistency among local models [19], [20]
and a decline in model generalizability [21]. As a result, the
resource consumption for training a model to achieve the
desired performance tends to remarkably increase.

To date, various kinds of approaches have been proposed to
mitigate the impact of data heterogeneity [22]–[24]. Among
them, model regularization [25]–[28] is the general solution,
which focuses on constraining the training divergence between
the global model and local models by introducing regulariza-
tion terms into the local loss function. However, constrain-
ing model update inherently limits the convergence potential
in the local training process [29]. The regularization terms
constrain the update divergence but directly prevent the local
model from exploring the parameter space far from the global
model, where there possibly exists useful information that
helps discover the superior local models and promotes model
convergence. In addition, the above methods overlook the
useful model information that can be learned from historical
local models, which is viewed as the diversity of knowledge
representation among local models. Consequently, insufficient
model information utilization causes slow convergence.

To sufficiently utilize the information from historical lo-
cal models, a model representation method MOON [30] is
proposed. It modifies model updates via designing a loss
function based on contrastive learning, whose input terms
are the representational outputs of the global model, the
current local model, and the historical local model. However,
it requires a mass of feedforward operations for extracting
feature representation and leads to tremendous computation
cost. To date, there is no method that is able to sufficiently
utilize the model information with low resource consumption,
aiming to settle data heterogeneity.

Motivated by the limitations of existing studies, we propose
a novel model regularization method named FedTrip. We
expand the triplet loss function [31] to the model level for
measuring the divergence of model parameters in the model
regularization style. Specifically, a triplet regularization term
is added to the local loss function. This term helps the current
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model to stay close to the global model for guaranteeing
update consistency and keep away from historical local mod-
els for efficiently exploring parameter spaces. Our proposed
FedTrip is able to efficiently extract helpful convergence
information during the training process with attaching minor
operations, negligible computation cost, and no additional
communication cost. Compared to existing methods, FedTrip
achieves sufficient model information utilization and realize
convergence acceleration with very low resource consumption
under data heterogeneity.

The main contributions are summarized as follows:
• In order to overcome the impact of data heterogeneity

with low resource consumption, we propose a novel and
effective model regularization method in FL under the cir-
cumstance of data heterogeneity, named FedTrip. Specif-
ically, we introduce a triplet regularization term into the
local loss function. This term decreases the global-local
convergence discrepancy and simultaneously increases
the current-historical model difference with negligible
computation cost and no additional communication cost,
which can guarantee consistent model updates and obtain
more useful training information.

• In addition, we theoretically analyze the convergence
property of FedTrip based on easily-satisfied convergence
conditions in the FL system. Theoretical results demon-
strate that FedTrip can achieve faster convergence with
given hyperparameters than FedProx.

• Extensive experiments are conducted to verify the perfor-
mance of FedTrip. Experimental results show its superi-
orities in terms of client-server communication overhead
and local computation overhead under various settings
and hyperparameters. Especially, FedTrip is satisfactory
under strict settings of FL, including highly-skewed data
heterogeneity and low client participation ratio.

II. RELATED WORK

In the FL training paradigm, clients are randomly selected
to execute local training at each communication round, during
which clients’ local data are not allowed to share with others.
Following [19], we illustrate the impact of data heterogeneity
on local model updates as shown in Fig. 1. When local data
are IID, for each client k, the local optimum w∗k is close to the
global optimum w∗, and the updates of wtk are consistent with
other clients. When local data are non-IID, the local optimum
w∗k cannot align with the global optimum w∗, and the updates
of wtk have inconsistency with others. This inevitably causes
the obvious divergence of the local models. Although this issue
has attracted many research interests, we only focus on the
related methods that intuitively inspire us to tackle the impact
of data heterogeneity.

A. Model Regularization

Recent studies have focused on utilizing model regulariza-
tion to mitigate the impact of data heterogeneity in FL. In
these works, the local training objective of clients not only
measures the empirical risk over local data but also attaches

(a) IID setting (b) non-IID setting

Fig. 1. Illustration of model updates in federated learning with IID data
and non-IID data settings. Circles are the local model updates and optima.
Rectangles are the global model updates and optimum.

additional regular terms to reduce the training divergence
among local models. FedProx [25] is the first study that adds
a proximal term to effectively limit the local model updates
by restricting local models to approximate the global model.
Based on FedProx, FedDANE [27] further leverages a gradient
correction term to improve training performance. Although
FedDANE has more regularization terms and encouraging
theoretical guarantee, it consistently underperforms FedProx
in evaluations. FedDyn [26] dynamically updates the local loss
function by adding a term to guarantee the similarity between
local gradients and the parameters, which ensures that the local
optima are asymptotically consistent with the global optimum.

However, existing model regularization methods mainly
contribute to directly constraining the discrepancy between
local models and the global model via adding regularization
terms into the loss function, which potentially prevents local
models from exploring the superior parameters and obtaining
more useful convergence information. Moreover, they overlook
the information in historical local model, leading to insufficient
information utilization and unsatisfactory model performance.

