
k-Center Clustering with Outliers in the MPC and
Streaming Model
Mark de Berg !

Department of Computer Science, TU Eindhoven, the Netherlands

Leyla Biabani !

Department of Computer Science, TU Eindhoven, the Netherlands

Morteza Monemizadeh !

Department of Computer Science, TU Eindhoven, the Netherlands

Abstract
Given a point set P ⊆ X of size n in a metric space (X, dist) of doubling dimension d and
two parameters k ∈ N and z ∈ N, the k-center problem with z outliers asks to return a set
C∗ = {c∗1, · · · , c∗k} ⊆ X of k centers such that the maximum distance of all but z points of P to their
nearest center in C∗ is minimized. An (ε, k, z)-coreset for this problem is a weighted point set P ∗ such
that an optimal solution for the k-center problem with z outliers on P ∗ gives a (1±ε)-approximation
for the k-center problem with z outliers on P . We study the construction of such coresets in the
Massively Parallel Computing (MPC) model, and in the insertion-only as well as the fully dynamic
streaming model. We obtain the following results, for any given error parameter 0 < ε 6 1: In all
cases, the size of the computed coreset is O(k/εd + z).

Algorithms for the MPC model. In this model, the data are distributed over m machines.
One of these machines is the coordinator machine, which will contain the final answer, the other
machines are worker machines.
◦ We present a deterministic 2-round algorithm that uses O(

√
n) machines, where the worker

machines have O(
√
nk/εd+

√
n·log(z+1)) local memory, and the coordinator has O(

√
nk/εd+√

n · log(z+ 1) + z) local memory. The algorithm can handle point sets P that are distributed
arbitrarily (possibly adversarially) over the machines.

◦ We present a randomized algorithm that uses only a single round, under the assumption
that the input set P is initially distributed randomly over the machines. This algorithm also
uses O(

√
n) machines, where the worker machines have O(

√
nk/εd) local memory and the

coordinator has O(
√
nk/εd +

√
n ·min(logn, z) + z) local memory.

◦ We present a deterministic algorithm that obtains a trade-off between the number of rounds,
R, and the storage per machine.

Algorithms and lower bounds in the streaming model. In this model, we have a single
machine, with limited storage, and the point set P is revealed in a streaming fashion.
◦ We present the first lower bound for the (insertion-only) streaming model, where the points

arrive one by one and no points are deleted. We show that any deterministic algorithm
that maintains an (ε, k, z)-coreset must use Ω(k/εd + z) space. We complement this with a
deterministic streaming algorithm using O(k/εd + z) space, which is thus optimal.

◦ We study the problem in fully dynamic data streams, where points can be inserted as well as
deleted. Our algorithm works for point sets from a d-dimensional discrete Euclidean space
[∆]d, where ∆ ∈ N indicates the size of the universe from which the coordinates are taken. We
present the first algorithm for this setting. It constructs an (ε, k, z)-coreset. Our (randomized)
algorithm uses only O((k/εd + z) log4(k∆/εδ)) space. We also present an Ω((k/εd) log ∆ + z)
lower bound for deterministic fully dynamic streaming algorithms.

◦ Finally, for the sliding-window model, where we are interested in maintaining an (ε, k, z)-
coreset for the last W points in the stream, we show that any deterministic streaming
algorithm that guarantees a (1 + ε)-approximation for the k-center problem with outliers
in Rd must use Ω((kz/εd) log σ) space, where σ is the ratio of the largest and smallest distance
between any two points in the stream. This improves a recent lower bound of De Berg,
Monemizadeh, and Zhong [18, 19] and shows the space usage of their algorithm is optimal.
Thus, our lower bound gives a (negative) answer to a question posed by De Berg et al. [18, 19].

ar
X

iv
:2

30
2.

12
81

1v
1

 [
cs

.D
S]

 2
4

Fe
b

20
23

mailto:m.t.d.berg@tue.nl
mailto:l.biabani@tue.nl
mailto:m.monemizadeh@tue.nl

L. Biabani and M. de Berg and M. Monemizadeh 1

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases k-center problem, outliers, massively parallel computing, streaming

Funding The work in this paper is supported by the Dutch Research Council (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

Clustering is a classic topic in computer science and machine learning with applications in
pattern recognition [2], image processing [20], data compression [37, 40], healthcare [5, 39],
and more. Centroid-based clustering [8, 23] is a well-studied type of clustering, due to its
simple formulation and many applications. An important centroid-based clustering variant
is k-center clustering: given a point set P in a metric space, find k congruent (that is,
equal-sized) balls of minimum radius that together cover P . The k-center problem has been
studied extensively; see for example [13, 24, 26, 30]. The resulting algorithms are relatively
easy to implement, but often cannot be used in practice because of noise or anomalies in the
data. One may try to first clean the data, but with the huge size of modern data sets, this
would take a data scientist an enormous amount of time. A better approach is to take noise
and anomalies into account when defining the clustering problem. This leads to the k-center
problem with outliers, where we allow a certain number of points from the input set P to
remain uncovered. Formally, the problem is defined as follows.

Let P be a point set in a metric space (X,dist). Let k ∈ N and z ∈ N be two parameters.
In the k-center problem with z outliers we want to compute a set of k congruent balls that
together cover all points from P , except for at most z outliers. We denote by optk,z(P) the
radius of the balls in an optimal solution. In the weighted version of the problem, we are
also given a function w : P → Z+ that assigns a positive integer weight to the points in P .
The problem is now defined as before, except that the total weight of the outliers (instead of
their number) is at most z. We consider the setting where the metric space (X,dist) has a
constant doubling dimension, defined as follows. For a point p ∈ X and a radius r > 0, let
b(p, r) = {q ∈ X : dist(p, q) 6 r} be the ball of radius r around p. The doubling dimension of
(X,dist) is the smallest d such that any ball b can be covered by 2d balls of radius radius(b)/2.

In this paper, we study the k-center problem with outliers for data sets that are too large
to be stored and handled on a single machine. We consider two models.

In the first model, the data are distributed over many parallel machines [22]. We will
present algorithms for the Massively Parallel Computing (MPC) model, introduced by Karloff,
Suri, and Vassilvitskii [33] and later extended by Beame et al. [7] and Goodrich et al. [27].
In this model, the input of size n is initially distributed among m machines, each with a
local storage of size s. Computation proceeds in synchronous rounds, in which each machine
performs an arbitrary local computation on its data and sends messages to the other machines.
The local storage should be sublinear space (that is, we require s = o(n)); the goal is to
minimize the space per machine by employing a large number of machines in an effective
manner. We also want to use only a few rounds of communication. We assume that there is
one designated machine, the coordinator, which at the end of the computation must contain
the answer to the problem being solved; the other machines are called worker machines. We
make this distinction because MPC clusters often have different CPUs and GPUs running in
parallel, some of which are more powerful and have more storage than others.

In the second model, the data arrives in a streaming fashion. We consider the classical,
insertion-only streaming setting [3], and the dynamic streaming setting [31] where the stream

2 k-Center Clustering with Outliers in the MPC and Streaming Model

model setting approx. storage deterministic ref.
MPC 1-round 1 + ε

√
nk/ε2d +

√
n logn/εd + z/εd no [11]

1-round 1 + ε
√
nk/εd +

√
n ·min(logn, z) + z no here

1-round 1 + ε
√
nk/ε2d +

√
nz/ε2d yes [11]

2-round 1 + ε
√
nk/εd +

√
n · log(z + 1) + z yes here

R-round (1 + ε)R n1/(R+1)(k/εd + z)R/(R+1) yes here
streaming insertion-only 1 + ε k/εd + z/εd yes [11]

insertion-only 1 + ε k/εd + z yes here
insertion-only 1 + ε Ω(k/εd + z) yes here
sliding-window 1 + ε (kz/εd) log σ yes [18]
sliding-window 1 + ε Ω((kz/ε) logσ) yes [18]
sliding-window 1 + ε Ω((kz/εd) logσ) yes here
fully dynamic 1 + ε (k/εd + z) log4(k∆/εδ) no here
fully dynamic 1 + ε Ω((k/εd) log ∆ + z) yes here

Table 1 Comparison of our results to previous work. Storage bounds are asymptotic. The
lower bounds are shown with Ω(·) notations in bold. All results are for a metric space of doubling
dimension d, except for the dynamic streaming algorithm which is for a discrete (Euclidean) space
[∆]d; in both cases, the dimension d is considered to be a constant. The size of the coreset computed
by our algorithms is always O(k/εd + z).

contains insertions as well as deletions of points. The goal of the streaming model is to
approximately solve a problem at hand—in our case, the k-center problem with outliers—
using space that is sublinear in n. Note that there are no assumptions on the order of arrivals,
that is, the stream can be adversarially ordered.

We study the k-center problem with outliers in the MPC model and in the streaming
model. We will not solve the problems directly, but rather compute a coreset for it: a
small subset of the points that can be used to approximate the solution on the actual point
set. Since their introduction by Agarwal, Her-Peled and Varadarajan [1] coresets have been
instrumental in designing efficient approximation algorithms, in streaming and other models.
For the (weighted) k-center problem with outliers, coresets can be defined as follows.

I Definition 1 ((ε, k, z)-coreset). Let 0 < ε 6 1 be a parameter. Let P be a weighted point
set with positive integer weights in a metric space (X,dist) and let P ∗ be a subset of P , where
the points in P ∗ may have different weights than the corresponding points in P . Then, P ∗ is
an (ε, k, z)-coreset of P if the following hold:
(1) (1− ε) · optk,z(P) 6 optk,z(P ∗) 6 (1 + ε) · optk,z(P).
(2) Let B = {b(c1, r), · · · , b(ck, r)} be any set of congruent balls in the space (X,dist) such

that the total weight of the points in P ∗ that are not covered by B is at most z. Let
r′ := r + ε · optk,z(P). Then, the total weight of the points in P that are not covered by
the k expanded congruent balls B′ = {b(c1, r′), · · · , b(ck, r′)} is at most z.

Table 1 lists our algorithmic results for computing small coresets, in the models discussed
above, as well as existing results. Before we discuss our results in more detail, we make two
remarks about two of the quality measures in the table.

About the approximation factor. Recall that our algorithms compute an (ε, k, z)-coreset.
To obtain an actual solution, one can run an offline algorithm for k-center with outliers on
the coreset. The final approximation factor then depends on the approximation ratio of the
algorithm: running an optimal but slow algorithm on the coreset, gives a (1+ε)-approximation;

L. Biabani and M. de Berg and M. Monemizadeh 3

and running a fast 3-approximation algorithm, for instance, gives a 3(1 + ε)-approximation.
To make a fair comparison with the result of Ceccarello et al. [11], we list the approximation
ratio of their coreset in Table 1, rather than their final approximation ratio.

About the number of rounds of the MPC algorithms. The original MPC model [33] considers
the number of communication rounds between the machines as a performance measure. A few
follow-up works count the number of computation rounds instead. As each communication
round happens in between two computation rounds, we need to subtract 1 from the bounds
reported in [11]. In Table 1 we made this adjustment, in order to get a fair comparison.

Our results for the MPC model and relation to previous work. Before our work, the best-
known deterministic MPC algorithm was due to Ceccarello, Pietracaprina and Pucci [11],
who showed how to compute an (ε, k, z)-coreset in one round of communication using
O(
√
nk/ε2d +

√
nz/εd) local memory per machine, and O(

√
n/(k + z)) machines. (They

also gave a slightly more efficient algorithm for the problem without outliers.) Our main
result for the MPC model is a 2-round algorithm for computing a coreset of size O(k/εd + z),
using O(

√
nεd/k) machines having O(

√
nk/εd +

√
n · log(z + 1) + z) local memory. This is

a significant improvement for a large range of values of z and k. For example, if z =
√
n and

k = logn then Ceccarello et al. use O(n0.75/εd) local memory, while we use O(
√

(n/εd) logn)
local memory. In fact, the local storage stated above for our solution is only needed for
the coordinator machine; the worker machines just need O(

√
nk/εd +

√
n · log(z + 1)) local

storage, which is interesting as it avoids the +z term.
To avoid the term O(

√
nz/εd) in the storage of the previous work, we must control the

number of outliers sent to the coordinator. However, it seems hard to determine for a worker
machine how many outliers it has. Ceccarello et al. [11] assume that the points are distributed
randomly over the machines, so each machine has only “few” outliers in expectation. But in
an adversarial setting, the outliers can be distributed very unevenly over the machines. We
develop a mechanism that allows each machine, in one round of communication, to obtain a
good estimate of the number of outliers it has. Guha, Li and Zhang [29] present a similar
method to determine the number of outliers in each machine, but using their method the
storage of each worker machine will be O(

√
nk/εd +

√
n · z). Our refined mechanism reduces

the dependency on z from linear to logarithmic, which is a significant improvement.
We also present a 1-round randomized algorithm, and a deterministic R-round algorithm

giving a trade-off between the number of communication rounds and the local storage; see
Table 1 for the bounds, and a comparison with a 1-round algorithm of Ceccarello et al.

Our results for the streaming model and relation to previous work. Early work focused
on the problem without outliers in the insertion-only model [13, 34]. McCutchen and
Khuller [34] also studied the problem with outliers, in general metric spaces, obtaining
(4 + ε)-approximation using O(kz/ε) space. More recently, Ceccarello et al. [11] presented an
algorithm for the k-center problem with outliers in spaces of bounded doubling dimension,
which computes an (ε, k, z)-coreset using O(k/εd + z/εd) storage. We improve the result of
Ceccarello et al. by presenting a deterministic algorithm that uses only O(k/εd + z) space.
Interestingly, we will give a lower bound showing our algorithm is optimal.

We next study the problem in the fully dynamic case, where the stream may contain
insertions as well as deletions. The k-center problem with outliers has, to the best of our
knowledge, not been studied in this model. Our results are for the setting where the points
in the stream come from a d-dimensional discrete Euclidean space [∆]d. We present a
randomized dynamic streaming algorithm for this setting that constructs an (ε, k, z)-coreset

4 k-Center Clustering with Outliers in the MPC and Streaming Model

using O((k/εd+z) log4(k∆/(εδ))) space. The idea of our algorithm is as follows. We construct
a number of grids on the underlying space [∆]d, of exponentially increasing granularity. For
each of these grids, we maintain a coreset on the non-empty cells using an s-sample recovery
sketch [4], for a suitable parameter s = Θ(k/εd + z). We then use an ‖F‖0-estimator [32]
to determine the finest grid that has at most O(s) non-zero cells, and we prove that its
corresponding coreset is an (ε, k, z)-coreset with high probability.

Note that our dynamic streaming algorithm is randomized only because the subroutines
providing an ‖F‖0-estimator and an s-sample recovery sketch are randomized. If both of
these subroutines can be made deterministic, then our algorithm would also be deterministic,
with bounds that are optimal up to polylogarithmic factors (See the lower bound that we
obtain for the dynamic model in this paper). Interestingly, we can make the s-sample recovery
sketch deterministic by using the Vandermonde matrix [10, 9, 38, 36]. Such a deterministic
recovery scheme can be used to return all non-zero cells of a grid with the exact number of
points in each cell if the number of non-empty cells of that grid is at most O(s). To this end,
we can use linear programming techniques to retrieve the non-empty cells of that grid with
their exact number of points. However, we do not know how to check deterministically if a
grid has at most O(s) non-zero cells at the moment.

Note that our dynamic streaming algorithm immediately gives a fully dynamic algorithm
for the k-center problem with outliers that has a fast update time in the standard (non-
streaming) model. Indeed, after each update we can simply run a greedy algorithm, say
the one in [21], on our coreset. This gives a dynamic (3 + ε)-approximation algorithm with
O((k/εd + z) log4(k∆/(εδ))) update time. Interestingly, to the best of our knowledge a
dynamic algorithm with fast update time was not known so far for the k-center problem
with outliers, even in the standard setting where we can store all the points. For the
problem without outliers, there are some recent results in the fully dynamic model [12, 28, 6].
In particular, Goranci et al. [28] developed a (2 + ε)-approximate dynamic algorithm for
metric spaces of a bounded doubling dimension d. The update time of their algorithm is
O((2

ε)O(d) · log ρ log log ρ) where ρ is the spread ratio of the underlying space. Furthermore,
Bateni et al. [6] gave a (2 + ε)-approximate dynamic algorithm for any metric space using
an amortized update time of O(k polylog (n, ρ)). Both dynamic algorithms need Ω(n) space.
Our streaming algorithm needs much less space (independent of n), and can even deal with
outliers. On the other hand, our algorithm works for discrete Euclidean spaces.

The fully dynamic version of the problem is related to the sliding-window model, where
we are given window length W , and we are interested in maintaining an (ε, k, z)-coreset
for the last W points in the stream. On the one hand, the fully-dynamic setting is more
difficult than the sliding-window setting, since any of the current points can be deleted. On
the other hand, it is easier since we are explicitly notified when a point is deleted, while
in the sliding-window setting the expiration of a point may go unnoticed. In fact, it is a
long-standing open problem to see how different streaming models relate to each other.1

The sliding-window version of the k-center problem (without outliers) was studied by
Cohen-Addad, Schwiegelshohn, and Sohler [16] for general metric spaces. Recently, De Berg,
Monemizadeh, and Zhong [18] studied the k-center problem with outliers for spaces of
bounded doubling dimension. The space usage of the latter algorithm is O((kz/εd) log σ),
where σ is the ratio of the largest and the smallest distance between any two points in the
stream.

1 https://sublinear.info/index.php?title=Open_Problems:20

https://sublinear.info/index.php?title=Open_Problems:20

L. Biabani and M. de Berg and M. Monemizadeh 5

Lower bounds for the streaming model. The only lower bound that we are aware of
for the k-center problem with z outliers in different streaming settings is the one that De
Berg, Monemizadeh, and Zhong [18, 19] proved for the sliding-window model. In particular,
they proved that any deterministic sliding-window algorithm that guarantees a (1 + ε)-
approximation for the k-center problem with outliers in R1 must use Ω((kz/ε) log σ) space.
However, this lower bound works for one-dimensional Euclidean space and in particular, it
shows a gap between the space complexity of their algorithm which is O((kz/εd) log σ) and
their lower bound. De Berg et al. [18, 19] raised the following open question: “It would be
interesting to investigate the dependency on the parameter ε in more detail and close the
gap between our upper and lower bounds. The main question here is whether it is possible to
develop a sketch whose storage is only polynomially dependent on the doubling dimension d.”
We give a (negative) answer to this question, by proving an Ω((kz/εd) log σ) lower bound for
the sliding-window setting in Rd under the L∞-metric, thus improving the lower bound of
De Berg, Monemizadeh, and Zhong and showing the optimality of their algorithm. Our lower
bound for the sliding-window model works in the same general setting as the lower bound of
De Berg et al. [18, 19]. Essentially, the only restriction on the algorithm is that it can only
update the solution when a new point arrives or at an explicitly stored expiration time of an
input point. This is a very powerful model since it does not make any assumptions about
how the algorithm maintains a solution. It can maintain a coreset, but it can also maintain
something completely different.

The lower bound of De Berg et al. [18, 19] inherently only works in the sliding-window
model. Indeed, their lower bound is based on the expiration times of input points. However,
in the insertion-only model, points never expire. Even in the fully dynamic model, a deletion
always happens through an explicit update, and so no expiration times need to be stored. We
are not aware of any lower bounds on the space usage of insertion-only streaming algorithms
or fully dynamic streaming model for the problem. We give the first lower bound for the
insertion-only model, and show that any deterministic algorithm that maintains an (ε, k, z)-
coreset in Rd must use Ω(k/εd+ z) space, thus proving the space complexity of our algorithm
which is O(k/εd + z) is in fact, optimal.

Finally, we prove an Ω((kz/εd) log ∆ + z) lower bound for the fully dynamic streaming
model, thus showing that the logarithmic dependency on ∆ in the space bound of our
algorithm is unavoidable. Our lower bounds for the insertion-only and fully dynamic
streaming models work for algorithms that maintain a coreset.

2 Mini-ball coverings provide (ε, k, z)-coresets

The algorithms that we will develop are based on so-called mini-ball coverings. A similar
concept has been used implicitly before, see for example [18]. Here, we formalize the concept
and prove several useful properties. The idea behind the mini-balls covering is simple but
powerful: using mini-ball coverings we are able to improve the existing results on the k-center
problem with outliers both in the MPC model and in the streaming models.

I Definition 2 ((ε, k, z)-mini-ball covering). Let P be a weighted point set in a metric space
(X,dist) and let k, z ∈ N, and ε > 0. A weighted point set2 P ∗ = {q1, . . . , qf} ⊆ P is
an (ε, k, z)-mini-ball covering of P if P can be partitioned into pairwise disjoint subsets
Q1, . . . , Qf with the following properties:

2 Note that the weights of a point in P ∗ can be different from its weight in P .

6 k-Center Clustering with Outliers in the MPC and Streaming Model

Figure 1 Left: A set of points that are covered by k = 2 balls with z = 5 outliers. Right: A
mini-ball covering of the same point set. The red points are the representative points. The weight of
each mini-ball is the total weight of the points inside it.

(1) Weight property: w(qi) =
∑
p∈Qi

w(p). and, hence,
∑
q∈P∗ w(q) =

∑
p∈P w(p).

(2) Covering property: dist(p, qi) 6 ε · optk,z(P) for all p ∈ Qi. In other words, Qi is
contained in a ball of radius ε · optk,z(P) around qi.

For each p ∈ Qi, we refer to qi as the representative point of pi.

See Figure 1 for an example of mini-ball covering. Next, we show that an (ε, k, z)-mini-ball
covering of a point set P is an (ε, k, z)-coreset of P , and therefore (1± ε)-approximates the
optimal solution for the k-center problem with z outliers. The proof of this lemma, as well
as missing proofs of other lemmas, can be found in the appendix.

I Lemma 3. Let P be a weighted point set in a metric space (X,dist) and let P ∗ be an
(ε, k, z)-mini-ball covering of P . Then, P ∗ is an (ε, k, z)-coreset of P .

The next lemma shows how to combine mini-ball coverings of subsets of P into a mini-ball
covering for P . Then Lemma 5 proves that a mini-ball covering of a mini-ball covering is
also a mini-ball covering, albeit with adjusting the error parameters.

I Lemma 4 (Union Property). Let P be a set of points in a metric space (X,dist). Let
k, z ∈ N and ε > 0 be parameters. Let P be partitioned into disjoint subsets P1, · · · , Ps, and
let Z = {z1, · · · , zs} be a set of numbers such that optk,zi(Pi) 6 optk,z(P) for each Pi. If P ∗i
is an (ε, k, zi)-mini-ball covering of Pi for each 1 6 i 6 s, then ∪si=1P

∗
i is an (ε, k, z)-mini-ball

covering of P .

I Lemma 5 (Transitive Property). Let P be a set of n points in a metric space (X,dist). Let
k, z ∈ N and ε, γ > 0 be four parameters. Let P ∗ be a (γ, k, z)-mini-ball covering of P , and
let Q∗ be an (ε, k, z)-mini-ball covering of P ∗. Then, Q∗ is an (ε + γ + εγ, k, z)-mini-ball
covering of P .

An offline construction of mini-ball coverings. In this section, we develop our mini-ball
covering construction for a set P of n points in a metric space (X,dist) of doubling dimension d.
To this end, we first invoke the 3-approximation algorithm Greedy by Charikar et al. [14].
Their algorithm works for the k-center problem with outliers in general metric spaces (not
necessarily of bounded doubling dimension) and returns k balls of radius at most 3 ·optk,z(P)
which together cover all but at most z points of the given points. The running time of
this algorithm, which we denote by Greedy (P, k, z), is O(n2k logn). Note that Greedy
provides us with a bound on optk,z(P). We use this to compute a mini-ball covering of P
in a greedy manner, as shown in Algorithm MBCConstruction.

We will show that for metric spaces of doubling dimension d, the number of mini-balls is
at most k(12

ε)d + z. To this end, we first need to bound the size of any subset of P whose
pairwise distances are at least δ.

L. Biabani and M. de Berg and M. Monemizadeh 7

Algorithm 1 MBCConstruction (P, k, z, ε)

1: Let r be the radius of the k congruent balls reported by Greedy (P, k, z).
2: P ∗ ← ∅.
3: while |P | > 0 do
4: Let q be an arbitrary point in P and let Rq := b(q, ε · r3) ∩ P .
5: Add q to P ∗ with weight w(q) := w(Rq)
6: P ← P \Rq.
7: Return P ∗.

I Lemma 6. Let P be a finite set of points in a metric space (X,dist) of doubling dimension
d. Let 0 < δ 6 optk,z(P), and let Q ⊆ P be a subset of P such that for any two distinct

points q1, q2 ∈ Q, dist(q1, q2) > δ. Then |Q| 6 k
(

4·optk,z(P)
δ

)d
+ z.

Next we show that MBCConstruction computes an (ε, k, z)-mini-ball covering.

I Lemma 7. Let P be a set of n weighted points with positive integer weights in a metric space
(X,dist) of doubling dimension d. Let k, z ∈ N and 0 < ε 6 1. Then MBCConstruction
(P, k, z, ε) returns an (ε, k, z)-mini-ball covering of P whose size is at most k(12

ε)d + z.

Proof. Let r be the radius computed in Step 1 of MBCConstruction. As Greedy is a
3-approximation algorithm, optk,z(P) 6 r 6 3 · optk,z(P). We first prove that the reported
set P ∗ is an (ε, k, z)-mini-ball covering of P , and then we bound the size of P ∗.

By construction, the sets Rq for q ∈ P ∗ together form a partition of P . Since q is added
to Rq with weight w(Rq), the weight-preservation property holds. Moreover, for any p ∈ Rq
we have dist(p, q) 6 ε · r3 6 ε · optk,z(P). Hence, P ∗ is an (ε, k, z)-mini-ball covering of P .

Next we bound the size of P ∗. Note that the distance between any two points in P ∗

is more than δ, where δ = ε · r3 . Since (X,dist) has doubling dimension d, Lemma 6 thus
implies that |P ∗| 6 k · (4 · optk,z(P)

δ)d + z. Furthermore, optk,z(P) 6 r. Hence,

|P ∗| 6 k

(
4 · optk,z(P)

δ

)d
+z = k

(
4 · optk,z(P)

εr/3

)d
+z 6 k

(
4 · r

εr/3

)d
+z = k

(
12
ε

)d
+z.J

3 Algorithms for the MPC model

Let M1, · · · ,Mm be a set of m machines. Machine M1 is labeled as the coordinator, and the
others are workers. Let (X,dist) be a metric space of doubling dimension d. Let P ⊆ X be
the input point set of size n, which is stored in a distributed manner over the m machines.
Thus, if Pi denotes the point set of machine Mi, then Pi ∩ Pj = ∅ for i 6= j, and ∪mi=1Pi = P .

We present three algorithms in the MPC model for the k-center problem with outliers:
a 2-round deterministic algorithm and an R-round deterministic algorithm in which P can
be distributed arbitrarily among the machines, and a 1-round randomized algorithm that
assumes P is distributed randomly. Our main result is the 2-round algorithm explained next;
other algorithms in the MPC model are given in Section 7.

A deterministic 2-round algorithm. Our 2-round algorithm assumes that P is distributed
arbitrarily (but evenly) over the machines. Since the distribution is arbitrary, we do not
have an upper bound on the number of outliers present at each machine. Hence, it seems
hard to avoid sending Ω(z) points per machine to the coordinator. Next we present an

8 k-Center Clustering with Outliers in the MPC and Streaming Model

elegant mechanism to guess the number of outliers present at each machine, such that the
total number of outlier candidates sent to the coordinator, over all machines, is O(z). Our
mechanism refines the method of Guha, Li and Zhang [29], and gives a significantly better
dependency on z in the storage of the worker machines.

In the first round of Algorithm 2, each machine Mi finds a 3-approximation of the
optimal radius, for various numbers of outliers, and stores these radii in a vector Vi. The
3-approximation is obtained by calling the algorithm Greedy of Charikar et al. [14]. More
precisely, Mi calls Greedy (Pi, k, 2j − 1) and stores the reported radius (which is a 3-
approximation of the optimal radius for the k-center problem with 2j − 1 outliers on Pi)
in Vi[j]. Then, each machine Mi sends its vector Vi to all other machines. In the second
round, all machines use the shared vectors to compute r̂, which is is an approximate lower
bound on the “global” optimal radius. Using r̂, each machine then computes a local mini-ball
covering so that the total number of outliers over all machines is at most 2z.

Algorithm 2 A deterministic 2-round algorithm to compute an (ε, k, z)-coreset
Round 1, executed by each machine Mi:
1: Let Vi[0, 1, . . . , dlog(z + 1)e] be a vector of size dlog(z + 1)e+ 1.
2: for j ← 0 to dlog(z + 1)e do
3: Vi[j]← the radius of balls returned by Greedy (Pi, k, 2j − 1).
4: Communication round: Send Vi to all other machines.

Round 2, executed by each machine Mi:
1: Let R← {V`[j] : 1 6 ` 6 m and 0 6 j 6 dlog(z + 1)e}
2: r̂ ← min

{
r ∈ R :

∑m
`=1
(
2min{j:V`[j]6r} − 1

)
6 2z

}
.

3: ĵi ← min{j : Vi[j] 6 r̂}.
4: P ∗i ← MBCConstruction (Pi, k, 2ĵi − 1, ε).
5: Communication round: Send P ∗i to the coordinator.

At the coordinator: Collect all mini-ball coverings P ∗i and report MBCConstruction
(
⋃
i P
∗
i , k, z, ε) as the final mini-ball covering.

First, we show that the parameter r̂ that we computed in the second round, can be used
to obtain a lower bound on optk,z(P).

I Lemma 8. Let r̂ be the value computed in Round 2 of Algorithm 2. Then, optk,z(P) > r̂/3.

Proof. Consider a fixed optimal solution for the k-center problem with z outliers on P , and
let Z∗ be the set of outliers in this optimal solution. Let z∗i := |Z∗ ∩ Pi| be the number of
outliers in Pi. For each i ∈ [m] we define j∗i := dlog(z∗i + 1)e, so that 2j∗i −1−1 < z∗i 6 2j∗i −1.

First, we show that maxi∈[m] Vi[j∗i] 6 3 · optk,z(P). Let i ∈ [m] be an arbitrary
number. Since z∗i 6 2j∗i − 1, we have opt

k,2j∗
i −1(Pi) 6 optk,z∗

i
(Pi). Moreover, since

Pi ⊆ P and z∗i := |Z∗ ∩ Pi|, we have optk,z∗
i
(Pi) 6 optk,z(P). Therefore, opt

k,2j∗
i −1(Pi) 6

optk,z∗
i
(Pi) 6 optk,z(P).

Besides, Vi[j∗i] a 3-approximation of the optimal radius for the k-center problem with
2j∗i − 1 outliers on Pi. Hence, Vi[j∗i] 6 3 · opt

k,2j∗
i −1(Pi) 6 3 · optk,z(P) . The above

inequality holds for any i ∈ [m], so we have maxi∈[m] Vi[j∗i] 6 3 · optk,z(P).
Next, we show that r̂ 6 maxi∈[m] Vi[j∗i]. Let ` ∈ [m] be an arbitrary number. Since

L. Biabani and M. de Berg and M. Monemizadeh 9

V`[j∗`] 6 maxi∈[m] Vi[j∗i], we have min{j : V`[j] 6 maxi∈[m] Vi[j∗i]} 6 j∗` . Therefore,

m∑
`=1

(
2min{j:Vi[j]6maxi∈[m] Vi[j∗i]} − 1

)
6

m∑
`=1

(
2j
∗
` − 1

)
6

m∑
`=1

2z∗` 6 2z .

Moreover, maxi∈[m] Vi[j∗i] ∈ R. So, we conclude r̂ 6 maxi∈[m] Vi[j∗i]. Putting everything
together we have r̂ 6 maxi∈[m] Vi[j∗i] 6 3 · optk,z(P), which finishes the proof. J

In the second round of Algorithm 2, each machine Mi sends an (ε, k, 2ĵi − 1)-mini-ball
covering of Pi to the coordinator. As ĵi may be less than j∗i , we cannot guarantee that
opt

k,2ĵi−1(Pi) 6 optk,z(P), so we cannot immediately apply Lemma 4 to show that the
union of mini-ball coverings that the coordinator receives is an (ε, k, z)-mini-ball covering
of P . Therefore, we need a more careful analysis, which is presented in Lemma 9.

I Lemma 9. Let P ∗i be the weighted set that machine Mi sends to the coordinator in the
second round of Algorithm 2. Then, ∪mi=1P

∗
i is an (ε, k, z)-mini-ball covering of P .

Proof. To show ∪mi=1P
∗
i is an (ε, k, z)-mini-ball covering of P , we prove that for each point

p ∈ P its representative point q ∈ ∪mi=1P
∗
i is such that dist(p, q) 6 ε · optk,z(P). Let p be

an arbitrary point in Pi, and let q ∈ P ∗i be the representative point of p. Observe that P ∗i
is a mini-ball covering returned by MBCConstruction (Pi, k, 2ĵi − 1, ε). Let ri be the
radius of ball that Greedy (Pi, k, 2ĵi − 1) returns, i.e. ri = Vi[ĵi]. Note that Greedy is
a deterministic algorithm, and ĵi is defined such that ri = Vi[ĵi] 6 r̂. When we invoke
MBCConstruction (Pi, k, 2ĵi − 1, ε), first it invokes Greedy (Pi, k, 2ĵi − 1), which returns
balls of radius ri, and next, assigns the points in each non-empty mini-ball of radius ε

3 · ri to
the center of that mini-ball. So, each point is assigned to a representative point of distance
at most ε

3 · ri. Thus, dist(p, q) 6 ε
3 · ri. According to Lemma 8, r̂ 6 3 ·optk,z(P), also ri 6 r̂.