B. Model Representation

A few recent studies also pay attention to tackling the
issue of data heterogeneity in FL using model representation,
which devote to optimizing specific loss functions based on
modifying feature representations of the local models under
the guidance of global model representation. FedGKD [32]
aligns the feature representations of the global model and
local models via knowledge distillation [33], which achieves
relatively consistent local and global representations by guid-
ing local model training through the global model. However,
this method still overlooks the information in historical local
model. MOON [30] takes historical information into consid-
eration and designs a model-contrastive loss function based
on contrastive learning [34] to tune the feature representation
similarity among the global model, the current local model,
and the historical local model. However, this method may not
be practical because it requires 3× feedforward computation
operations for calculating feature representations.

Different from the above methods, we design a novel triplet
regularization term inspired by the triplet loss [31], providing
the insight of narrowing the convergence divergence between



TABLE I
COMPARISON OF EXISTING METHODS ON INFORMATION UTILIZATION

AND RESOURCE COST OF METHOD OPERATIONS.

Methods Information utilization Resource cost
Model regularization Insufficient Low
Model representation Sufficient High

FedTrip Sufficient Low

the current local model and the global model to guarantee
the consistency training update while putting the current local
model away from historical local models for exploring the
superior parameters. As shown in Table I, our proposed
FedTrip integrates the advantages of model regularization and
model representation methods, aiming to achieve sufficient
information utilization with negligible computation cost. The
quantitive analysis of computation and communication con-
sumption at each communication round of related methods is
presented in Appendix A.

III. PROBLEM FORMULATION AND THEORETICAL
ASSUMPTIONS

A. Problem Formulation

Without loss of generality, we assume a FL system consist-
ing of N clients and a central server. Let N = {1, 2, · · · , N}
denote the set of clients, and the private data that each
client k ∈ N stores are denoted by Dk. Considering of
data heterogeneity, data distributions across clients differ and
follow non-IID in our setting. The goal of our system is to
minimize the average loss over heterogeneous data sampled
from distributed clients, which is expressed as:

min
w∈Rd

f(w) = min
w∈Rd

1

N

N∑
k=1

Fk(w;Dk), (1)

where w is the parameters of the global model, and Fk(w;Dk)
measures the local empirical risk on client k over Dk.

The whole process of FL splits into multiple communication
rounds. At the t-th round, the server first randomly selects a
fixed number K of clients, denoted as St, to participate in
training. After client selection, the server synchronously trans-
mits the global model wt−1 to the selected clients. Afterwards,
all clients in St perform local model training based on their
private data in parallel, and generate the updated local models
{wtk}. All updated local models are transmitted back to the
server when all clients in St finish training. The server then
aggregates local models to form the updated global model as

wt =

K∑
k=1

atkw
t
k, (2)

where atk indicates the weighted coefficient of client k, and∑
k∈St atk = 1. In the fundamental FL method FedAvg [14],

ak = |Dk|
|Dt
S |

, where |Dk| is the number of data samples in client
k and |DtS | is the total data size of St.

(a) Server, 50 rounds (b) Client 1, 50 rounds (c) Client 1, 30 rounds

Fig. 2. T-SNE visualization of the global model at round 50 and of the local
model of client 1 at round 30 and 50 on the test dataset.

B. Theoretical Assumptions

For the convenience of theoretical analysis, we give a few
standard assumptions (see e.g., [25], [35]), and leverage them
to conduct convergence analysis in Section IV-C.
Assumption 1 (L-smooth). The stochastic gradient of loss
function at each client k is L smooth, i.e.,

‖∇Fk(wi)−∇Fk(wj)‖ < L‖wi − wj‖ ∀wi, wj ∈ Rd. (3)

Assumption 2 (Bounded Gradient Dissimilarity). The norm
of stochastic gradients between the loss function of each client
k and the global objective function are bounded, i.e.,

‖∇Fk(x)‖2 ≤ B2‖∇f(x)‖2. (4)

IV. METHOD

In this section, we first highlight our motivation of designing
FedTrip, and then elaborate on the details of FedTrip. Finally,
we conduct the convergence analysis of FedTrip.

A. Motivation

To verify the intuition of our method, we train a CNN model
using FedAvg [14] on MNIST [36] (we use the default exper-
iment settings, details of settings and the models can be seen
in Section V). Fig. 2 displays the t-SNE [37] visualization of
features from the test dataset at the last communication round.
The feature representations of all classes in the global model
can be distinguished. However, the feature representations of
some classes in the local models are still mixed (seen in Figs.
2(b)). This indicates that the performance of the global model
is better than that of the local model. Moreover, along the
training process, the newer local model tends to outperform
the older one (seen in Figs. 2(b), 2(c)). In this view, the
performance of the current local model is better than that of
historical local models as well.

Depending on this observation, existing model regulariza-
tion methods have better performance by closing the current
local model to the global model via constraining model up-
dates. Nevertheless, the information on historical local models
has been overlooked so far in the existed studies. A recent
model representation method, MOON [30], takes historical
model information into consideration. However, MOON is not
resource-efficient because of the tremendous computation cost
related to feedforward representation operation. Therefore, a
focus on designing a method that concurrently considers local-
global divergence and current-historical correlation with low
computation cost should be the primary concern.