Putting everything together we have, dist(p, q) 6 ε
3 · ri 6

ε
3 · r̂ 6 ε · optk,z(P) . J

We obtain the following result. Note that the second term in the space bound,
√
nεd/k ·

log(z + 1), can be simplified to
√
n · log(z + 1) since εd/k < 1.

I Theorem 10 (Deterministic 2-round Algorithm). Let P ⊆ X be a point set of size n in a
metric space (X,dist) of doubling dimension d. Let k, z ∈ N be two natural numbers, and
let 0 < ε 6 1 be an error parameter. Then, there exists a deterministic algorithm that
computes an (ε, k, z)-coreset of P in the MPC model in two rounds of communication, using
m = O(

√
nεd/k) worker machines with O(

√
nk/εd +

√
nεd/k · log(z + 1)) local memory,

and a coordinator with O(
√
nk/εd +

√
nεd/k · log(z + 1) + z) local memory.

Proof. Invoking Algorithm 2, the coordinator receives ∪mi=1P
∗
i after the second round, which

is an (ε, k, z)-mini-ball covering of P by Lemma 9. Then to reduce the size of the final coreset,
the coordinator computes an (ε, k, z)-mini-ball covering of ∪mi=1P

∗
i , which is an (ε′, k, z)-

mini-ball covering of P by Lemma 5, and therefore an (ε′, k, z)-coreset of P by Lemma 3,
where ε′ = 3ε. Now, we discuss storage usage. In the first round, each worker machine needs
O(nm) = O(

√
nk/εd) space to store the points and compute a mini-ball covering. In the

second round, each worker machine receives m vectors of length dlog(z + 1)e+ 1, and needs
O(m · log(z + 1)) to store them. Therefore, the local space of each worker machine is of size
O(
√
nk/εd +

√
nεd/k · log (z + 1)).

After the second round, the coordinator receives ∪mi=1P
∗
i . As P ∗i is returned by MBCCon-

struction (Pi, k, 2ĵi − 1, ε), Lemma 7 shows that the size of P ∗i is at most k(12
ε)d + (2ĵi − 1).

Besides, ĵi is define such that
∑m
i=1(2ĵi − 1) 6 2 · z. Also, note that we can assume the

10 k-Center Clustering with Outliers in the MPC and Streaming Model

doubling dimension d is a constant. Consequently, the required memory for the final mini-ball
covering is

m∑
i=1

k

(
12
ε

)d
+ (2ĵi − 1) = O

(
m · k

(
1
ε

)d
+

m∑
i=1

(2ĵi − 1)
)

= O

(√
nk

εd
+ z

)
.

Thus, the local memory of the coordinator is of size O(
√
nk/εd+

√
nεd/k ·log (z + 1)+z). J

4 A tight lower bound for insertion-only streaming algorithms

In this section, we first show that any deterministic algorithm requires Ω(k/εd + z) space
to compute an (ε, k, z)-coreset. Then interestingly, we present a deterministic streaming
algorithm that uses O(k/εd + z) space in section 4.3, which is optimal.

To prove our lower bounds, we need to put a natural restriction on the total weight of
the coreset, as follows.

Lower-bound setting. Let P (t) be the subset of points that are present at time t, that is,
P (t) contains the points that have been inserted. Let P ∗(t) ⊆ P (t) be an (ε, k, z)-coreset
for P (t). Then we say that P ∗(t) is a weight-restricted coreset if w(P ∗(t)) 6 w(P (t)), that is,
if the total weight of the points in P ∗(t) is upper bounded by the total weight of the points
in P (t).

I Theorem 11 (Lower bound for insertion-only algorithms). Let 0 < ε 6 1
8d and k > 2d.

Any deterministic insertion-only streaming algorithm that maintains a weight-restricted
(ε, k, z)-coreset for the k-center problem with z outliers in Rd must use Ω(k/εd + z) space.

To prove Theorem 11, we consider two cases: z 6 k/εd and z > k/εd. For the former
cases, we show an Ω(k/εd) lower bound in section 4.1. Then for the latter case, we prove an
Ω(z) lower bound in section 4.2, which also applies to randomized streaming algorithms.

4.1 An Ω(k/εd) lower bound
The following lemma provides a good lower bound for the case where z 6 k/εd.

I Lemma 12. Let 0 < ε 6 1
8d and k > 2d. Any deterministic insertion-only streaming

algorithm that maintains an (ε, k, z)-coreset for the k-center problem with z outliers in Rd
needs to use Ω(k/εd) space.

To prove the lemma, we may assume without loss of generality that λ := 1/(4dε) is an
integer. Let h := d(λ+ 2)/2 and r :=

√
h2 − 2h+ d. We next present a set P (t) requiring a

coreset of size Ω(k/εd). The set P (t) is illustrated in Figure 2. It contains z outlier points
o1, . . . , oz and k − 2d+ 1 clusters C1, . . . , Ck−2d+1, defined as follows.

For i ∈ [z], the outlier oi is a point with the coordinates (−4(h+ r)i, 0, 0, . . . , 0).
Each cluster Ci is a d-dimensional integer grid of side length λ that consists of (λ+ 1)d
points. The distance between two consecutive clusters is 4(h+r) as illustrated in Figure 2.
In particular, C1 := {(x1, . . . , xd) | xj ∈ {0, 1, · · · , λ}}. For each 1 < i 6 k − 2d+ 1, the
cluster Ci is Ci := {(δ+ x1, x2, . . . , xd) | (x1, x2, . . . , xd) ∈ Ci−1}, where δ = λ+ 4(h+ r).

Let P ∗(t) ⊆ P (t) be the coreset that the algorithm maintains at time t. We claim that P ∗(t)
must contain all points of any of the clusters C1, . . . , Ck−2d+1. Since |Ci| = (λ+1)d = Ω(1/εd),
we must then have |P ∗(t)| = Ω(k/εd).

L. Biabani and M. de Berg and M. Monemizadeh 11

To prove the claim, assume for a contradiction that there is a point p∗ = (p∗1, . . . , p∗d) that
is not explicitly stored in P ∗(t). Let i∗ ∈ [k−2d+ 1] be such that p∗ ∈ Ci∗ . Now suppose the
next 2d points that arrive are the points from P+ := {p+

1 , . . . , p
+
d } and P− := {p−1 , . . . , p

−
d }.

Here p+
j = (p+

j,1, . . . , p
+
j,d), where p

+
j,j := p∗j + (h+ r) and p+

j,` := p∗` for all ` 6= j. Similarly,
p−j = (p−j,1, . . . , p

−
j,d) where p−j,j := p∗j − (h+ r) and p−j,` := p∗` for all ` 6= j; see Figure 2. It

will be convenient to assume that each point in P+ ∪ P− has weight 2; of course we could
also insert two points at the same location (or, almost at the same location).

o1o2oz

z outliers

k − 2d+ 1 clusters

C1 C2

Ci∗

Ck−2d+1

λ4(h+ r) 4(h+ r)

p+1

p+2

p−1

p−2

(i) (ii)

h+ r

p∗

Figure 2 Illustration of the lower bound in Lemma 12. We have λ := 1/(4dε) is an integer,
h := d(λ+ 2)/2 and r :=

√
h2 − 2h+ d. Part (i) shows the global construction, part (ii) shows the

points in P+ and P−.

Let P (t′) := P (t) ∪ P− ∪ P+ and let P ∗(t′) be the coreset of P (t′). Since P ∗(t) did not
store p∗, we have p∗ 6∈ P ∗(t′). We will show that this implies that P ∗(t′) underestimates the
optimal radius by too much. We first give a lower bound on optk,z(P (t′)).

B Claim 13. optk,z(P (t′)) > (h+ r)/2.

Proof. Recall that we have k − 2d+ 1 clusters C1, . . . , Ck−2d+1 and that p∗ ∈ Ci∗ . Pick an
arbitrary point from each cluster Ci 6= Ci∗ , and let Q be the resulting set of k − 2d points.
Define X := Q∪ {p∗} ∪ P− ∪ P+ ∪ {o1, . . . , oz}. Observe that |X| = (k− 2d) + 1 + 2d+ z =
k + z + 1, and that the pairwise distance between any two points in X is at least h + r.
Hence, optk,z(P (t′)) > optk,z(X) > (h+ r)/2. J

Next we show that, because P ∗(t′) does not contain the point p∗, it must underestimate
optk,z(P ∗(t′)) by too much. To this end, we first show the following claim, which is proved
as Lemma 37 in the appendix. The idea of the proof is that an optimal solution for P ∗(t′)
can use 2d balls for Ci∗ ∪P+ ∪P−, and that because p∗ 6∈ P ∗(t′) this can be done with balls
that are “too small” for an (ε, k, z)-coreset; see Figure 3. The formal proof is given in the
appendix.

B Claim 14 (Lemma 37 in Appendix B). optk,z(P ∗(t′)) 6 r.

Lemma 41, which can also be found in Appendix B, gives us that r < (1− ε)(r + h)/2.
Putting everything together, we have

(1− ε) · optk,z(P (t′)) > (1− ε)(r + h)/2 > r > optk,z(P ∗(t′)) .

However, this is a contradiction to our assumption that P ∗(t′) is an (ε, k, z)-coreset of P (t′).
Hence, if P ∗(t) does not store all points from each of the clusters Ci, then it will not be able
to maintain an (ε, k, z)-coreset. This finishes the proof of Lemma 12.

12 k-Center Clustering with Outliers in the MPC and Streaming Model

p+2

p−2

p∗
r

p−1
c−1

r

c−2

r

h
p+1

Figure 3 Illustration of the lower bound for the streaming model. Here, P ∗(t′) underestimates
optk,z(P (t′)) since 2d balls of radius r can cover P+ ∪ P− ∪ Ci∗ \ {p∗} (dashed balls), and then
optk,z(P ∗(t′)) 6 r. However, optk,z(P (t′)) = (r + h)/2 (the red ball).

L. Biabani and M. de Berg and M. Monemizadeh 13

4.2 An Ω(z) lower bound
Now we provide an Ω(z) lower bound in Lemma 15. Note that the proof also applies to
randomized streaming algorithms.
I Lemma 15. Let 0 < ε < 1 and k > 1. Any streaming (deterministic or randomized)
algorithm that maintains a weight-restricted (ε, k, z)-coreset for the k-center problem with z
outliers in R1 must use Ω(k + z) space.

p1 p2 pi−1 pi pk+zpi∗

i− 1 i∗i k + z210

Figure 4 Illustration of the lower-bound construction of Lemma 15 for R1.

Proof. Let t; = k + z of and let P (t) = {p1, . . . , pk+z} be the set of points that are inserted
up to time t. Our lower-bound instance is a one-dimensional point set (i.e., points are on a
line), where the value (x-coordinate) of the points in P (t) is equal to their index. That is,
for i ∈ [k + z], we have pi = i. See Figure 4.

Consider a streaming algorithm that maintains an (ε, k, z)-coreset and let P ∗(t) ⊆ P (t)
be its coreset at time t. We claim that P ∗(t) must contain all points p1, . . . , pk+z.

To prove the claim, we assume for the sake of the contradiction that there is a point pi∗
that is not explicitly stored in P ∗(t). Suppose at time t + 1 = k + z + 1, the next point
pk+z+1 = k + z + 1 arrives. Observe that P (t+ 1) consists of k + z + 1 points P (t+ 1) =
{p1, . . . , pk+z, pk+z+1} at unit distance from each other. Thus, one of the clusters in an
optimal solution of P (t+ 1) will contain two points. Hence optk,z(P (t+ 1)) = 1/2.

Next, we prove that optk,z(P ∗(t+ 1)) = 0. Suppose for the moment that this claim is
correct. Then, optk,z(P (t+ 1)) = 1/2 and optk,z(P ∗(t+ 1)) = 0, which contradicts that
P ∗(t+ 1) is an (ε, k, z)-coreset. That is, all points p1, . . . , pk+z must be in P ∗(t). Therefore,
any streaming algorithm that can c-approximate optk,z(P (t+ 1)) for c > 0, must maintain
a coreset whose size is Ω(k + z) at time t.

It remains to prove that optk,z(P ∗(t+1)) = 0. First of all, observe that since pi∗ /∈ P ∗(t),
the followup coresets do not know about the existence of pi∗ , therefore, pi∗ will not be added
to such coresets. Therefore, |P ∗(t+ 1)| 6 k + z. We consider two cases.

Case 1 is if |P ∗(t+ 1)| 6 k. In this case, we put a center on each of the points in P ∗(t+ 1)
and so optk,z(P ∗(t+ 1)) = 0.

Case 2 occurs when k < |P ∗(t+ 1)| 6 k + z. Let Q ⊆ P ∗(t+ 1) be the set of k points
of largest weight, with ties broken arbitrarily. That is, Q = arg maxQ′⊂P∗(t+1):|Q′|=k w(Q′),
where w(Q′) =

∑
q∈Q′ w(q).

Claim. The total weight of P ∗(t+ 1) \Q is at most z.

Proof. Note that the weight of every point of a coreset is a positive integer. Since Q
contains the k points of largest weight from P ∗(t + 1) and |P ∗(t + 1)| 6 k + z, the
total weight of P ∗(t + 1) \ Q is at most a z/(k + z) fraction of the total weight of
P ∗(t+ 1). Hence,

w(P ∗(t+1)\Q) 6 z

k + z
w(P ∗(t+1)) 6 z

k + z
w(P (t+1)) = z

k + z
·(k+z+1) < z+1.

Since all weights are integers, we can conclude that w(P ∗(t+ 1) \Q) 6 z.
C

Now, since w(P ∗(t + 1) \ Q) 6 z and |Q| = k, putting a center on each point from Q

gives optk,z(P ∗(t+ 1)) = 0. This finishes the proof of this lemma. J

14 k-Center Clustering with Outliers in the MPC and Streaming Model

4.3 A space-optimal streaming algorithm
Let P ⊆ X be a point set of size n in a metric space (X,dist) of doubling dimension d. In the
streaming model, the points of P arrive sequentially. We denote the set of points that have
arrived up to and including time t by P (t). In this section, we present a deterministic 1-pass
streaming algorithm to maintain an (ε, k, z)-coreset for P (t). Interestingly, our algorithm
use O(k

εd + z) space, which is optimal.

In Algorithm 3, we maintain a variable r that is a lower bound for the radius of an optimal
solution, and a weighted point set P ∗ that is an (ε, k, z)-mini-ball covering of P (t). When a
new point pt arrives at time t, we assign it to a representative point in P ∗ within distance
(ε/2) · r, or add pt to P ∗ if there is no such nearby representative. We have to be careful,
however, that the size of P ∗ does not increase too much. To this end, we need to update r
in an appropriate way, and then update P ∗ (so that it works with the new, larger value of r)
whenever the size of P ∗ reaches a threshold. But this may lead to another problem: if a
point p is first assigned to some representative point q, and later q (and, hence, p) is assigned
to another point, then the distance between p and its representative may increase. (In other
words, the “errors” that we incur because we work with representatives may accumulate.) We
overcome this problem by doubling the value of r whenever we update it. Lemmas 16 and 17
show that this keeps the error as well as the size of the mini-ball covering under control. Our
algorithm is similar to the streaming algorithm by Ceccarello et al. [11], however, by using a
more clever threshold for the size of P ∗ we improve the space significantly.

Algorithm 3 InsertionOnlyStreaming
Initialization:
1: r ← 0 and P ∗ ← ∅.

HandleArrival(pt)
1: if there is q ∈ P ∗ such that dist(pt, q) 6 ε

2 · r then
2: w(q)← w(q) + 1. . q is the representative of pt now
3: else
4: Add pt to P ∗.
5: if r = 0 and |P ∗| > k + z + 1 then
6: Let ∆ be the minimum distance between any two (distinct) points in P ∗.
7: r ← ∆/2.
8: while |P ∗| > k(16

ε)d + z do
9: r ← 2 · r.
10: P ∗ ← UpdateCoreset (P ∗, ε2 · r).

Report coreset:
1: return P ∗.

We need the following lemma to prove the correctness of our algorithm. Its proof is in
the appendix.

I Lemma 16. After the point pt arriving at time t has been handled, we have: for each point
p ∈ P (t) there is a representative point q ∈ P ∗ such that dist(p, q) 6 ε · r.