B. Method Description

Based on the above analysis and discussion, we provide a
novel insight of adding a triplet regularization term into the
local loss function of clients, inspired by [31]. The triplet loss
is originally designed in [31] to decrease the distance of similar
samples and increase that of distinct samples, and we expand
it to the model level. Specifically, we inventively propose a
triplet-based loss function, which simultaneously constrains
the current local model to be close to the global model as well
as keeping away from historical local model, with negligible
computation cost on attaching operations. The loss function
of our FedTrip is defined as:

L = F (w)+
µ

2

[
‖wlocal − wglobal‖2

− ξ‖wlocal − whistorical‖2
]
. (5)

In equation 5, the first term F (w) represents the original local
loss function. The second term ‖wlocal −wglobal‖2 intends to
guide local models closer to the global model, which keeps
the consistency updates among local and global models. The
third term −‖wlocal − whistorical‖2 intends to bring current
local models away from historical local models, bringing
the benefits that the current local model enables to search
for the superior parameters and obtains more convergence
information. µ and ξ are the hyperparameters to measure the
effect of the latter two terms. Note that, the value of ξ is set
as the interval between the current round and the last round
of participating in training.

Algorithm 1 FedTrip
Input: the global round T , the learning rate α, the coefficients
µ and ξ
Output: the final model wT

1: for t = 1 to T do
2: The server randomly selects K clients as St and deliv-

ers the global model wt−1 to them
3: for client in St in parallel do
4: Let wtk = wt−1, and load the historical local model

w̃t−1k

5: for batch data ζtk do
6: Calculate local loss Fk(wtk; ζtk)
7: htk = ∇Fk(wtk; ζtk) + µ

(
(wtk − wt−1) +

ξ(w̃t−1k − wtk)
)

8: wtk = wtk − αU(htk)
9: end for

10: end for
11: Clients in St upload wtk to server
12: The server aggregates the local models via wt =∑

k∈St ρkw
t
k

13: end for
14: return wT

The details are summarized in Algorithm 1. At the begin-
ning of the t-th communication round, the server randomly
selects K clients named St and delivers the global model wt−1

to these clients. We denote wtk as the current local model and

Fig. 3. Illustration of model updates of 2 clients with 3 steps in FedProx and
FedTrip.

w̃t−1k as the historical model at client k, which is generated
at the last local training. After receiving wt−1, each selected
client begins its local training (line 5). In line 6, client k trains
its local model with mini-batch ζtk, calculates the original loss
Fk(wtk). Then local gradients are generated by the original
loss value and regularization items (line 7). After obtaining
the gradients of clients, each selected client updates its local
model according to the specific optimization algorithm U (line
8). The clients in St upload local models to the server when
all clients finish local training. Finally, the server aggregates
the uploaded local models to obtain the updated global model
wt (line 12).

Fig. 3 intuitively depicts the benefits of FedTrip. w∗1 and
w∗2 represent the empirical local optima of client 1 and client
2 respectively, and w∗ represents the global optimum. The
local SGD updates move towards the average of clients’ local
optimum w∗1+w

∗
2

2 , which is obviously different from w∗. In the
typical model regularization method, FedProx, the local SGD
updates of client k ∈ {1, 2} are constrained by wtk−wt. How-
ever, this method potentially limits the convergence process,
as the projection of local gradients towards the direction of the
local optimum can be partially counteracted by the gradients
generated by the regularization term. Creatively, in FedTrip,
the local gradients under the guidance of the historical model
overcome the drawback of FedProx, and the local model has
the potential to explore superior parameters with the guarantee
of update consistency. Therefore, our proposed FedTrip has
the advantage of absorbing more useful information, which
enables the local model to move towards the global optimum
w∗ quickly, thus accelerating training convergence.

C. Convergence Analysis

We theoretically analyze the global model convergence of
FedTrip. This analysis mainly refers to FedProx [25] and
FedDANE [27]. Firstly, we define a parameter γ to formulate
the inexactness of local optimization.
Definition 1 ( γ-inexact optimization). Let wt+1

k denote the
updated local model of client k based on local optimization
at the t + 1-th round, and it satisfies ‖∇h(wt+1

k ;wt)‖ <
γ‖∇Fk(wt)‖ with γ ∈ [0, 1), where ∇h(wt+1

k ;wt) =
∇Fk(wt+1

k ) + µ
(
wt+1
k − wt)− ξ(wt+1

k − w̃tk)
)
.



Theorem 1 . Assume that the functions Fk are convex, hk is µ-
strongly convex. Given by assumptions mentioned in Section
III-B, we have the expected decrease in the global objective
function as:

ESt [f(wt+1)] ≤ f(wt)− ρ‖∇f(wt)‖2 −Qt, (6)

ρ =

(
1− γB
µ

− L(1 + γ)B

µ2
− L(1 + γ)2B2

2µ2

)
.

where Qt is the extra items generated by the historical
information item. The expectation of coefficient of Qt is
proportional to the participation ratio of a client at each round
p. Let γ = 0, which means Fk(w) has the exact answer, then

ρ =
1

µ
− LB

µ2
− LB2

2µ2
.

If µ,L, γ, ξ satisfy, we have ρ > 0 and Qt > 0, and the local
objective function has the expected decrease as:

ESt
[f(wt+1)] ≤ f(wt)− ρ‖∇f(wt)‖2 −Qt. (7)

Note that the value of ρ in FedTrip is equal to ρ in Fedprox, we
can get the identical decrease proportional to ‖∇f(wt)‖2 with
FedProx. Besides, Qt makes f(w) have the faster convergence
rate of FedTrip than that of FedProx with the help of historical
model information. The main coefficient in Qt is Ek[ξtk] =
p ln p
p−1 , t → +∞, where p is the client participation rate. As
Ek[ξtk] is monotonically increasing, a low p demonstrates
a slow convergence rate. The detailed convergence analysis
is referred to the Appendix B. In summary, FedTrip is a
resource-efficient and fast convergence method with given
hyperparameters.