Now we can prove that after handling pt at time t, the set P ∗ is an (ε, k, z)-coreset of the
points that have arrived until time t.

L. Biabani and M. de Berg and M. Monemizadeh 15

Algorithm 4 UpdateCoreset (Q, δ)

1: Let Q∗ = ∅.
2: while |Q| > 0 do
3: Take an arbitrary point q ∈ Q and let Rq = B(q, δ) ∩Q.
4: Add q to Q∗ with weight w(q) := w(Rq).
5: Q← Q \Rq.
6: return Q∗.

I Lemma 17. The set P ∗ maintained by Algorithm 3 is an (ε, k, z)-coreset of P (t) and its
size is at most k(16

ε)d + z.

Proof. Recall that the algorithm maintains a value r that serves as an estimate of the radius
of an optimal solution for the current point set P (t). To prove P ∗ is an (ε, k, z)-coreset of
P (t), we first show that r 6 optk,z(P (t)).

We trivially have r 6 optk,z(P (t)) after the initialization, since then r = 0. The value of
r remains zero until |P ∗| > k + z + 1. At this time, we increase r to ∆/2, where ∆ is the
minimum distance between any two points in P ∗. Since no two points in P ∗ will coincide by
construction, we have ∆ > 0. Consider an optimal solution for P (t). As |P ∗| > k + z + 1
and P ∗ ⊆ P (t), and we allow at most z outliers, there are at least two points in P ∗ that are
covered by the same ball in the optimal solution. This ball has radius optk,z(P (t)). Thus,
∆/2 6 optk,z(P (t)) and we have r 6 optk,z(P (t)).

Now suppose we update the value of r to 2 · r. This happens when |P ∗| > k(16
ε)d + z.

The distance between any two points in P ∗ is more than δ = ε
2 · r, because we only add point

to P ∗ when its distance to all existing points in P ∗ is more than ε
2 · r. Note that Lemma 6

implies that |P ∗| 6 k · (4 · optk,z(P (t))/δ)d + z. Putting everything together we have

k

(
16
ε

)d
+ z 6 |P ∗| 6 k

(
4 · optk,z(P (t))

δ

)d
+ z = k

(
4 · optk,z(P (t))

(ε/2) · r

)d
+ z ,

which implies 16
ε 6 4 · optk,z(P (t))

(ε/2)·r . Hence, 2 · r 6 optk,z(P (t)) holds before we update the
value of r to 2 · r. We conclude that r 6 optk,z(P (t)) always holds, as claimed.

Lemma 16 states that for any point p ∈ P (t), there is a representative point q ∈ P ∗
such that dist(p, q) 6 ε · r. Therefore, dist(p, q) 6 ε · r 6 ε · optk,z(P (t)) . Thus, for each
point p ∈ P (t), there is a representative point q ∈ P ∗ such that dist(p, q) 6 ε · optk,z(P (t)).
This means that P ∗ is an (ε, k, z)-mini-ball covering of P (t), which is an (ε, k, z)-coreset of
P (t) by Lemma 3. It remains to observe that the size of P ∗ is at most k(16

ε)d + z by the
while-loop in lines 8 of the algorithm. J

Since we consider the doubling dimension d to be a constant, Algorithm 3 requires O
(
k
εd + z

)
memory to maintain an (ε, k, z)-coreset. We summarize our result in the following theorem.

I Theorem 18 (Streaming Algorithm). Let P be a stream of points from a metric space
(X,dist) of doubling dimension d. Let k, z ∈ N be two natural numbers, and let 0 < ε 6 1
be an error parameter. Then, there exists a deterministic 1-pass streaming algorithm that
maintains an (ε, k, z)-coreset of P for the k-center problem with z outliers using O

(
k/εd + z

)
storage.

16 k-Center Clustering with Outliers in the MPC and Streaming Model

5 A fully dynamic streaming algorithm

In this section, we develop a fully dynamic streaming algorithm that maintains an (ε, k, z)-
coreset for the k-center problem with z outliers. Our algorithm works when the stream
consists of inserts and deletes of points from a discrete Euclidean space [∆]d.

5.1 The algorithm
Our algorithm uses known sparse-recovery techniques [4, 35], which we explain first.

Estimating 0-norms and sparse recovery. Consider a stream of pairs (aj , ξj), where aj ∈
[U] (for some universe size U) and ξj ∈ Z. If ξj > 0 then the arrival of a pair (aj , ξj) can be
interpreted as increasing the frequency of the element aj by ξj , and if ξj < 0 then it can be
interpreted as decreasing the frequency of aj by |ξj |. Thus the arrival of (aj , ξj) amounts
to updating the frequency vector F [0..U − 1] of the elements in the universe, by setting
F [aj]← F [aj] + ξj . We are interested in the case where F [j] > 0 at all times—this is called
the strict turnstile model—and where either ξj = +1 (corresponding to an insertion) or
ξj = −1 (corresponding to a deletion). For convenience, we will limit our discussion of the
tools that we use to this setting.

Let ‖F‖0 :=
∑
j∈[U] |F [j]|0 denote “0-norm” of F , that is, ‖F‖0 is the number of elements

with non-zero frequency. We need the following result on estimating ‖F‖0 in data streams.

I Lemma 19 (‖F‖0-estimator [32]). For any given error parameter 0 < ε < 1 and failure
parameter 0 < δ < 1, we can maintain a data structure that uses O((1/ε2 + logU) log(1/δ))
space and that, with probability at least 1− δ, reports a (1± ε)-approximation of ‖F‖0.

Define J∗ := {(j, F [j]) : j ∈ [U] and F [j] 6= 0} to be the set of elements with non-zero
frequency.The next lemma allows us to sample a subset of the elements from J∗. Recall that
a sample S ⊆ J∗ is called t-wise independent if any subset of t distinct elements from J∗ has
the same probability to be in S.

I Lemma 20 (s-sample recovery [4]). Let s be a given parameter indicating the desired
sample size, and let 0 < δ < 1 be a given error parameter, where s = Ω(1/δ). Then we
can generate a Θ(log(1/δ))-wise independent sample S ⊆ J∗, where min(s, |J∗|) 6 |S| 6 s′

for some s′ = Θ(s), with a randomized streaming algorithm that uses O(s log(s/δ) log2 U)
space. The success probability of the algorithm is at least 1− δ and the algorithm fails with
probability at most δ.

Note that the sample S not only provides us with a sample from the set of elements with
non-zero frequency, but for each element in the sample we also get its exact frequency.

Our algorithm. Let G0, G1, · · · , Gdlog ∆e be a collection of dlog ∆e grids imposed on the
space [∆]d, where cells in the grid Gi have side length 2i (i.e., they are hypercube of size
2i × · · · × 2i). Note that Gi has d∆d/22ie cells. In particular, the finest grid G0 has ∆d cells
of side length one. Since our points come from the discrete space [∆]d, which is common in
the dynamic geometric streaming model [31, 25], each cell c ∈ G0 contains at most one point.
Thus, the maximum number of distinct points that can be placed in [∆]d is ∆d.

Let S be a stream of inserts and deletes of points to an underlying point set P ⊆ [∆]d.
Let i ∈ [dlog ∆e]. For the grid Gi, we maintain two sketches in parallel:

A `0-frequency moment sketch F(Gi) (based on Lemma 19) that approximates the number
of non-empty cells of the grid Gi.

L. Biabani and M. de Berg and M. Monemizadeh 17

A s-sparse recovery sketch S(Gi) (based on Lemma 20) that supports query and update
operations. In particular, a query of S(Gi), returns a sample of s non-empty cells of
Gi (if there are that many non-empty cells) with their exact number of points. Upon
the insertion or deletion of a point q, for every grid Gi we update the sketches S(Gi) by
updating the cell of Gi that contains the point q. For our dynamic streaming algorithm,
we let s = k(4

√
d/ε)d + z).

Let P (t) ⊆ P be the set of points that are present at time t, that is, that have been
inserted more often than they have been deleted. Using the sketches S(Gi) and F(Gi), we
can obtain an (ε, k, z)-coreset of P (t). To this end, we first query the sketches F(Gi) for all
i ∈ [dlog ∆e] to compute the approximate number of non-empty cells in each grid. We then
find the grid Gj of the smallest cell side length that has at most s non-empty cells and query
the sketch S(Gj) to extract the set Qj of non-empty cells of Gj . For every cell c ∈ Qj , we
choose the center of c as the representative of c and assign the number of points in c as the
weight of this representative. We claim that the set of weighted representatives of non-empty
cells in Qj is an (ε, k, z)-coreset, except that the points in the coreset are not a subset of the
original point set P (which is required by Definition 1) but centers of certain grid cells. We
therefore call the reported coreset a relaxed coreset. This results in the following theorem,
which is proven in more detail in the remainder of this section.

I Theorem 21. Let S be a dynamic stream of polynomially bounded by ∆O(d) of updates
(inserts and deletes) to a point set P ⊆ [∆]d. Let k, z ∈ N be two parameters. Let 0 < ε, δ 6 1
be the error and failure parameters. Then, there exists a dynamic streaming algorithm that
with probability at least 1 − δ, maintains a relaxed (ε, k, z)-coreset at any time t of the
stream for the k-center cost with z outliers of the subset P (t) ⊆ P of points that are inserted
up to time t of the stream S but not deleted. The space complexity of this algorithm is
O((k/εd + z) log4(k∆/εδ)).

Next, we describe our algorithm in more detail. Recall that for every grid Gi, we maintain
a s-sparse recovery sketch S(Gi) where s = k(4

√
d/ε)d + z). The sketch S(Gi) supports the

following operations:

Query(S(Gi)): This operation returns up to s (almost uniformly chosen) non-empty
cells of the grid Gi with their exact number of points.
Update(S(Gi), (c, ξ)) where ξ ∈ {+1,−1}: This operation updates the sketch of the grid
Gi. In particular, the operation Update(S(Gi), (c,+1)) means that we add a point to a
cell c ∈ Gi. The operation Update(S(Gi), (c,−1)) means that we delete a point from a
cell c ∈ Gi.

The pseudocode of our dynamic streaming algorithm is given below. We break the
analysis of this algorithm and the proof of Theorem 21 into a few steps. We first analyze
the performance of the s-sparse-recovery sketch from [4] in our setting. We next prove that
there exists a grid Gj that has a set Qj of at most s non-empty cells such that the weighted
set of centers of cells of Qj is a relaxed (ε, k, z)-coreset. We then combine these two steps
and prove that at any time t of the stream, there exists a grid whose set of non-empty cells
is a relaxed (ε, k, z)-coreset of size at most s. The final step is to prove the space complexity
of Algorithm 5.

I Lemma 22. For any time t, the following holds: If the number of non-empty cells of a
grid Gi at time t is at most s, then querying the s-sample recovery sketch S(Gi) returns all
of them with probability 1− δ. The space usage of the sketch S(Gi) is O((k/εd + z) log3(k∆

εδ)).

18 k-Center Clustering with Outliers in the MPC and Streaming Model

Algorithm 5 A dynamic streaming algorithm to compute (ε, k, z)-coreset

1: Let Gi, for i ∈ [dlog ∆e], be a partition of [∆]d into a grid with cells of size 2i × · · · × 2i.
2: Let S(Gi) be a s-sample recovery sketch for the grid Gi, where s = k(4

√
d/ε)d + z, as

provided by Lemma 20.
3: Let F(Gi) be an ‖F‖0-estimator for the number of non-empty cells of Gi, as provided

by Lemma 19.
4: while not end of the stream do
5: Let (q, ξ) be the next element in the stream, where q ∈ [1..∆]d and ξ ∈ {+1,−1}

indicates whether q is inserted or deleted.
6: for i = 0 to dlog ∆e do
7: Let c(q) be the cell in Gi that contains the point q.
8: Update(S(Gi), (c(q), ξ)) B update the s-sample recovery sketch for Gi
9: Update(F(Gi), (c(q), ξ)) B update the ‖F‖0 estimator for Gi.

10: Let Gj be the grid with the smallest cell side length for which Query(F(Gj)) 6 s.
11: Qj ← Query(S(Gj)) B extract the non-empty cells with their number of points
12: for each cell c ∈ Qj do
13: Choose the center of c as the representative of c and assign the number of points

in c as the weight of this representative.
14: report the weighted representatives of non-empty cells in Qj as a coreset of P (t).

Proof. The s-sample recovery sketch S(Gi) of [4] reports, with probability of at least 1− δ,
all elements with non-zero frequency together with their exact frequency, if the number of
such elements is at most s. (If it is more, we will get a sample of size s; see Lemma 20) for
the exact statement.) This proves the first part of the lemma.

The structures uses O(s log(s/δ) log2 U) space, where U is the size of the universe. For the
grid Gi, the universe size U is the number of cells in Gi, which is d∆d/22ie. The parameter
U is maximized for the grid G0, which has ∆d cells. Therefore, for s = Θ(k(

√
d/ε)d + z), the

space usage of the sketch S(Gi) is

O

k(√d
ε

)d
+ z

 log
(

(k
√
d/ε) + z

δ

)
· log2(∆d)

 = O

((
k/εd + z

)
log3

(
k∆
εδ

))
.

where we use that z 6 ∆d and that d is assumed to be a constant. J

Lemma 22 provides the sketch S(Gi) if we query only once (say, at the end of the
stream) and only for one fixed grid Gi. Next, we assume that the length of the stream S is
polynomially bounded by ∆O(d) and apply the union bound to show that the statement of
Lemma 22 is correct for every grid Gi at any time t of the stream S.

I Lemma 23. Suppose the length of the stream S is polynomially bounded by ∆O(d). Then,
at any time t, we can return all non-empty cells (with their exact number of points) of any
grid Gi that has at most s non-empty cells with probability at least 1− δ. The space that we
use to provide this task is O

(
(k/εd + z) log4 (kd∆

εδ

))
.

Proof. Lemma 22 with probability at least 1−δ, guarantees that we can return all non-empty
cells of a fixed grid Gi if for a fixed time t, Gi has at most s non-empty cells. We have
dlog ∆e grids and we assume that |S| = ∆O(d). Thus, we can replace the failure probability
δ by δ′ = δ

log(∆)·∆O(d) = δ
∆Õ(d) to provide such a guarantee for any grid Gi at any time t. By

L. Biabani and M. de Berg and M. Monemizadeh 19

that, assuming d is constant, the space usage of all sketches S(Gi) for i ∈ [dlog ∆e] will be

O

(
log(∆)(k/εd + z) log3

(
kd∆
εδ′

))
= O

(
(k/εd + z) log4

(
kd∆
εδ

))
.

J

In Algorithm 5, the sketch F(Gi) is an ‖F‖0-estimator for the number of non-empty cells
of Gi. This sketch is provided by Lemma 19 for which we use O((1/ε2 + logU) log(1/δ))
space to obtain a success probability of at least 1 − δ. Similar to Lemma 23 we have the
following lemma.

I Lemma 24. Suppose the length of the stream S is polynomially bounded by ∆O(d). Then,
at any time t, we can return approximate the number of non-empty cells of any grid Gi
within (1± ε)-factor with the success probability of at least 1− δ. The space that we use to
provide this guarantee is O(1

ε2 · log2(∆/δ)).

Proof. The space usage of the sketch that Lemma 19 provides is O((1/ε2 + logU) log(1/δ)).
Recall that the parameter U is maximized for the grid G0, which has ∆d cells. Thus, by
applying the union bound for any grid Gi at any time t, we provide the (1± ε)-approximation
of the number of non-empty cells of Gi with probability 1 − δ and the space usage of
O((1/ε2 + logU) log(1/δ)) = O(1

ε2 · log2(∆/δ)) . J

Next, we prove that there exists a grid Gj that has a set Qj of at most s non-empty cells
such that the weighted set of centers of cells of Qj is a relaxed (ε, k, z)-coreset.

I Lemma 25. Let P ⊆ [∆]d be a point set and 0 < ε 6 1 be the error parameter. Suppose
that 2j 6 ε√

d
· optk,z(P) < 2j+1. Then,

at most k(4
√
d/ε)d + z cells of the grid Gj are non-empty, and

the set of representative points of non-empty cells Qj of Gj is a relaxed (ε, k, z)-coreset
for the k-center cost of P with z outliers.

Proof. Let C∗ = {c∗1, · · · , c∗k} be an optimal set of k centers. Since, 2j 6 ε√
d
· optk,z(P) <

2j+1, the balls centered at centers C∗ = {c∗1, · · · , c∗k} of radius optk,z(P) are covered by
hypercubes of side length 2

√
d
ε · 2

j+1. Thus, these balls can cover or intersect at most

k · (
2
√

d
ε ·2

j+1

2j)d = k(4
√
d/ε)d cells of the grid Gj . The number of cells of the grid Gj that can

contain at least one outlier is at most z. Thus, the total number of non-empty cells of the
grid Gj is at most k(4

√
d/ε)d + z what proves the first claim of this lemma.

The proof that the set of representative points of non-empty cells Qj is a relaxed (ε, k, z)-
coreset of P is similar to the proof of Lemma 3 and so we omit it here. The only difference
is that the centers are now centers of non-empty grid cells, so we get a relaxed corset instead
of a “normal” coreset (whose points are required to be a subset of the input points). J

Now, we prove that at any time t of the stream, there exists a grid whose set of non-empty
cells provides a relaxed (ε, k, z)-coreset of size at most s.

I Lemma 26. Suppose the length of the stream S is polynomially bounded by ∆O(d). Let t
be any arbitrary time of the stream S. Let P (t) be the subset of points that are inserted up to
time t of the stream S but not deleted. Let optk,z(P (t)) be the optimal k-center radius with z
outliers at time t. Then, with probability 1− δ, Algorithm 5 returns a relaxed (ε, k, z)-coreset
for the k-center cost with outliers of the set P (t).

20 k-Center Clustering with Outliers in the MPC and Streaming Model

Proof. Based on Lemma 23, at any time t, we can return all non-empty cells (with their
exact number of points) of any grid Gi that has at most s non-empty cells with probability at
least 1− δ. Moreover, according to Lemma 24, at any time t, we can return approximate the
number of non-empty cells of any grid Gi within (1± ε)-factor with the success probability
of at least 1− δ.

Now, assume that at time t, the optimal k-center radius with z outliers of the point
set P (t) is optk,z(P (t)). Assume that 2i 6 ε√

d
· optk,z(P (t)) < 2i+1. Then, Lemma 25

shows that the number of non-empty cells of the grid Gi is at most s. Moreover, the set of
representative points of these non-empty cells is a relaxed (ε, k, z)-coreset for the k-center
cost of P (t) with z outliers. In Algorithm 5, we consider the grid Gj for j 6 i of smallest
side length that has at most s non-empty cells. Let Qj be the set of non-empty cells of Gj .
Then, the set of centers of the cells in Qj is a relaxed (ε, k, z)-coreset for the k-center cost
with outliers of the set P (t) which proves the lemma. J

I Lemma 27. The total space used by Algorithm 5 is O
(
(k/εd + z) log4 (kd∆

εδ

))
.

Proof. The space of Algorithm 5 is dominated by the space usage of the s-sparse re-
covery sketches for grids Gi and the space usage of ‖F‖0-estimators for the number of
non-empty cells of Gi for i ∈ [dlog ∆e]. Using Lemma 23, the space of the former one is
O
(
(k/εd + z) log4 (kd∆

εδ

))
. The space of the latter one based on Lemma 24 is O(1

ε2 ·log2(∆/δ)).
The second space complexity is dominated by the first one. Thus, the total space complexity
of Algorithm 5 is O

(
(k/εd + z) log4 (kd∆

εδ

))
. J

5.2 A lower bound for the fully dynamic streaming model
In this section, we provide a lower bound that shows the dependency on the universe size ∆ is
unavoidable in the dynamic streaming model. The restriction that we put to prove Theorem
28 is the same as the setting in section 4 for the insertion-only lower bound.

Overview. For the fully dynamic streaming model, where it is also possible to delete the
points, we show an Ω((k/εd) log ∆) lower bound for the points in a d-dimensional discrete
Euclidean space [∆]d = {1, 2, 3, · · · ,∆}d. Adding it to the Ω(z) lower bound of the insertion-
only streaming model leads to an Ω((k/εd) log ∆ + z) lower bound for the fully dynamic
streaming setting.

In the insertion-only construction the k − 2d− 1 “clusters” where just single points, but
here each cluster Ci consists of Θ(log ∆) groups G1

i , G
2
i , . . . that are scaled copies of (a part

of) a grid of size Θ(1/εd), where the j-th copy is scaled by 2j ; see Figure 5. We claim that all
the non-outlier points in P (t) must be in any (ε, k, z)-coreset of P (t). To prove the claim by
contradiction, we will assume that the coreset does not contain a non-outlier point p∗ ∈ Gm∗i∗ ,
and then delete all groups Gmi for all i and for all m > m∗. Next, we insert a carefully chosen
set of 2d new points to the stream such that the coreset underestimates the optimal radius,
which is a contradiction. This will lead to the following theorem.

I Theorem 28 (Lower bound for dynamic streaming algorithms). Let 0 < ε 6 1
8d , k > 2d and

∆ > ((2k+ z)(1
4ε +d))2. Any deterministic fully dynamic streaming algorithm that maintains

a weight-restricted (ε, k, z)-coreset for the k-center problem with z outliers in a d-dimensional
discrete Euclidean space [∆]d = {1, 2, 3, · · · ,∆}d must use Ω((k/εd) log ∆ + z) space.

The remainder of this section is dedicated to the proof of Theorem 28. To prove the
theorem, we will present a scenario of insertions and deletions that forces the size of the

L. Biabani and M. de Berg and M. Monemizadeh 21

o1o2oz

z outliers

k − 2d+ 1 clusters

C1 C2 Ck−2d+1

λ

(i) (ii)

2g+2(h + r)2g+2(h + r)

Figure 5 Illustration of the lower bound in Theorem 28. Part (i) shows the global construction,
part (ii) shows an example of a cluster Ci, where g = 3. The points in groups G1

i , G2
i and G3

i are
showed by disks, crosses and squares respectively.

coreset to be Ω((k/εd) log ∆). Recall that by Lemma 15, the size of coreset is Ω(z) even in
the insertion-only model. Therefore, the coreset size must be Ω((k/εd) log ∆ + z) in the fully
dynamic streaming model.

Let λ := 1/(4dε), and assume without loss of generality λ/2 is an integer. Let h :=
d(λ+2)/2 and r :=

√
h2 − 2h+ d, and let g := 1

2 log ∆−2. Instance P (t) consists of k−2d+1
clusters C1, . . . , Ck−2d+1 at distance 2g+2(h+ r) from each other, and also z outlier points
o1, . . . , oz at distance 2g+2(h+ r) from each other ; see Figure 5. Each cluster Ci consists of
g groups G1

i , . . . , G
g
i . Each group Gmi is is constructed by placing (λ+ 1)d points in a grid

whose cells have side length 2m, and the omitting the lexicographically smallest “octant”.
The omitted octant is used to place the groups G1

i ∪ . . . ∪G
m−1
i as illustrated in Figure 5.

Therefore, each group consists of (λ+ 1)d − (λ/2 + 1)d = Ω(1/εd) points.
Suppose that all points in P (t) are inserted into the stream by time t, and let P ∗(t) be

the maintained (ε, k, z)-coreset at time t. We claim that P ∗(t) must contain all non-outlier
points, which means the size of P ∗(t) must be Ω(kg/εd) = Ω((k/εd) log ∆).

B Claim 29. Let p be an arbitrary non-outlier point in P (t), that is, a point from one of the
cluster Ci, and let P ∗(t) be an (ε, k, z)-coreset of P (t). Then, p must be in P ∗(t).

Proof. To prove the claim, assume for a contradiction that there is a point p∗ ∈ Gm
∗

i∗

that is not explicitly stored in P ∗(t), where p∗ = (p∗1, . . . , p∗d). First we delete all points
of Gmi for all m > m∗ and all i. Then the next 2d points that we insert are the points
from P+ := {p+

1 , . . . , p
+
d } and P− := {p−1 , . . . , p

−
d }. Here p+

j = (p+
j,1, . . . , p

+
j,d), where

p+
j,j := p∗j + 2m∗(h + r) and p+

j,` := p∗` for all ` 6= j. Similarly, p−j = (p−j,1, . . . , p
−
j,d) where

p−j,j := p∗j − 2m∗(h + r) and p−j,` := p∗` for all ` 6= j. It will be convenient to assume that
each point in P+ ∪ P− has weight 2; of course we could also insert two points at the same
location (or, almost at the same location). Note that this is similar to the construction used
in the insertion-only lower bound, which was illustrated in Figure 3.

Let P (t′) := P (t) ∪ P− ∪ P+ \
(⋃

m>m∗ G
m
i

)
and let P ∗(t′) be the coreset of P (t′).

Since P ∗(t) did not store p∗, we have p∗ 6∈ P ∗(t′). We will show that this implies P ∗(t′)
underestimates the optimal radius by too much. We first give a lower bound on optk,z(P (t′)).
Using the same argument as in the proof of Claim 13 we can conclude

Claim. optk,z(P (t′)) > 2m∗ · (h+ r)/2.

Next we show that, because P ∗(t′) does not contain the point p∗, it must underestimate
optk,z(P ∗(t′)) by too much. To this end, we first have the following claim, which can be
proved in the same way as Claim 14.

Claim. optk,z(P ∗(t′)) 6 2m∗ · r.

22 k-Center Clustering with Outliers in the MPC and Streaming Model

Lemma 41 in the appendix gives us that r < (1− ε)(r + h)/2. Putting everything together,
we have

(1− ε) · optk,z(P (t′)) > (1− ε) · 2m
∗
(r + h)/2 > 2m

∗
· r > optk,z(P ∗(t′)) .

However, this is a contradiction to our assumption that P ∗(t′) is an (ε, k, z)-coreset of P (t′).
Hence, if P ∗(t) does not store all points from each of the clusters Ci, then it will not be able
to maintain an (ε, k, z)-coreset.

J

It remains to verify that the points of our construction are from a d-dimensional discrete
Euclidean space [∆]d = {1, 2, 3, · · · ,∆}d. Note that all points in our construction can have
integer coordinates. Thus, it is enough to show that ∆′ 6 ∆, where ∆′ is the maximum
of the value max16i6d |pi − qi| over all pairs of points p, q used in the construction. P (t)
consists of z outlier points and k − 2d+ 1 clusters of side length 2g · λ, where the distance
between any two consecutive outliers or clusters is 2g+2(h+ r). In the construction, we then
also add sets P+ and P−, whose points are at distance at most 2g(h+ r) from some point p∗
in one of the clusters. Therefore, ∆′ 6 (k+ z) · 2g+2(h+ r) + k · 2gλ. Recall that λ = 1/(4dε)
and h = d(λ + 2)/2. Thus, λ/2 6 h and then ∆′ 6 (2k + z) · 2g+2(h + r). Besides, r 6 h

since r =
√
h2 − 2h+ d. Therefore,

∆′ 6 (2k + z) · 2g+2(h+ r) 6 (2k + z) · 2g+2(2h) = (2k + z) · 2g+2d(λ+ 2) =

(2k + z) · 2g+2 · d
(

1
4dε + 2

)
= (2k + z) · 2g+2

(
1
4ε + 2d

)
.

Hence, log ∆′ 6 2 + g + log ((2k + z)(1
4ε + d)). Recall that g = 1

2 log ∆− 2 and we assume
∆ > ((2k + z)(1

4ε + d))2, therefore, log ((2k + z)(1
4ε + d)) 6 1

2 log ∆. Thus log ∆′ 6 log ∆,
which means ∆′ 6 ∆. This finishes the proof of Theorem 27.

6 A lower bound for the sliding-window model

In this section, we show that any deterministic algorithm in the sliding-window model that
guarantees a (1± ε)-approximation for the k-center problem with outliers in Rd must use
Ω((kz/εd) log σ) space, where σ is the ratio of the largest and smallest distance between
any two points in the stream. Recently De Berg, Monemizadeh, and Zhong [18] developed
a sliding-window algorithm that uses O((kz/εd) log σ) space. Our lower bound shows the
optimality of their algorithm and gives a (negative) answer to a question posed by De Berg et
al. [18], who asked whether there is a sketch for this problem whose storage is polynomial
in d.

Lower-bound setting. Let P := 〈p1, p2, . . .〉 be a possibly infinite stream of points from a
metric space X of doubling dimension d and spread ratio σ, where d is considered to be a
fixed constant. We denote the arrival time of a point pi by tarr(pi). We say that pi expires at
time texp(pi) := tarr(pi) +W , where W is the given length of the time window. To simplify
the exposition, we consider the L∞-distance instead of the Euclidean distance, where the
L∞-distance between two points p, q ∈ Rd is defined as L∞(p, q) = maxdi=1 |pi − qi|. Note
that the doubling dimension of Rd under the L∞-metric is d.

The constructions we presented earlier for the insertion-only and the fully-dynamic
streaming model, gave lower bounds on the size of an (ε, k, z)-coreset maintained by the
algorithm. For the sliding-window model, we will use the lower-bound model introduced by

L. Biabani and M. de Berg and M. Monemizadeh 23

De Berg, Monemizadeh, and Zhong [18]. This model gives lower bounds on any algorithm
that maintains a (1± ε)-approximation of the radius of an optimal k-center clustering with z
outliers. Such an algorithm may do so by maintaining an (ε, k, z)-coreset, but it may also do
it in some other (unknown) way. The main restriction is that the algorithm can only change
its answer when either a new point arrives or at some explicitly stored expiration time. More
precisely, their lower-bound model is as follows [18].

Let S(t) be the collection of objects being stored at time t. These objects may be points,
weighted points, balls, or anything else that the algorithm needs to store to be able to
approximate the optimal radius. The only conditions on S(t) are as follows.

Each object in S(t) is accompanied by an expiration time, which is equal to the expiration
time of some point pi ∈ P (t).
Let pi ∈ P (t). If no object in S(t) uses texp(pi) as its expiration time, then no object in
S(t′) with t′ > t can use texp(pi) as its expiration time. (Once an expiration time has
been discarded, it cannot be recovered.)
The solution reported by the algorithm is uniquely determined by S(t), and the algorithm
only modifies S(t) when a new point arrives or when an object in S(t) expires.
The algorithm is deterministic and oblivious of future arrivals. In other words, the set
S(t) is uniquely determined by the sequence of arrivals up to time t, and the solution
reported for P (t) is uniquely determined by S(t).

The storage used by the algorithm is defined as the number of objects in S(t). The algorithm
can decide which objects to keep in S(t) in any way it wants; it may even keep an unbounded
amount of extra information in order to make its decisions. The algorithm can also derive a
solution for P (t) in any way it wants, as long as the solution is valid and uniquely determined
by S(t).

I Theorem 30 (Lower bound for sliding window). Let k > 2d, 0 < ε 6 1/24 and σ > (kz/ε)2.
Any deterministic (1±ε)-approximation algorithm in the sliding-window model that adheres to
the model described above and solves the k-center problem with z outliers in the metric space
(Rd, L∞) must use Ω((kz/εd) log σ) space, where σ is the ratio of the largest and smallest
distance between any two points in the stream.

Proof. Consider a deterministic (1± ε)-approximation algorithm for the k-center clustering
with z outliers in the sliding-window model. With a slight abuse of notation, we let S(t)
be the set of expiration times that the algorithm maintains at time t. In the following, we
present a set of points P (t) such that the algorithm needs to store Ω((kz/εd) log σ) expiration
times.

Let λ := 1/(8ε), and assume without loss of generality that λ is an odd integer. Let
g := 1

2 log σ− 1 and s := λd− (λ+1
2)d. Let ζ := b d

√
zc, and observe that ζd < z+ 1 6 (ζ+ 1)d.

Instance P (t) consists of k − 2d + 1 clusters C1, . . . , Ck−2d+1 at distance 3 · 2gζ · 2λ from
each other. Each cluster Ci consists of g groups G1

i , . . . , G
g
i , and each group Gji consists of s

subgroups Gj,1i , . . . , Gj,si . Finally, each subgroup consists of z + 1 points. Figure 6 shows
an overview of the construction, which we describe in more detail next. Consider a grid
Gj whose cells have side length 2j and which has (ζ + 1)d grid points. The points of each
subgroup Gj,`i are the lexicographically smallest z + 1 points of this grid Gj . (That is, the
first z + 1 points in the lexicographical order of the coordinates). Recall that we consider the
L∞-distance instead of the Euclidean distance. Therefore, the diameter of the subgroup Gj,`i
is 2jζ.

Now we describe the relative position of the subgroups in a group Gji . Let Πj be a
d-dimensional grid consisting of (2λ − 1)d cells that have side length 2jζ. We label the

24 k-Center Clustering with Outliers in the MPC and Streaming Model

(ii)

2gζ

2gζ

2g−1ζ

2g−1ζ

2gζ · (2λ− 1)

C1 Ck−2d+1C2
(i)

4 · 2gζ · (2λ)

. . .