V. EXPERIMENTS

A. Experimental Settings

We investigate our method and comparable baselines on
an open-source federated learning framework Plato1 with
PyTorch [38] 1.9.1 backend, whose data partition method is
based on LEAF [39]. Our experiments are executed on a
workstation with an Intel Xeon Gold 5218 CPU @ 2.30GHz,
a RAM of 376 GB, and one Nvidia GeForce 3090 GPU.
Datasets: We employ MNIST [36], FashionMNIST (FM-
NIST) [40], EMNIST [41], and CIFAR-10 [42] for image
classification task. The datasets cover different attributes, di-
mensions, and numbers of categories, which are listed in Table
II. Thereinto, 1 channel and 3 channels indicate grayscale and
RGB images, respectively. Client samples indicate the number
of data samples at each client.
Models: We train a MultiLayer Perceptron (MLP) on MNIST
and FMNIST datasets. MLP consists of 2 fully connected
layers with 100 and 10 neurons. The first fully connected layer
is followed by ReLU activation [43]. A simple Convolution
Neural Network (CNN) is used for training on MNIST,
FMNIST, and EMNIST. The CNN is modified based on
LeNet5 [36], consisting of 3 convolutional layers with 5×5
filters followed by two fully connected layers with 84 and 10

1https://github.com/TL-System/plato

TABLE II
DESCRIPTION OF DATASETS IN THE EXPERIMENT.

Dataset Total Classes Channels Client
Samples Samples

MNIST 60,000 10 1 600
FMNIST 60,000 10 1 1,000
EMNIST 112,800 47 1 3,000
CIFAR-10 50,000 10 3 2,000

TABLE III
COMMUNICATION AND COMPUTATION STATISTICS OF MODELS

Model Communication(MB) Params(M) MFLOPs
MLP 0.3 0.8 0.08
CNN 0.24 0.62 0.42

AlexNet 10.42 2.72 145.93

0 1 2 3 4 5 6 7 8 9

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

Client 8

Client 9

Client 10

Dir-0.1 Dir-0.5

Orthogonal-5 Orthogonal-10

0

100

200

300

400

500

600

Fig. 4. The label distributions at clients in four settings of data heterogeneity.

neurons. Moreover, AlexNet [44] is trained on CIFAR-10.
Data Partitioning: We adopt two popular non-IID data parti-
tioning ways: Dirichlet distribution and orthogonal distribu-
tion. We generate two types of data heterogeneity via the
following Dirichlet distribution to sample data labels. First,
each client draws a probability vector using the Dirichlet distri-
bution with a concentration parameter α, which corresponds to
the prior data distribution of each class. The probability vectors
are generated based on different random seeds and are used
to sample data without replacement for clients. The sampling
process does not stop until the number of data samples is
assigned to the preset partition number. In our experiments, we
implement 2 types of Dirichlet distributions with α = 0.1, 0.5,
named Dir − 0.1 and Dir − 0.5.

Moreover, we simulate orthogonal data distribution, where
clients are partitioned into multiple clusters. For each cluster,
the data samples owned by inner clients have non-overlapped
classes with those of other clusters, and the data samples of
clients in each cluster are IID sampled. Concretely, we set
two types of orthogonal data distribution by dividing clients

https://github.com/TL-System/plato


TABLE IV
COMPARISON OF COMMUNICATION ROUNDS UNTIL THE GLOBAL MODEL ACHIEVES THE TARGET ACCURACY.

Methods MLP CNN AlexNet
MNIST-87% FMNIST-75% MNIST-90% FMNIST-75% EMNIST-62% CIFAR-50%

FedTrip 28 9 24 19 32 46
FedAvg 49 1.75× 19 2.11× 39 1.63× 52 2.73× 45 1.4× 74 1.61×
FedProx 53 1.89× 16 1.78× 41 1.71× 45 2.37× 45 1.4× 75 1.63×
SlowMo 46 1.64× 26 2.89× 40 1.67× 65 3.42× 92 2.88× 87 1.89×
MOON 25 0.89× 14 1.56× 46 1.92× 35 1.84× 44 1.38× 84 1.75×
FedDyn 28 1× 17 1.89× 40 2.08× 51 2.68× 97 3.03× 79 1.72×

into 5 and 10 clusters in our experiments, which are named
Orthogonal − 5 and Orthogonal − 10 respectively.

Fig. 4 shows the local data distributions of clients on
MNIST dataset in 4 heterogeneity types. The majority of
clients contain mostly 3 or 4 classes of data samples under
Dir−0.5, and 1 or 2 classes of data samples under Dir−0.5.
Under Orthogonal−5 and Orthogonal−10, each client only
has 2 and 1 classes of data samples. For example, Client 1 only
have data samples with classes 0, 1 and class 0.
Baselines: We compare the convergence performance of our
proposed FedTrip with FedAvg [14], FedProx [25], SlowMo
[45], MOON [30] and FedDyn [26]. The default local opti-
mizer is SGD with momentum (SGDm) [46], a fixed learning
rate of 0.01 and the momentum coefficient of 0.9. Con-
sidering SGDm may results in performance degradation in
some circustances, SlowMo and FedDyn choose SGD as the
training optimizer. The hyperparameters of these methods are:
µ = 1.0 for all MLP experiments and µ = 0.4 for others in
FedTrip, µ = 0.1 in FedProx, α = 1 for the expertiments on
MNIST dataset and α = 0.1 for other datasets in FedDyn,
µ = 1, τ = 0.5 in MOON.

The default number of communication rounds, batch size,
and local epoch are set as 100, 50, and 1, respectively. Be-
sides, the server randomly selects 4 devices from 10 devices.
We perform the 10-trial repeating experiment and report the
average convergence performance.

B. Resource Efficiency

We verify the effectiveness of resource efficiency of FedTrip
from the perspective of client-server communication and local
computation. The results show that FedTrip is able to save
resources significantly.
Communication Efficiency: As all aforementioned methods
have exactly the same amount of communication volume per
communication round, the total amount of communication bits
is proportional to the number of communication rounds. We
define the number of communication rounds at which the
global model achieves the target accuracy as the evaluation
metric. Table IV shows the results of these methods on
MLP, CNN, and AlexNet models under Dir − 0.5. The dark
grey bars denote the number of communication rounds to
achieve the target accuracy of the global model using differ-
ent methods. Thereinto, the longest dark grey bar indicates
that the corresponding method has the maximum number of

TABLE V
GFLOPS AMONG METHODS DURING THE TRAINING PROCESS

Model Case FedTrip FedAvg FedProx SlowMo MOON FedDyn

MLP
MNIST 1.441 2.334 2.626 2.191 3.573 1.441

FMNIST 0.772 1.509 1.321 2.064 3.335 1.458

CNN
MNIST 6.161 9.897 10.465 10.151 35.02 10.269

FMNIST 8.13 21.993 19.144 27.491 44.409 21,822
EMNIST 41.077 57.097 57.431 116.733 167.486 124.513

AlexNet CIFAR 13,446 21,596 21,906 25,392 73,549 23,091

communication rounds. Besides, the difference in the number
of communication rounds between our proposed FedTrip and
other methods can be shown by the blue lines.

Among all the methods, FedTrip and MOON are the fastest.
This demonstrates that absorbing information from both the
global model and historical local models can effectively ac-
celerate model convergence. Compared to MOON, FedTrip
further reduces the communication rounds by 31.63%, which
shows that FedTrip absorbs model information more efficiently
so as to further improve the convergence rate. Compared to the
fundamental method FedAvg, FedTrip is 1.4-2.73× faster to
achieve the target accuracy on training models, and the amount
of communication rounds of FedTrip reduces by 44.02% on
average. We conclude that FedTrip shows the best performance
on reducing communication overhead.
Local Computation Efficiency: Based on our theoretical
analysis of computation cost over attaching operations in these
methods (see Appendix A), the computation cost of MOON
is 50×, 171.4× and 1,336× as much as that of FedTrip
at each local iteration on training MLP, CNN and AlexNet,
respectively. We utilize the total GFLOPs of feedforward and
attaching operations in these methods to measure computa-
tional efficiency, which are listed in Table V.

From Table V, it can be seen that FedTrip reduces the
computation cost by 39.58% on average, compared to the
baseline method with the least GFLOPs in each experiment
case. The local computation overhead of MOON is 4.52× that
of FedTrip, which demonstrates that FedTrip can obtain more
convergence information with much less computation cost. As
MOON simultaneously obtains the information of the global
and historical models via multiple feedforward operations,
it is the most computation-inefficient method. Compared to
the fundamental method FedAvg, FedTrip reduces the local
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(f) EMNIST under Orthogonal − 5

Fig. 5. The convergence curves of CNN with 2 types of data heterogeneity on 3 datasets.
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(b) MLP

Fig. 6. Boxplots of test accuracy of CNN and MLP with 4 types of
data heterogeneity on FMNIST dataset. The accuracy of MOON under
Orthogonal − 10 is significantly lower than others, so it is invisible in
(a).

computation overhead by up to 42.27%.

C. Data Heterogeneity

Fig. 5 illustrates the test accuracy at each communication
round for training CNN on different datasets among above
methods. All the curves are smoothed by the exponential
moving average. As the value of µ is small in FedProx, the
convergence performance of FedProx is generally close to
that of FedAvg. As the regularization term in the local loss
functions constrains the divergence of update directions among
clients, FedProx becomes effective under orthogonal hetero-
geneity (see in Figs. 5(e), 5(f)), where the local updates di-
verge considerably. FedDyn and SlowMo underperform other
methods on EMNIST dataset. MOON [30] outperforms other
baseline methods in Dir−0.5, which indicates the advantages
of absorbing the information of global and historical models.
FedTrip is competitive to data heterogeneity as it outperforms
other baselines in most of experiment cases.

Fig. 6 illustrates the final accuracy, the average accuracy
of the global model over the last 10 communication rounds
of CNN and MLP on FMNIST dataset among all methods.
FedTrip performs the highest final accuracy in most of the ex-
periments under various heterogeneity types. FedDyn has the
highest accuracy on MLP under the orthogonal heterogeneity
types, which shows its superiority of the related regulariza-
tion term for aligning the local model and local gradients.
Compared to the experimental results under the Dirichlet
distribution, the convergence improvement of FedTrip is more
remarkable than the improvement in the experiments under the
orthogonal distribution. Although MOON can simultaneously
obtain the global model and historical model information, it



TABLE VI
THE NUMBER OF COMMUNICATION ROUNDS OF CNN TO ACHIEVE THE

TARGET ACCURACY IN 4− 50.