Figure 6 Illustration of the lower bound in Theorem 30. Recall that λ = Θ(1/ε) and g = Θ(log σ).
Part (i) shows the global construction, part (ii) shows an example of a cluster Ci, where z = 7,
λ = 3 and g = 3. The points in groups G1

i , G2
i and G3

i are showed by disks, crosses and squares
respectively.

cells in Π as π = (π1, · · · , πd), where 1 6 πi 6 2λ − 1 for all i ∈ [d]. For instance, for
d = 2 the bottom-left cell would be labeled (1, 1). We say the cell π = (π1, · · · , πd) is
an odd cell, if πi is odd for all i ∈ [d]. Hence, there are λd odd cells in Πj . Let the
set Γj be equal to Πj except that the lexicographically smallest “octant”. More formally,
Γj = Πj \ {(π1, · · · , πd) ∈ Πj : ∀i∈[d]πi 6 λ}. Then Γj is of size λd − (λ+1

2)d = s.
The subgroups Gj,1i , · · · , Gj,si are placed in the cells of Γj , and groups Gj−1

i , · · · , G1
i are

recursively placed in the omitted octant. See Figure 6. Therefore, the diameter of group Gji
is 2jζ · λ+ 2jζ · (λ− 1) = 2jζ · (2λ− 1).

Next we explain the order of arrivals. First, the subgroups Gg,sk−2d+1, . . . , G
g,s
1 arrive. Then

the subgroups Gg,s−1
k−2d+1, . . . , G

g,s−1
1 arrive, and so on. More formally, Gj,`i arrives before

Gj
′,`′

i′ if and only if j > j′ or (j = j′ and ` > `′) or (j = j′ and ` = `′ and i > i′).
Now, we claim that the size of S(t) must be Ω((kzg)/εd) = Ω((kz · log σ)/εd).

L. Biabani and M. de Berg and M. Monemizadeh 25

B Claim 31. Let p ∈ Gj,`i be an arbitrary point in P (t) such that j > 1 or ` > 1, and
texp(p) > t+ (2d(z + 1) + z). Then, texp(p) must be in S(t).

Proof. For the sake of contradiction, assume there is a point p∗ ∈ Gj
∗,`∗

i∗ , where j∗ > 1
or `∗ > 1, and texp(p∗) > t+ (2d(z + 1) + z), while texp(p∗) is not explicitly stored in
S(t). Let t−p∗ and t+p∗ be the time just before and just after the expiration of the point
p∗ respectively. As texp(p∗) /∈ S(t), then the sketch that the deterministic algorithm
maintains at time t−p∗ and t+p∗ is the same, and so, it reports the same clustering for
both P (t−p∗) and P (t+p∗). However, we show it is possible to insert a point set after the
points of P (t) have been inserted such that optk,z(P (t+p∗))/optk,z(P (t−p∗)) > 1− 3ε.
Thus either at time t+p∗ or at time t−p∗ , the answer of the algorithm cannot be a
(1± ε)-approximation.
Recall that the group Gj

∗

i∗ consists of s subgroups of diameter 2j∗ζ in a λd grid-like
fashion, and the diameter of Gj

∗

i∗ is 2j∗ζ · (2λ − 1). Observe that we consider the
L∞-distance instead of the Euclidean distance. First, we define x∗min(α) and x∗max(α).
For α ∈ [d], we define

x∗min(α) := min{xα | (x1, . . . , xα, . . . , xd) ∈ Gj
∗,`∗

i∗ } ,

x∗max(α) := max{xα | (x1, . . . , xα, . . . , xd) ∈ Gj
∗,`∗

i∗ } .

Now, we define the point sets P+
1 , . . . , P

−
d and P−1 , . . . , P

−
d as follows (also see Figure

7). For every α ∈ [d], P+
α = {p+,0

α , . . . , p+,z
α } and for every 0 6 ι 6 z, we have

p+,ι
α = (p+,ι

α,1, . . . , p
+,ι
α,d) where

p+,ι
α,α = x∗max(α)+2j

∗
ζ ·(2λ), and p+,ι

α,β = x∗min(β)+ ι(x∗max(β)− x∗min(β))
z

for all β 6= α .

Similarly, for all α ∈ [d], P−α = {p−,0α , . . . , p−,ια , . . . , p−,zα }, where for each point p−,ια =
(p−,ια,1, . . . , p

−,ι
α,d) we have

p−,ια,α = x∗min(α)−2j
∗
ζ · (2λ), and p−,ια,β = x∗min(β)+ ι(x∗max(β)− x∗min(β))

z
for all β 6= α .

Hence, P+
α (and P−α) consists of z+1 points at distance 2j∗ζ · (2λ) of Gj

∗,`∗

i∗ . Moreover,
x∗min(β) 6 p+,ι

α,β , p
−,ι
α,β 6 x∗max(β) if β 6= α. We insert all points of the sets P+

1 , . . . , P
−
d

and P−1 , . . . , P
−
d . Moreover, for each point in Gj

∗,`∗

i∗ \ {p∗}, we re-insert it after its
expiration. Note that as we assume texp(p∗) > t+ (2d(z + 1) + z), we have enough
time from t to texp(p∗) to insert all these points.
As we assume j∗ > 1 or `∗ > 1 then each cluster Ci contains at least z + 1 points
at time t−p∗ that are not expired. In addition, each point set Gj

∗,`∗

i∗ , P+
1 , . . . , P

+
d , and

P−1 , . . . , P
−
d consists of z + 1 points at time t−p∗ that are not expired. As any pairwise

distance between these 2d+ 1 point sets is at least 2j∗ζ · (2λ), then optk,z(P (t−p∗)) >
2j∗ζ · λ. On the other hand, since p∗ is expired at time t+p∗ , we consider the points of
the set Gj

∗,`∗

i∗ that are not expired (note that there are z such points) as the outliers
at time t+p∗ (see Figure 7), thus optk,z(P (t+p∗)) 6 2j∗ζ · (2λ− 1)/2. Putting everything
together we have

optk,z(P (t+p∗))
optk,z(P (t−p∗))

6
2j∗ζ · (2λ− 1)/2

2j∗ζ · λ = 2λ− 1
2λ = 1− 4ε < 1− 3ε .

Which is a contradiction. C

26 k-Center Clustering with Outliers in the MPC and Streaming Model

P−
1

P+
2

p∗
P+
1

⋃j∗−1
j=1 Gj

i∗

P−
2

2j
∗
ζ · (2λ− 1)2j

∗
ζ · (2λ)

Figure 7 If the expiration time of the point p∗ ∈ Gj∗,`∗

i∗ is not stored, we insert the 2d point
sets P+

1 , . . . , P
+
d and P−1 , . . . , P

−
d . The points that have expired (and are not re-inserted) before

the expiration of p∗ are shown by crosses. The optimal radius just before the expiration of p∗ is
2j∗ζ · (2λ). However, since we can consider all points in Gj∗,`∗

i∗ \ {p∗} as outliers after the expiration
of p∗, the optimal radius just after the expiration of p∗ is 2j∗ζ(2λ− 1), (dashed balls).

L. Biabani and M. de Berg and M. Monemizadeh 27

It remains to show that the spread ratio of our construction is not more than σ. Let σ′
be the ratio of the largest and smallest distance between any two points in our construction.
We show σ′ 6 σ. The diameter of each cluster C1, . . . , Ck−2d+1 is 2gζ · (2λ− 1), and every
two consecutive clusters are at distance 3 · 2gζ · (2λ) from each other. Hence, the largest
distance between any two points in the stream is less than k · 4 · 2gζ · (2λ). Besides, the points
in sets P+

1 , . . . , P
−
d and P−1 , . . . , P

−
d that we defined in Claim 31 are at distance at least

(x∗max(α)− x∗min(α)))/z = 2j∗ζ/z from each other. Therefore, the smallest distance between
any two points in P+

1 ∪ . . . ∪ P
−
d ∪ P

−
1 ∪ . . . ∪ P

−
d is at least 2ζ/z. Moreover, the smallest

distance between any two points in C1 ∪ . . . ∪ Ck−2d+1 is 21, and 2 > 2ζ/z since ζ = d
√
z.

Then we have σ′ 6 k·4·2gζ·(2λ)
2ζ/z = 4 · 2gkz · δ = 2 · 2gkz/ε. Hence, log σ′ 6 1 + g + log (kz/ε).

Recall g = 1
2 log σ − 1. Since we assume σ > (kz/ε)2, we therefore have log (kz/ε) 6 1

2 log σ.
Thus log σ′ 6 log σ, which means σ′ 6 σ. This finishes the proof of the theorem. J

7 More MPC algorithms

In this section, we present two more MPC algorithms: a randomized 1-round algorithm and
a multi-round deterministic algorithm. The former algorithm is quite similar to an algorithm
of Ceccarello et al. [11], but by a more clever coreset construction, we obtain an improved
bound. The latter algorithm provides a trade-off between the number of rounds and the
space usage.

7.1 A randomized 1-round MPC algorithm
In this section, we present our 1-round randomized algorithm. The algorithm itself does not
make any random choices; the randomization is only in the assumption that the distribution
of the set P over the machines Mi is random. More precisely, we assume each point p ∈ P is
initially assigned uniformly at random to one of the m machines Mi. The main observation is
Lemma 32 that with high probability3, the number of outliers assigned to an arbitrary worker
machine Mi is at most z′ = min(6z

m + 3 logn, z). As shown in Algorithm 6, each machine Mi

therefore computes an (ε, k, z′)-mini-ball covering of Pi, and sends it to the coordinator. By
Lemma 4 the union of the received mini-ball coverings will be an (ε, k, z)-mini-ball covering
of P , with high probability. The coordinator then reports an (ε, k, z)-mini-ball covering of
this union as the final coreset.

Algorithm 6 RandomizedMPC: A randomized 1-round algorithm to compute an (ε, k, z)-coreset
Round 1, executed by each machine Mi:
Computation:
1: z′ ← min(6z

m + 3 logn, z).
2: P ∗i ← MBCConstruction (Pi, k, z′, ε).

Communication:
1: Send P ∗i to the coordinator.

At the coordinator: Collect all mini-ball coverings P ∗i and report MBCConstruction
(
⋃
i P
∗
i , k, z, ε) as the final mini-ball covering.

Consider an optimal solution for the k-center problem with z outliers on P . Let Bopt be

3 We say an event occurs with high probability if it occurs with a probability of at least 1− 1/n2.

28 k-Center Clustering with Outliers in the MPC and Streaming Model

the set of k balls in this optimal solution and let Pout ⊂ P be the outliers, that is, the points
not covered by the balls in Bopt. Lemma 32 states the number of outliers that are assigned
to each machine is concentrated around its expectation. The lemma was already observed by
Ceccarello et al. [11, Lemma 7], but we present the proof for completeness in the appendix.

I Lemma 32 ([11]). Pr
[
∀16i6m|Pi ∩ Pout| 6 6z

m + 3 logn
]
> 1− 1/n2.

Now we can prove that Algorithm 6 computes a coreset for k-center with z outliers in a
single round.

I Theorem 33 (Randomized 1-Round Algorithm). Let P ⊆ X be a point set of size n in a
metric space (X,dist) of doubling dimension d. Let k, z ∈ N be two natural numbers, and
let 0 < ε 6 1 be an error parameter. Assuming P is initially distributed randomly over the
machines, there exists a randomized algorithm that computes an (ε, k, z)-coreset of P in the
MPC model in one round of communication, using m = O(

√
nεd/k) worker machines with

O(
√
nk/εd) local memory, and a coordinator with O(

√
nk/εd +

√
nεd/k ·min(logn, z) + z)

local memory.

Proof. In Algorithm 6, each machineMi sends the coordinator a weighted point set P ∗i , which
is an (ε, k, z′)-mini-ball covering of Pi. Recall that z′ = min(6z

m +3 logn, z). Lemma 32 shows
that with high probability, at most 6z

m +3 logn outliers are assigned to each machine. Trivially,
at most z outliers can be assigned to a single machine, so with high probability at most z′
outliers are assigned to each machine. Hence, with high probability, optk,z′(Pi) 6 optk,z(P)
for each i ∈ [m]. Lemma 4 then implies that ∪mi=1P

∗
i is an (ε, k, z)-mini-ball covering of P .

To report the final coreset, the coordinator computes an (ε, k, z)-mini-ball covering of ∪mi=1P
∗
i ,

which is an (ε′, k, z)-mini-ball covering of P by Lemma 5, and therefore an (ε′, k, z)-coreset
of P by Lemma 3 , where ε′ = 3ε.

Next we discuss storage usage. The points are distributed randomly among m =
O(
√
nεd/k) machines. Applying the Chernoff bound and the union bound in the same way

as in the proof of Lemma 32, it follows that at most 6n
m + 3 logn = O(nm) points are allocated

to each machine with high probability. Thus, each worker machine needs O(nm) = O(
√
nk/εd)

local memory to store the points and compute a mini-ball covering for them. The coordinator
receives m mini-ball coverings, and according to Lemma 7, each mini-ball covering is of size
at most k(12

ε)d + z′ = O(k/εd + z′). (Recall that we consider d to be a constant.) Therefore,
the storage required by the coordinator is

m ·O(k/εd + z′) = O
(√

nεd/k · k
εd

)
+m ·min(6z

m + 3 logn, z)

= O
(√

nk/εd +
√
nεd/k ·min(logn, z) + z

)
. J

7.2 A deterministic R-round MPC algorithm
We present a deterministic multi-round algorithm in the MPC model for the k-center problem
with z outliers. It shows how to obtain a trade-off between the number of rounds and the
local storage. Our algorithm is parameterized by R, the number of rounds of communication
we are willing to use; the larger R, the smaller amount of storage per machine. Initially, the
input point set P is distributed arbitrarily (but evenly) over the machines.

All machines are active in the first round. In every subsequent round, the number of
active machines reduces by a factor β, where β =

⌈
m1/R⌉. Note that this implies that after

R rounds, we are left with a single active machine M1, which is the coordinator.

L. Biabani and M. de Berg and M. Monemizadeh 29

As shown in Algorithm 7, in each round, every active machine Mi computes an (ε, k, z)-
mini-ball covering on the union of sets that is sent to it in the previous round, and then
sends it to machine Mdi/βe.

Algorithm 7 A deterministic multi-round algorithm to compute ((1 + ε)R − 1, k, z)-coreset

Round t, executed by each active machine Mi (1 6 i 6
⌈
m/βt−1⌉):

Computation:
1: Let Qi be the union of sets that Mi received.
2: Q∗i ← MBCConstruction (Qi, k, z, ε).

Communication:
1: Send Q∗i to Mdi/βe.

We first prove that machine M1 receives a ((1 + ε)R − 1, k, z)-coreset after R rounds.

I Lemma 34. The union of sets that machine M1 receives after executing algorithm 7 is a
((1 + ε)R − 1, k, z)-coreset of P .

Proof. We prove by induction that for each 0 6 t 6 R, and for each i ∈ [dm/βte], the union
of sets that machine Mi receives after round t is a ((1 + ε)t − 1, k, z)-mini-ball covering
of Pβt(i−1)+1 ∪ · · · ∪ Pβti. Recall that Pi ⊂ P denotes the set of points initially stored in
machine Mi.

We prove this lemma by induction. The base case is t = 0. As Pi is a (0, k, z)-mini-ball
covering for Pi, the lemma trivially holds for t = 0. The induction hypothesis is that the
lemma holds for t− 1. We show that then it holds for t too.

Let i ∈ [dm/βte], and j be an arbitrary integer such that β(i− 1) + 1 6 j 6 min(βi,m),
so, dj/βe = i. Let Sj be the union of sets that machine Mj receives after round t− 1. The
induction hypothesis says that Sj is a ((1+ε)t−1−1, k, z)-mini-ball covering of Pβt−1(j−1)+1∪
· · · ∪ Pβt−1j . In round t, machine Mj computes an (ε, k, z)-mini-ball covering of Sj and send
it toMi. We refer to this mini-ball covering as S∗j . Using Lemma 5 with set γ = (1+ε)t−1−1
implies S∗j is an (ε+ γ + εγ, k, z)-mini-ball covering of Pβt−1(j−1)+1 ∪ · · · ∪ Pβt−1j . We have

ε+ γ + εγ = ε+ (1 + ε)t−1 − 1 + ε · ((1 + ε)t−1 − 1) = (1 + ε)t−1(1 + ε)− 1 = (1 + ε)t − 1 .

Therefore, S∗j is a ((1 + ε)t − 1, k, z)-mini-ball covering of Pβt−1(j−1)+1 ∪ · · · ∪ Pβt−1j . After
round t, Mi receives ∪βij=β(i−1)+1S

∗
j . As each S∗j is a ((1 + ε)t − 1, k, z)-mini-ball covering,

Lemma 4 implies that set ∪βij=β(i−1)+1S
∗
j thatMi receives after round t, is a ((1+ε)t−1, k, z)-

mini-ball covering for Pβt(i−1)+1 ∪ · · · ∪ Pβti.
Thus, the union of sets that M1 receives after R rounds is a ((1 + ε)R − 1, k, z)-mini-ball

covering of P , and then a ((1 + ε)R − 1, k, z)-coreset of P by Lemma 3. J

Now, we state our result for R rounds.