Method
MNIST FMNIST

Dir-0.1 Dir-0.5 Orthogonal-5 Dir-0.1 Dir-0.5 Orthogonal-5
87% 90% 85% 65% 75% 60%

FedTrip 30 19 43 19 15 35
FedAvg 1.6× 1.74× 2.14× 2.74× 3× 2.51×
FedProx 1.8× 1.71× 1.7× 2.68× 2.87× 2.14×
SlowMo 1.87× 1.71× 1.7× 4.21× 4.67× >2.86×
MOON 2.33× 1.32× 2.28× 4× 2.67× >2.86×
FedDyn 2.17× 3× 2.28× 4.16× 5.07× >2.86×

conducts the worst performance in Orthogonal − 10. This
reveals that this model representation method is not suitable for
all data distributions, especially highly-skewed data distribu-
tions. Overall, FedTrip achieves 2.53× and 1.38× convergence
acceleration compared to the state-of-art method MOON in
Dir−0.1 and Orthogonal−10 respectively. We attribute this
to that FedTrip ables to mitigate the server fluctuation in the
convergence trajectory in heavily-skewed data distributions.

D. Scalability

We discuss the scalability of FedTrip based on the client
participation type that the server randomly selects 4 devices
from 50 devices. The convergence performances across dif-
ferent models and data heterogeneity types are listed in Table
VI. Symbol > in Table VI indicates that the global model of
the specific method does not achieve the target accuracy at the
last communication round.

The communication rounds of these methods to achieve
the target accuracy in 4-50 are less than that in 4-10 with
the same hyperparameters, which is benefit from the larger
number of total data samples. With the details of FedTrip
in Section IV, to scale the influence of the historical local
model, ξ in FedTrip is scaled by the gap between the current
round and the last participated round. The expectation value
of ξ decreases to 1

5 of ξ in 4-10. Among experiments, FedTrip
performs the fastest convergence in 4-50. Compared to FedAvg
and MOON, FedTrip reduces communication rounds by up to
56.1% and 54.82% respectively. The performance of MOON
degrades in this setting, which shows the limitation of MOON
in low client participation environments. In summary, FedTrip
consistently yields substantial resource savings compared to
baselines across various client participation settings.

E. Influence of Aggregation Intervals

In this part, we enlarge the number of local training epochs
to 5 and 10 at each communication round. The experiments
run under settings with Dir − 0.5 and 4-10. We set µ = 0.4
in FedTrip. We list the test accuracy of each method at the
10-th and 20-th communication round in Table VII. FedTrip
consistently achieves the highest accuracy among different
aggregation intervals. With the increase of local training
iterations per communication round, the average accuracy of

TABLE VII
THE ACCURACY AMONG METHODS WITH 5 AND 10 OF LOCAL EPOCHS.

# Local
#Rounds FedTrip FedAvg FedProx SlowMo MOON FedDyn

Epochs

5
10 96.36 95.49 93.08 84.55 95.26 87.93
20 97.18 96.71 95.95 92.88 96.88 93.49

10
10 97.49 97.38 95.84 87.79 96.99 93.11
20 97.95 97.84 97.25 95.15 97.84 95.93

all methods at each round is improved. Although a large ag-
gregation interval exacerbates the staleness of historical local
models, our method can still obtain the effective information
from the historical models to accelerate convergence. SlowMo
and FedDyn have unsatisfactory performance owing to the
frequency reduction of the additional operations at the server,
resulting in incorrect updates.

F. Sensitivity Analysis of µ in FedTrip

To explore the influence of µ on the convergence, we
compare the model accuracy and convergence rate of FedTrip
by varying µ from 0.1 to 2.5. Note that the final accuracy is
defined as the highest test accuracy in the training process,
which indicates the best performance across different values
of µ. The model, dataset, and participation type are CNN,
MNIST, and 4-10 respectively. The results are shown in Fig.
7. The blue and the orange circles represent the final accuracy
and the number of communication rounds required to achieve
the 90% test accuracy of the global model. Note that, the radii
of circles represent the variance of corresponding metrics.

Under all settings, FedTrip eventually converges success-
fully. As shown in Fig. 7, FedTrip suffers a lower convergence
rate when the value of µ is small. It accelerates convergence
and improves test accuracy to 93.48% and 94.06% under
Dir − 0.1 and Dir − 0.5 when µ = 0.4. Afterward, the
convergence is still accelerated at the sacrifice of accuracy
degradation when the value of µ increases to approximately
1.5. With further increasing µ, the number of communication
rounds increases, and the final accuracy decreases. Under
Dir − 0.1, the test accuracy of FedTrip fluctuates more
considerably and degrades faster with increasing µ than that
under Dir − 0.5. Under Orthogonal setting, our method
has the more stable performance than that under Dirichlet
data heterogeneity with the change of µ. The performance
fluctuates dramatically When µ > 2, but the test accuracy
drops to 80% only when µ = 2.5. As shown in Figure 7
(d), the performance is sensitive to µ. With the value of µ
increases, the test performance considerably degrades.

Consequently, for devices with limited resource budgets or
with less-strict performance requirements, a large µ is a better
option. Conversely, we need to set a small µ for the cases with
high performance requirements.

VI. CONCLUSION

In this paper, we propose a resource-efficient FL method
named FedTrip based on the insight of constraining local
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(c) CNN on MNIST under Orthogonal
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(d) MLP on FMNIST under Dir − 0.5

Fig. 7. The performance influence of µ on CNN model and MNIST and
MLP model on FMNIST.

model close to the global model while keeping away from
the historical model, aiming to mitigate the impact of incon-
sistency model update derived from data heterogeneity and
effectively obtain the information that helps fast convergence.
Specifically, we add a triplet regularization term to the client-
side loss function to absorb the useful information from
historical local model with negligible computation cost. Our
experiments show that FedTrip outperforms the state-of-the-art
methods in terms of reducing computation and communication
overhead under the circumstances of varying data heterogene-
ity, client participation and hyperparameter settings. In future,

TABLE VIII
COMPARISON OF FEDTRIP WITH RELATED STATE-OF-THE-ARTS ON THE

COMPUTATION AND COMMUNICATION OVERHEAD.

Method Computation Communication
Overhead (FLOPs) Overhead

SCAFFOLD [17] 2(K + 1)|w|+ n(FP +BP ) 2|w|
MimeLite [35] n(FP +BP ) 2|w|
MOON [30] K (M(1 + p)FP ) 0

FedProx [25] 2K|w| 0

FedDyn [26] 4K|w| 0

FedTrip 4K|w| 0

we will further discuss the influence of ξ and analyze the
convergence rate of FedTrip in general convex and non-convex
cases.

APPENDIX A
DISCUSSION ON RESOURCE CONSUMPTION OF ATTACHING

OPERATIONS IN METHODS

This part illustrates the computation and communication
consumption of FedTrip compared with related state-of-the-
art methods. FedAvg is the baseline, and all methods use
the SGDm optimizer. Table VIII displays the consumption at
each communication round of attaching operations in these
methods. We define K,M,n, |w| as the number of local
iterations, batch size, local data samples, and the size of
model parameters. In addition, FP and BP represent the
computation overhead of feedforward and backpropagation for
a single data sample, respectively.

SCAFFOLD and MimeLite require extra computation of
full-batch gradients to estimate the true gradients, which
requires n(FP + BP ) computation overhead. Note that the
computation overhead of FP and BP is much larger than |w|.
For example, the computation overhead of FP is 342 × as
much as |w| on CNN model. In addition, they require extra
transmission in both downstream and upstream communica-
tion. The size of transmission is 2|w|. MOON requires extra
(1+p)FP for each local iteration, where p denotes the number
of history models used in the local iterations. FedTrip only
requires 4|w| computation overhead at each local iteration,
much smaller than that of MOON.

In general, although existing methods can alleviate data
heterogeneity and improve convergence performance, they
require a large amount of local computation or client-server
interactions because of their attaching operations. The attach-
ing operations of FedTrip not only doesn’t increase additional
communication overhead, but its computation overhead is
much smaller than that of other methods, almost negligible.

APPENDIX B
SKETCH OF CONVERGENCE PROOF

We prove the convergence analysis of FedTrip by referring
to the proof of FedProx [25] and FedDANE [27]. Besides, one



lemma is adapted from Scaffold [17], which we will apply in
〈∇f(wt), wt+1 − wt〉:

〈∇f(x), y − z) ≤ f(y)− f(z)− µ

4
‖y − z‖2 + L‖z − x‖2.

(8)

First, we define etk such that:

∇Fk(wt+1
k )+µ(wt+1

k − wt) + µξtk(w̃tk − wt+1
k ) = etk

‖etk‖ ≤ γ‖∇Fk(wt)‖,

and we define Ek[wt+1
k ] = w̄t+1. We have

(Ek[wt+1
k ]− wt)+Ek[ξtk(w̃tk − wt+1

k )]

= − 1

µ
Ek[∇Fk(wt+1

k )] +
1

µ
Ek[etk]. (9)

Then we set ŵt+1
k = argminw hk(w;wt). It’s obviously

that∇hk(ŵt+1
k , wt) = 0. Due to the µ-strongly convex of hk,

we can get

‖ŵt+1
k − wt+1

k ‖ =
1

µ
‖∇h(ŵt+1

k , wt)−∇h(wt+1
k , wt)‖

=
1

µ
‖etk‖ ≤

γ

µ
‖∇Fk(wtk)‖,

‖ŵt+1
k − wt‖ =

1

µ
‖∇h(ŵt+1

k , wt)−∇h(wt, wt)‖

=
1

µ
‖−∇Fk(wt)− µξtk(w̃tk − wt)‖,

‖wt+1
k − wt‖ ≤ 1 + γ

µ
‖∇Fk(wt)‖+ ξtk‖w̃tk − wt‖. (10)

As Ek[‖wt+1
k − wt‖] = ‖w̄t+1 − wt‖, we use Assumption 1

to get

‖w̄t+1 − wt‖ ≤ B(1 + γ)

µ
‖∇f(wt)‖+ Ek[ξtk‖wt − w̃tk‖].