I Theorem 35 (Deterministic R-round Algorithm). Let P ⊆ X be a point set of size n in a
metric space (X,dist) of doubling dimension d. Let k, z ∈ N be two natural numbers, and let
0 < ε 6 1 be an error parameter. Then there exists a deterministic algorithm that computes
a ((1 + ε)R − 1, k, z)-coreset of P in the MPC model in R rounds of communication using
m = O

(
(n
k/εd+z)R/(R+1)

)
machines and O(n1/(R+1)(k/εd + z)R/(R+1)) storage per machine.

Proof. By Lemma 9, invoking Algorithm 7 results in a ((1 + ε)R − 1, k, z)-coreset of P
on M1. Next we discuss the required storage. In the first round, each machine Mi needs

30 k-Center Clustering with Outliers in the MPC and Streaming Model

O(nm) = O(n1/(R+1)(k/εd + z)R/(R+1)) storage for Pi (and to compute a coreset for it). In
each subsequent round, every active machine receives β coresets. By Lemma 7 each coreset
is of size at most k(12

ε)d + z = O(k/εd + z). Since β =
⌈
m1/R⌉, the storage per machine is

β ·O
(
k/εd + z

)
= m1/R ·O

(
k/εd + z

)
= O

(
n1/(R+1)(k/εd + z)R/(R+1)

)
. J

References
1 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent

measures of points. J. ACM, 51(4):606–635, 2004. doi:10.1145/1008731.1008736.
2 Charu C. Aggarwal and Chandan K. Reddy, editors. Data Clustering: Algorithms and Applic-

ations. CRC Press, 2014. URL: http://www.crcpress.com/product/isbn/9781466558212.
3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

4 Neta Barkay, Ely Porat, and Bar Shalem. Efficient sampling of non-strict turnstile data
streams. Theor. Comput. Sci., 590:106–117, 2015. doi:10.1016/j.tcs.2015.01.026.

5 Ritika Bateja, Sanjay Kumar Dubey, and Ashutosh Bhatt. Evaluation and application of
clustering algorithms in healthcare domain using cloud services. In Proc. 2nd International
Conference on Sustainable Technologies for Computational Intelligence, pages 249–261, 2022.

6 MohammadHossein Bateni, Hossein Esfandiari, Rajesh Jayaram, and Vahab S. Mirrokni.
Optimal fully dynamic k-centers clustering. CoRR, abs/2112.07050, 2021. URL: https:
//arxiv.org/abs/2112.07050, arXiv:2112.07050.

7 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. J. ACM, 64(6):40:1–40:58, 2017. doi:10.1145/3125644.

8 Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer, 2007. URL: https://www.worldcat.org/oclc/71008143.

9 Emmanuel J. Candès and Justin K. Romberg. Robust signal recovery from incomplete
observations. In Proceedings of the International Conference on Image Processing, ICIP 2006,
October 8-11, Atlanta, Georgia, USA, pages 1281–1284. IEEE, 2006. doi:10.1109/ICIP.2006.
312579.

10 Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory, 52(2):489–509, 2006. doi:10.1109/TIT.2005.862083.

11 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering
(with outliers) in mapreduce and streaming, almost as accurately as sequentially. Proc. VLDB
Endow., 12(7):766–778, 2019. doi:10.14778/3317315.3317319.

12 T.-H. Hubert Chan, Arnaud Guerquin, Shuguang Hu, and Mauro Sozio. Fully dynamic
kk-center clustering with improved memory efficiency. IEEE Trans. Knowl. Data Eng.,
34(7):3255–3266, 2022. doi:10.1109/TKDE.2020.3023020.

13 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004. doi:10.1137/
S0097539702418498.

14 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proc. 12th Annual Symposium on Discrete Algorithms
(SODA), pages 642–651, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365555.

15 H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Annals of Mathematical Statistics, 23(4):493 – 507, 1952.

16 Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler. Diameter and k-center
in sliding windows. In Proc. 43rd International Colloquium on Automata, Languages, and
Programming, (ICALP 2016), volume 55 of LIPIcs, pages 19:1–19:12, 2016. doi:10.4230/
LIPIcs.ICALP.2016.19.

https://doi.org/10.1145/1008731.1008736
http://www.crcpress.com/product/isbn/9781466558212
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1016/j.tcs.2015.01.026
https://arxiv.org/abs/2112.07050
https://arxiv.org/abs/2112.07050
http://arxiv.org/abs/2112.07050
https://doi.org/10.1145/3125644
https://www.worldcat.org/oclc/71008143
https://doi.org/10.1109/ICIP.2006.312579
https://doi.org/10.1109/ICIP.2006.312579
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.14778/3317315.3317319
https://doi.org/10.1109/TKDE.2020.3023020
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1137/S0097539702418498
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.4230/LIPIcs.ICALP.2016.19
https://doi.org/10.4230/LIPIcs.ICALP.2016.19

L. Biabani and M. de Berg and M. Monemizadeh 31

17 Artur Czumaj and Christian Sohler. Sublinear-time approximation algorithms for clustering
via random sampling. Random Struct. Algorithms, 30(1-2):226–256, 2007. doi:10.1002/rsa.
20157.

18 Mark de Berg, Morteza Monemizadeh, and Yu Zhong. k-Center clustering with outliers in the
sliding-window model. In Proc. 29th Annual European Symposium on Algorithms (ESA 2021),
volume 204 of LIPIcs, pages 13:1–13:13, 2021. doi:10.4230/LIPIcs.ESA.2021.13.

19 Mark de Berg, Morteza Monemizadeh, and Yu Zhong. k-center clustering with outliers in the
sliding-window model. CoRR, abs/2109.11853, 2021. URL: https://arxiv.org/abs/2109.
11853, arXiv:2109.11853.

20 Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chanu. Image
segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia
Computer Science, 54:764–771, 2015. doi:https://doi.org/10.1016/j.procs.2015.06.090.

21 Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with
outliers and coreset construction. In Prof. 27th Annual European Symposium on Algorithms
(ESA 2019), volume 144 of LIPIcs, pages 40:1–40:16, 2019. doi:10.4230/LIPIcs.ESA.2019.40.

22 Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In Proc. 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
681–689, 2011. doi:10.1145/2020408.2020515.

23 B.S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley Series in Probability
and Statistics. Wiley, 2011. URL: https://books.google.nl/books?id=w3bE1kqd-48C.

24 Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering. In
Proc. 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pages 434–444,
1988. doi:10.1145/62212.62255.

25 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proc. 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pages 209–217,
2005. doi:10.1145/1060590.1060622.

26 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

27 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In Proc. 22nd International Symposium on Algorithms and
Computation (ISAAC 2011), volume 7074 of Lecture Notes in Computer Science, pages 374–383,
2011. doi:10.1007/978-3-642-25591-5_39.

28 Gramoz Goranci, Monika Henzinger, Dariusz Leniowski, Christian Schulz, and Alexander
Svozil. Fully dynamic k-center clustering in low dimensional metrics. In Martin Farach-Colton
and Sabine Storandt, editors, Proceedings of the Symposium on Algorithm Engineering and
Experiments, ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 143–153. SIAM,
2021. doi:10.1137/1.9781611976472.11.

29 Sudipto Guha, Yi Li, and Qin Zhang. Distributed partial clustering. ACM Trans. Parallel
Comput., 6(3):11:1–11:20, 2019. doi:10.1145/3322808.

30 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proc. 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pages 291–300,
2004. doi:10.1145/1007352.1007400.

31 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proc. 36th
Annual ACM Symposium on Theory of Computing (STOC 2004), pages 373–380, 2004. doi:
10.1145/1007352.1007413.

32 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proc. 29 ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS 2010), pages 41–52, 2010. doi:10.1145/1807085.1807094.

33 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pages 938–948. SIAM, 2010. doi:10.1137/1.9781611973075.76.

https://doi.org/10.1002/rsa.20157
https://doi.org/10.1002/rsa.20157
https://doi.org/10.4230/LIPIcs.ESA.2021.13
https://arxiv.org/abs/2109.11853
https://arxiv.org/abs/2109.11853
http://arxiv.org/abs/2109.11853
https://doi.org/https://doi.org/10.1016/j.procs.2015.06.090
https://doi.org/10.4230/LIPIcs.ESA.2019.40
https://doi.org/10.1145/2020408.2020515
https://books.google.nl/books?id=w3bE1kqd-48C
https://doi.org/10.1145/62212.62255
https://doi.org/10.1145/1060590.1060622
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1137/1.9781611976472.11
https://doi.org/10.1145/3322808
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007413
https://doi.org/10.1145/1007352.1007413
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1137/1.9781611973075.76

32 k-Center Clustering with Outliers in the MPC and Streaming Model

34 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clus-
tering with outliers and with anonymity. In Proc. 11th and 12th International Work-
shop on Approximation, Randomization and Combinatorial Optimization (APPROX and
RANDOM), volume 5171 of Lecture Notes in Computer Science, pages 165–178, 2008.
doi:10.1007/978-3-540-85363-3_14.

35 Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with ap-
plications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1143–1160, 2010.
doi:10.1137/1.9781611973075.92.

36 Jelani Nelson, Huy L. Nguyên, and David P. Woodruff. On deterministic sketching and
streaming for sparse recovery and norm estimation. In Anupam Gupta, Klaus Jansen, José D. P.
Rolim, and Rocco A. Servedio, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, volume 7408 of Lecture Notes in Computer Science, pages 627–638. Springer,
2012. doi:10.1007/978-3-642-32512-0_53.

37 Jeongyeup Paek and JeongGil Ko. K-means clustering-based data compression scheme for
wireless imaging sensor networks. IEEE Syst. J., 11(4):2652–2662, 2017. doi:10.1109/JSYST.
2015.2491359.

38 Eric Price and David P. Woodruff. (1 + eps)-approximate sparse recovery. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 295–304. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.92.

39 Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, John M. Conroy, Vince Lyzinski, Minh
Tang, Avanti Athreya, Joshua Cape, and Eric Bridgeford. On a two-truths phenomenon in
spectral graph clustering. Proceedings of the National Academy of Sciences, 116(13):5995–6000,
2019. URL: https://www.pnas.org/content/116/13/5995, doi:10.1073/pnas.1814462116.

40 Anthony Schmieder, Howard Cheng, and Xiaobo Li. A study of clustering algorithms and
validity for lossy image set compression. In Proc. 2009 International Conference on Image
Processing, Computer Vision, & Pattern Recognition, (IPCV 2009), pages 501–506, 2009.

A Omitted proofs

Proof of Lemma 3
I Lemma 3. Let P be a weighted point set in a metric space (X,dist) and let P ∗ be an
(ε, k, z)-mini-ball covering of P . Then, P ∗ is an (ε, k, z)-coreset of P .

Proof. Let P ∗ be an (ε, k, z)-mini-ball covering of P . First, we prove the second condition
of coreset holds for P ∗. Let B = {b(c1, r), · · · , b(ck, r)} be any set of congruent balls in the
space (X,dist) such that the sum of weights of points in P ∗ that are not covered by B is
at most z. Let r′ := r + ε · optk,z(P), and B′ = {b(c1, r′), · · · , b(ck, r′)}. We show that the
total weight of points of P that are not covered by B′ is at most z. Let p ∈ P be an arbitrary
point. Note that if p is not covered by a ball from B′, then its representative q ∈ P ∗ cannot
be covered by any ball from B; this follows from dist(p, q)) 6 ε · optk,z(P) and the triangle
inequality. Thus the total weight of the point p ∈ P not covered by B′ is at most the total
weight of the points p ∈ P ∗ not covered by B, which is at most z.

Next, we prove the first condition of the coreset also holds for mini-ball covering P ∗. Let
B∗ be an optimal set of balls for P ∗, that is, a set of k congruent balls of minimum radius
covering all points from P ∗ except for some outliers of total weight at most z. It follows
from the second condition of coreset which we just proved that holds for mini-ball covering
P ∗ that if we expand the radius of the balls in B∗ by ε · optk,z(P), then the expanded

https://doi.org/10.1007/978-3-540-85363-3_14
https://doi.org/10.1137/1.9781611973075.92
https://doi.org/10.1007/978-3-642-32512-0_53
https://doi.org/10.1109/JSYST.2015.2491359
https://doi.org/10.1109/JSYST.2015.2491359
https://doi.org/10.1109/FOCS.2011.92
https://www.pnas.org/content/116/13/5995
https://doi.org/10.1073/pnas.1814462116

L. Biabani and M. de Berg and M. Monemizadeh 33

balls are a feasible solution for P . Hence, (1− ε) · optk,z(P) 6 optk,z(P ∗). To prove that
optk,z(P ∗) 6 (1 + ε) · optk,z(P), let B be an optimal set of balls for P . Expand the radius
of these balls by ε · optk,z(P). It suffices to show that the set B∗ of expanded balls forms a
feasible solution for P ∗. This is true by a similar argument as above: if p∗ ∈ P ∗ is not covered
by B∗, then it follows from triangle inequality and the fact that the distance between p∗ and
each point represented by p∗ is at most ε · optk,z(P) that none of the points represented
by p∗ can be covered by B, and so the total weight of the points p∗ ∈ P ∗ not covered by B∗
is at most z.

This means that P ∗ is an (ε, k, z)-coreset of P . J

Proof of Lemma 4
I Lemma 4 (Union Property). Let P be a set of points in a metric space (X,dist). Let
k, z ∈ N and ε > 0 be parameters. Let P be partitioned into disjoint subsets P1, · · · , Ps, and
let Z = {z1, · · · , zs} be a set of numbers such that optk,zi(Pi) 6 optk,z(P) for each Pi. If P ∗i
is an (ε, k, zi)-mini-ball covering of Pi for each 1 6 i 6 s, then ∪si=1P

∗
i is an (ε, k, z)-mini-ball

covering of P .

Proof. First of all, observe that the weight of the point set P is preserved by the union of
the mini-ball coverings. Indeed,

∑
p∈P w(p) =

∑s
i=1
∑
p∈Pi

w(p) =
∑s
i=1
∑
q∈P∗

i
w(q).

Next, consider an arbitrary point p ∈ P , and Pi be the subset containing p. Then p

has a representative point q in the (ε, k, zi)-mini-ball covering P ∗i of Pi. By Definition 2,
dist(p, q) 6 ε ·optk,zi(Pi) 6 ε ·optk,z(P), which proves that ∪si=1P

∗
i is an (ε, k, z)-mini-ball

covering of P . J

Proof of Lemma 5
I Lemma 5 (Transitive Property). Let P be a set of n points in a metric space (X,dist). Let
k, z ∈ N and ε, γ > 0 be four parameters. Let P ∗ be a (γ, k, z)-mini-ball covering of P , and
let Q∗ be an (ε, k, z)-mini-ball covering of P ∗. Then, Q∗ is an (ε + γ + εγ, k, z)-mini-ball
covering of P .

Proof. Note that the weight-preservation property of mini-ball covering implies that
∑
p∈P w(p) =∑

p∗∈P∗ w(p∗) =
∑
q∗∈Q∗ w(q∗). It remains to show that any point p ∈ P has a representative

point q∗ ∈ Q∗ so that dist(p, q∗) 6 (ε+ γ + εγ) · optk,z(P).
Since P ∗ is an (γ, k, z)-mini-ball covering for P , there is a representative point p∗ ∈ P ∗ for

p for which dist(p, p∗) 6 γ · optk,z(P). Similarly, since Q∗ is an (ε, k, z)-mini-ball covering
for P ∗, there is a representative point q∗ ∈ Q∗ for p∗ such that dist(p∗, q∗) 6 ε · optk,z(P ∗).
Hence,

dist(p, q∗) 6 dist(p, p∗) + dist(p∗, q∗)
6 γ · optk,z(P) + ε · optk,z(P ∗)
6 γ · optk,z(P) + ε · (1 + γ) · optk,z(P) (by Definition 1)
= (ε+ γ + εγ) · optk,z(P) .

We conclude that q∗ is a valid representative for p, thus finishing the proof. J

Proof of Lemma 6
I Lemma 6. Let P be a finite set of points in a metric space (X,dist) of doubling dimension
d. Let 0 < δ 6 optk,z(P), and let Q ⊆ P be a subset of P such that for any two distinct

points q1, q2 ∈ Q, dist(q1, q2) > δ. Then |Q| 6 k
(

4·optk,z(P)
δ

)d
+ z.