Here, we further define ‖w̃t − wt‖ as

‖w̃tk − wt‖ ≤
1

µ
‖∇h(w̃tk, w

t)−∇h(wt, wt)‖

≤ 1

µ
‖∇Fk(w̃tk) + µ(w̃tk − wt)

−∇f(wt)− ξtkµ(w̃tk − wt)‖

≤ 1

(1− (1− ξtk))µ
‖∇Fk(w̃tk)−∇Fk(wt)‖

≤ 1

ξtkµ
‖∇Fk(w̃tk)−∇Fk(wt)‖. (11)

According to L-smooth, we get the recursive inequality of
‖w̃t − wt‖ and ‖∇Fk(w̃t)−∇Fk(wt)‖ as follows:

‖∇Fk(w̃t)−∇Fk(wt)‖ ≤ L‖w̃t − wt‖, (12)

ξt‖w̃t − wt‖ ≤ B

µ
‖∇f(w̃t)−∇f(wt)‖. (13)

Then, we get the inequality related to f(w̄t+1) and f(wt)
based on L-smoothness, which can be given by:

f(wt+1) ≤f(wt) + 〈∇f(wt), w̄t+1 − wt〉+
L

2
‖w̄t+1 − wt‖2

≤f(wt)− 1

µ
‖∇f(wt)‖2 +

γB

µ
Ek[〈∇f(wt), etk〉]

− 1

µ
〈∇f(wt),Ek

[
∇Fk(wt+1)−∇Fk(wt)

]
〉

+ Ek
[
ξtk〈∇f(wt), w̃tk − wt+1〉

]
+
L

2
‖wt+1 − wt‖2

(14)

According to (8) in FedProx, the first three items are
identical. So we only need to compare the last two
items in (14) to L

2 ‖w
t+1 − wt‖2 at (8) in FedProx,

which is equal to L
2 ‖

1+γ
µ ∇Fk(wt)‖2. Firstly, we analyze

Ek
[
ξtk〈∇f(wt), w̃tk − wt+1〉

]
.

Ek
[
ξtk〈∇f(wt), w̃tk − wt+1〉

]
=Ek

[
ξtk〈∇f(wt), w̃tk − wt〉

]
+ Ek

[
ξtk〈∇f(wt), wt − wt+1〉

]
Ek
[
〈∇f(wt), w̃tk − wt〉

]
≤Ek

[
Fk(w̃tk)− Fk(wt)

−µ
4
‖w̃tk − wt‖2

]
(15)

Ek
[
〈∇f(wt), wt − wt+1〉

]
≤Ek

[
Fk(wt)− Fk(wt+1)

− µ

4
‖wt − wt+1‖2

+L‖wt − wt+1‖2
]
. (16)

L
2 ‖w

t+1 − wt‖2 in FedTrip is

L

2
‖wt+1 − wt‖2 ≤L

[
‖1 + γ

µ
∇Fk(wt)‖2

+ Ek‖ξtk(w̃tk − wt)‖2
]
. (17)

Combine (15), (16) and (17), we have the additional items Qt

in FedTrip:

Qt =
L

2
‖1 + γ

µ
∇Fk(wt)‖2 + L‖ξtk(w̃tk − wt)‖2

+ Ekξtk
[
Fk(w̃tk)− Fk(wt+1)− µ

4
‖w̃tk − wt‖2

− µ

4
‖wt − wt+1‖2 + L‖wt − wt+1‖2

]
. (18)

Now we analyze the items one by one. In FedProx, µ is set as
6LB2 as example, where B � 1. We adapt it and easily get(
µ
4 − L

)
� 0 and

(
ξtµ
4 − L

)
� 0, where ξt = E[ξtk] ∈ (0, 1].

Then we consider L
2 ‖

1+γ
µ ∇Fk(wt)‖2.

Ek
[
L

2
‖1 + γ

µ
∇Fk(wt)‖2

]
=
LB2(1 + γ)2

2µ2
‖∇f(wt)‖2.

(19)



From (11), we have − 1+γ
µ ‖∇Fk(wt)‖ ≤ ξtk‖w̃tk − wt‖ −

‖wt+1 − wt‖.

LB2(1 + γ)2

µ2
‖∇f(wt)‖2 ≤L

(
(ξtk)2‖w̃tk − wt‖2

− 2ξtk‖w̃tk − wt‖‖wt+1 − wt‖
+‖wt+1 − wt‖2

)
�µξtk

4

(
‖w̃tk − wt‖2

+‖wt+1 − wt‖2
)

Lastly, we define L0 as the local Lipschitz continuity constant
of function f and we have

‖f(w̃tk)− f(wt)‖ ≤ L0‖w̃tk − wt‖

L0‖w̃tk − wt‖ −
µ
4 ‖w̃

t
k − wt‖2 < 0 is satisfied when L0 <

µ
4 ‖w̃

t
k − wt+1 ‖ ∀t.

If µ,L, γ, ξ stasify, we have ρ > 0 and Qt > 0. Assume
that ESt [f(wt+1)] = f(wt+1), (14) can be written as

ESt [f(wt+1)] ≤f(wt) +

(
1− γB
µ

− L(1 + γ)B

µ2

−L(1 + γ)2B2

2µ2

)
‖∇f(wt)‖2 −Qt. (20)

If we define that γ = 0, the inequality is transformed to

f(wt+1) ≤f(wt)−
(

1

µ
− LB

µ2
− LB2

2µ2

)
‖∇f(wt)‖2 −Qt

≤f(wt)− ρ‖∇f(wt)‖2 −Qt. (21)
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