34 k-Center Clustering with Outliers in the MPC and Streaming Model

Proof. Consider an optimal solution for the k-center problem with z outliers on P . Let Bopt
be the set of k balls in this optimal solution. Since (X,dist) is a metric space of doubling
dimension d, every ball in Bopt can be covered by at most (2 · optk,z(P)

δ/2)d = (4 · optk,z(P)
δ)d

mini-balls of radius δ/2. Besides, as the distance between points of Q is more than δ, each
mini-ball of radius δ/2 contains at most one point of Q. Therefore, the number of points
in Q covered by Bopt is at most (4 · optk,z(P)

δ)d. Besides, as Bopt is an optimal solution, at
most z points of Q are not covered by Bopt. Thus, |Q| 6 k(4 · optk,z(P)

δ)d + z.
J

Proof of Lemma 16
I Lemma 16. After the point pt arriving at time t has been handled, we have: for each point
p ∈ P (t) there is a representative point q ∈ P ∗ such that dist(p, q) 6 ε · r.

Proof. We may assume by induction that the lemma holds after the previous point has been
handled. (Note that the lemma trivially holds before the arrival of the first point.) We now
show that the lemma also holds after processing pt.

It is easily checked that after lines 4 of the algorithm, there is indeed a representative in
P ∗ within distance ε · r, namely the point q in line 2 or p itself in line 4.

In each iteration of the while-loop in lines 8, the value of r is doubled and UpdateCoreset
is called. We will show that the lemma remains true after each iteration. Let r− and r+

denote the value of r just before and after updating it in line 9, respectively, so r+ = 2 · r−.
Let p be an arbitrary point in P (t). Let q− be the representative point of p before the
call to UpdateCoreset. Because the statement of the lemma holds before the call, we
have dist(p, q−) 6 ε · r−. Let q+ denote the representative point of q− just after the call to
UpdateCoreset. (Possibly q+ = q−.) Since the distance parameter δ of UpdateCoreset
in the call is set to (ε/2) · r+, we know that dist(q−, q+) 6 (ε/2) · r+. Hence,

dist(p, q+) 6 dist(p, q−) + dist(q−, q+) 6 ε · r− + ε

2 · r
+ 6 ε · r

+

2 + ε

2 · r
+ = ε · r+ ,

which finishes the proof of the lemma. J

Proof of Lemma 32
I Lemma 32 ([11]). Pr

[
∀16i6m|Pi ∩ Pout| 6 6z

m + 3 logn
]
> 1− 1/n2.

Proof. Consider an optimal solution for the k-center problem with z outliers on P . Let Bopt
be the set of k balls in this optimal solution and let Pout = {q1, · · · , qz} ⊂ P be the outliers,
that is, the points not covered by the balls in Bopt. Let us consider a random variable Xi

that corresponds to the number of outliers that are assigned to an machine Mi for i ∈ [m].
First of all, observe that E[Xi] = z

m . Next, we consider Xi =
∑z
j=1 Yij where every random

variable Yij is an indicator random variable which is one of the outlier qj is assigned to
the machine Mi and zero otherwise. Now, we use the Chernoff bound to show that Xi is
concentrated around its expectation.

I Lemma 36 (Multiplicative Chernoff bound). [15, 17] Let X1, · · · , XN be independent random
variables, with Pr [Xi = 1] = p and Pr [Xi = 0] = 1− p for each i and for certain 0 6 p 6 1.
Let X =

∑N
i=1Xi. Then,

for any τ > 6 ·E[X], we have Pr [X > τ] 6 2−τ .

L. Biabani and M. de Berg and M. Monemizadeh 35

We let τ = 6z
m + 3 logn, then, τ > 6 ·E[Xi]. Thus, using the Chernoff bound we have

Pr
[
Xi >

6z
m

+ 3 logn
]

= Pr [Xi > τ] 6 2−τ 6 2−(6z
m +3 logn) 6 2−3 logn = 1/n3 .

Now, since we have m =
√
n machines, we use a union bound to obtain

Pr
[
∃i∈[m]Xi >

6z
m

+ 3 logn
]
6

m∑
i+1

Pr
[
Xi >

6z
m

+ 3 logn
]
6 m/n3 6 1/n2 . J

B Omitted proofs of the Ω(k/εd) lower bound for the streaming
model

This section provides the missing proofs for our lower bounds. Recall that P ∗(t′) ⊆ P ∗(t) ∪
P−∪P+ is the coreset maintained by the algorithm, which is supposed to be an (ε, k, z)-coreset
of the point set P (t′) = P (t) ∪ P− ∪ P+.

I Lemma 37. The optimal k-center radius with z outliers of the (ε, k, z)-coreset P ∗(t′) is at
most r, i.e., optk,z(P ∗(t′)) 6 r.

Proof. To this end, we show that there exist k balls centered at k centers of radius r that
can cover all points in (C1 ∪ . . . ∪ Ck−2d+1 ∪ P+ ∪ P−) \ {p∗}. Recall that p∗ = (p∗1, . . . , p∗d)
is the point that is not explicitly stored in P ∗(t) and we assume that p∗ belongs to a cluster
Ci∗ for i∗ ∈ [k − 2d+ 1].

Observe that for every i 6= i∗, since the diameter of Ci is
√
dλ, all points of Ci can be

covered by a ball of radius
√
dλ/2. We assumed that λ := 1/(4dε) is an integer, h := d(λ+2)/2

and r :=
√
h2 − 2h+ d. As d > 1, we observe that

√
dλ/2 6 r.

To cover Ci∗ ∪ P− ∪ P+, we define 2d centers c+1 , . . . , c
+
d and c−1 , . . . , c

−
d , where c

+
j =

(c+j,1, . . . , c
+
j,d) such that c+j,j := p∗j+h and c+j,` := p∗` for all ` 6= j. Similarly, c−j = (c−j,1, . . . , c

−
j,d)

such that c−j,j := p∗j − h and c−j,` := p∗` for all ` 6= j; see Figure 8. We claim that 2d balls
centered at these 2d centers of radius r cover all points in P+ ∪ P− ∪ Ci∗ \ {p∗}.

For the moment suppose this claim is correct. The number of clusters Ci where i 6= i∗ is
k − 2d. We just showed that all points of Ci can be covered by a ball of radius r. We also
claimed (which needs to be proved) that there exist 2d balls centered at these 2d centers
of radius r cover all points in P+ ∪ P− ∪ Ci∗ \ {p∗}. In addition, in Claim 40 (below) we
prove that the total weight of the outlier points o1, . . . , oz in P ∗(t′) is at most z. Thus,
optk,z(P ∗(t′)) 6 r as we want to prove.

Next, we prove the claim. Indeed, for each p+
j ∈ P+, we have dist(p+

j , c
+
j) = r. Similarly,

for each p−j ∈ P−, we have dist(p−j , c
−
j) = r. Let q = (q1, . . . , qd) be an arbitrary point in

Ci∗ \ {p∗}. We define jq := arg max`∈[d] |q` − p∗` | to be the dimension along which p∗ and q
have the maximum distance from each other, and let µq := |qjq

− p∗jq
| be the distance along

the dimension jq. Observe that µq > 1.

B Claim 38. For an arbitrary point q = (q1, . . . , qd) ∈ Ci∗ \ {p∗}, we have the following
bounds:

If qjq − p∗jq
> 0, then for the center c+jq

∈ {c+1 , . . . , c
+
d } we have dist(q, c+jq

) 6 r.
If qjq

− p∗jq
< 0, then for the center c−jq

∈ {c−1 , . . . , c
−
d } we have dist(q, c−jq

) 6 r.

Proof. First assume that qjq − p∗jq
> 0. The other case is proven similarly. We let

c+jq
= (c+jq,1, . . . , c

+
jq,d

). Recall that c+jq,jq
= p∗jq

+ h, and c+jq,`
= p∗` for all ` 6= jq.

36 k-Center Clustering with Outliers in the MPC and Streaming Model

p+2

p−2

p∗
r

p−1
c−1 c′

h+r
2 p+1,1

p+1 = p+1,0
ε

r

h

c−2

Figure 8 Illustration of the lower bound for the streaming model. Here, P ∗(t′) underestimates
optk,z(P (t′)) since 2d balls of radius r can cover P+ ∪ P− ∪ Ci∗ \ {p∗} (dashed balls), and then
optk,z(P ∗(t′)) 6 r. However, optk,z(P (t′)) = (r + h)/2 (the red ball).

Therefore, |qjq − c+jq,jq
| = |qjq − (p∗jq

+ h)| = |µq − h| and for all ` 6= jq we have
|q` − c+jq,`

| = |q` − p∗` | 6 µq. Thus,

dist(q, c+jq
) =

√√√√ d∑
`=1
|q` − c+jq,`

|2 6
√

(d− 1)µ2
q + (µq − h)2 =

√
h2 + dµ2

q − 2µqh .

Since 0 < µq 6 λ we have h = d
2 (λ+ 2) > d

2 (µq + 1). As µq > 1, we can multiply both
sides of this inequality by 2(µq−1) to obtain h·(2µq−2) > d

2 (µq+1)·2(µq−1) = d(µ2
q−1)

what yields −2h + d > dµ2
q − 2µqh. Finally, by adding h2 to both sides we have

h2 − 2h + d > h2 + dµ2
q − 2µqh. Recall that r =

√
h2 − 2h+ d and dist(q, c+jq

) 6√
h2 + dµ2

q − 2µqh. Thus dist(q, c+jq
) 6 r that proves this claim. C

Next, we prove that optk,z(P (t′)) = (h+ r)/2.

B Claim 39. optk,z(P (t′)) = (h+ r)/2.

Proof. We proved that optk,z(P (t′)) > (h+r)/2. Now, we prove that optk,z(P (t′)) 6
(h+ r)/2. In fact, in Claim 38, we proved that the balls in {b(c−1 , r), . . . , b(c

−
d , r)} ∪

{b(c+1 , r), . . . , b(c
+
d , r)} cover all points in P+ ∪ P− ∪ Ci∗ \ {p∗}. We define a center

c′ = (c′1, . . . , c′d) such that c′1 := p∗1 − (h+ r)/2 and c′` := p∗` for all ` 6= 1. Note that
h > r and c−1 = (c−1,1, . . . , c

−
1,d) such that c−1,1 := p∗1 − h and c+j,` := p∗` for all ` 6= 1.

Thus, dist(c−1 , c′) = |c−1,1 − c′1| = |p∗1 − h− (p∗1 − (h+ r)/2)| = |(h− r)/2| = (h− r)/2.

L. Biabani and M. de Berg and M. Monemizadeh 37

Now, we observe that using the triangle inequality, b(c−1 , r) ⊆ b(c′, (h + r)/2). (In
Figure 8, the ball b(c′, (h + r)/2) is shown in red.) Indeed, let q be an arbitrary
point in b(c−1 , r). Using the triangle inequality, we have dist(q, c′) 6 dist(q, c−1) +
dist(c−1 , c′) 6 r + (h− r)/2 = (h+ r)/2, which means q ∈ b(c′, (h+ r)/2). Therefore,
b(c−1 , r) ⊆ b(c′, (h + r)/2). In addition, observe that the ball b(c′, (h + r)/2) covers
the point p∗. Now, if we replace the ball b(c−1 , r) by b(c′, (h + r)/2), the union of
balls {b(c′, (h + r)/2)} ∪ {b(c−2 , r), . . . , b(c

−
d , r)} ∪ {b(c

+
1 , r), . . . , b(c

+
d , r)} will cover

Ci∗ ∪ P+ ∪ P−. This essentially means that optk,z(P + 2d) 6 (h+ r)/2. C

It remains to argue that the total weight of the outlier points o1, . . . , oz in P ∗(t′) is at most z.

B Claim 40. The total weight of the outlier points o1, . . . , oz in P ∗(t′) is at most z.

Proof. Suppose this is not the case. We consider an optimal set B∗ of k balls
that covers the weighted points in P ∗(t′) except a total weight of at most z. Since
P ∗(t′) is an (ε, k, z)-coreset for P (t′), the radius of balls in the set B∗ is at most
(1 + ε) · optk,z(P (t′)) = (1 + ε) · (h + r)/2, where we use Claim 39 that shows
optk,z(P (t′)) = (h+ r)/2.
Suppose for the sake of contradiction, the total weight of the outlier points o1, . . . , oz
in P ∗(t′) is more than z, thus, at least one outlier point, say o1, must be covered by a
ball from B∗. On the other hand, the nearest non-outlier point to o1 is at distance at
least 4(h+ r) from o1. Thus, since the radius of balls in the optimal set B∗ is at most
(1 + ε) · (h+ r)/2, such an outlier o1 must be a singleton in its ball. Let k′ > 1 be the
number of outliers that are covered by singleton balls from B∗.
As P ∗(t′) is an (ε, k, z)-coreset of P (t′), if we expand the radius of the balls in B∗
by ε · optk,z(P (t′)) = ε(h + r)/2, then the total weight of points in P (t′) that
are not covered by these expanded balls is at most z. Therefore, the points in
C1 ∪ . . . ∪ Ck−2d+1 ∪ P+ ∪ P− need to be covered by the remaining k − k′ expanded
balls.
Consider the following k sets: 2d sets {p+

1 }, . . . , {p
+
d } and {p

−
1 }, . . . , {p

−
d }, as well as

k−2d sets Ci, where i 6= i∗. Since the pairwise distances between these 2d+(k−2d) = k

sets are at least
√

2(h + r). Besides, the radius of the expanded balls is at most
(1 + 2ε)(h + r)/2, where 1 + 2ε <

√
2 since we assume ε 6 1

8d . Hence, each of the
remaining k − k′ expanded balls can cover at most one of these k sets. As k − k′
balls of B∗ remained for these k sets, then at least k′ sets cannot be covered by the
expanded balls.
We assumed the weight of every point p+

i (or p−i) is two4. In addition, the number of
points in every Ci is at least 2 since λ > 2 and |Ci| = (λ+ 1)d. Recall that the union
of balls in B∗ does not cover z − k′ points in {o1, . . . , oz}. Therefore, the total weight
of the points that the expanded balls do not cover is at least (z − k′) + 2k′ = z + k′.
As the total weight of outliers must be at most z, we must have k′ = 0, which is a
contradiction to the assumption that at least one outlier point must be covered by a
ball from B∗. That is, the total weight of the outlier points o1, . . . , oz in P ∗(t′) is at
most z as we want. C

4 However, we can in fact change these weighted points to unweighted points by replacing each weighted
point p+

i (similarly p−i) by two unweighted points p+
i,0 and p+

i,1, where p
+
i,0 is at the same place of

p+
i , and p+

i,1 is on the boundary of the ball b(c+
i , r) at distance ε of p+

i,0 ;see Figure 8. It is simple to
see that our arguments still hold for this unweighted case as dist(p−i,0, c

+
i) = dist(p−i,1, c

+
i) = r, and

dist(p−i,0, p
+
i) = ε.

38 k-Center Clustering with Outliers in the MPC and Streaming Model

J

I Lemma 41. Let 0 < ε 6 1
8d . Let λ := 1/(4dε) be an integer, h := d(λ + 2)/2 and

r :=
√
h2 − 2h+ d. Then, r < (1− ε)(r + h)/2.

Proof. We start with the statement that we want to prove, and then derive a sequence of
equivalent statements, until we arrive at a statement that is easily seen to be true. Indeed,
assume that r < (1− ε)(r+h)/2 is correct. Then, we have 2r < r+h− εr− εh which means
that r(1 + ε) < h(1− ε). Since both sides of the inequality are non-negative, we can raise
them to the power of two to obtain r2(1 + ε)2 < h2(1 − ε)2. Since r =

√
h2 − 2h+ d and

h2 − 2h + d > 0, we have (h2 − 2h + d)(1 + 2ε + ε2) < h2(1 − 2ε + ε2) which means that
h(−4hε+ 1) + (h− d) + ε2(2h− d) + 2ε(2h− d) > 0.

We observe that all these four terms of this inequality are non-negative which proves the
claim. First of all, since ε 6 1

8d , we observe that −4hε+ 1 > 0, and so, the first term is at
least zero. Next, as λ > 1, we have h = d(λ+ 2)/2 > d that implies that 2h− d > h− d > 0.
Hence, the second, third, and forth terms are greater than zero. Thus the left-hand side of
the above inequality is greater than zero and this finishes the proof. J

	1 Introduction
	2 Mini-ball coverings provide (,k,z)-coresets
	3 Algorithms for the MPC model
	4 A tight lower bound for insertion-only streaming algorithms
	4.1 An (k/d) lower bound
	4.2 An (z) lower bound
	4.3 A space-optimal streaming algorithm

	5 A fully dynamic streaming algorithm
	5.1 The algorithm
	5.2 A lower bound for the fully dynamic streaming model

	6 A lower bound for the sliding-window model
	7 More MPC algorithms
	7.1 A randomized 1-round MPC algorithm
	7.2 A deterministic R-round MPC algorithm

	A Omitted proofs
	B Omitted proofs of the (k/d) lower bound for the streaming model

