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Abstract—Multi-tenancy in public clouds may lead to co-
location interference on shared resources, which possibly re-
sults in performance degradation of cloud applications. Cloud
providers want to know when such events happen and how
serious the degradation is, to perform interference-aware migra-
tions and alleviate the problem. However, virtual machines (VM)
in Infrastructure-as-a-Service public clouds are black boxes to
providers, where application-level performance information can-
not be acquired. This makes performance monitoring intensely
challenging as cloud providers can only rely on low-level metrics
such as CPU usage and hardware counters.

We propose a novel machine learning framework, Alioth, to
monitor the performance degradation of cloud applications. To
feed the data-hungry models, we first elaborate interference
generators and conduct comprehensive co-location experiments
on a testbed to build Alioth-dataset which reflects the complexity
and dynamicity in real-world scenarios. Then we construct Alioth
by (1) augmenting features via recovering low-level metrics under
no interference using denoising auto-encoders, (2) devising a
transfer learning model based on domain adaptation neural
network to make models generalize on test cases unseen in
offline training, and (3) developing a SHAP explainer to automate
feature selection and enhance model interpretability. Experiments
show that Alioth achieves an average mean absolute error of
5.29% offline and 10.8% when testing on applications unseen in
the training stage, outperforming the baseline methods. Alioth
is also robust in signaling quality-of-service violation under
dynamicity. Finally, we demonstrate a possible application of
Alioth’s interpretability, providing insights to benefit the decision-
making of cloud operators. The dataset and code of Alioth have
been released on GitHub.

Index Terms—QoS, Interference, Multi-Tenancy, Public Cloud,
Machine Learning

I. INTRODUCTION

Nowadays, cloud computing adopts multi-tenancy, i.e. in-
stances of multiple tenants sharing hardware resources on
the same physical machine, to improve resource utilization
and cost efficiency [1]. Because of co-location, instances
may contend on resources such as last-level cache (LLC),
memory bandwidth, network bandwidth, etc. [2]–[4]. Resource
contention may lead to interference, resulting in performance
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Fig. 1: Multi-tenancy and black-box issue in public clouds. Multiple VMs
share the same host and contend on shared resources. In this example, VM1
occupies too much LLC capacity such that VM2 cannot get the needed quota
to run normally, resulting in severe performance degradation. Yet for cloud
providers, VMs are black boxes and providers cannot acquire application-level
information. They can only monitor low-level metrics such as LLC occupation,
memory usage, etc. to estimate what is happening inside the VMs.

degradation of as much as 200% compared with running in-
isolation [5], and quality-of-service (QoS) violation of cloud
applications [6]. Cloud providers are to handle this side-effect
of multi-tenancy. Good monitoring—fast detection of inter-
ference and accurate estimation for performance makes the
first step to alleviating performance degradation, with which
cloud operators can perform throttling or interference-aware
migrations. The ultimate goal is to improve overall system
efficiency and customer satisfaction.

Unfortunately as Fig. 1 depicts, virtual machines (VMs)
are almost always black boxes to cloud providers in public
Infrastructure-as-a-Service (IaaS) cloud [7], [8]. Despite there
being mechanisms like Application Heartbeats [9], cloud cus-
tomers are rarely willing to provide application-level perfor-
mance information to the platform due to privacy issues [10].
Cloud providers can only rely on low-level metrics, e.g.
CPU usage and hardware counters as proxies of performance.
The second challenge is the dynamicity of cloud applica-
tions’ workload intensity. Different workload intensity leads
to different sensitivity and tolerance towards interference [11].
Therefore, it may cause great errors if we use a static
threshold for judging QoS violations under dynamicity. The
third challenge is that the relation between low-level metrics
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and performance is implicit. Recent work [12] reports that
the widely-used performance indicator, Clocks per Instruction
(CPI) may be misleading when workload intensity changes.

Previous solutions to estimating performance degradation
failed to address the three challenges completely, i.e. black-
box, dynamicity, and impilicity. Some assume application-level
information available [2], [13], [14] does not fit into the
black-box scenario in public clouds. Some introduce additional
hardware [15] or online profiling that either becomes too
costly [16], [17] or perturbs normal running [1], [11], [18].
Some overly simplify the problem, only considering specific
application category [5], [19], limited cases of co-location
[20], [21], static workload intensity [6], or use low-level
metrics to directly represent application QoS [22], [23].

Machine learning (ML) methods are popular in existing
literature [17], [20], [24]. The reason for using machine
learning is mainly motivated by: (1) data of low-level metrics
is abundant and easy to acquire under black-box scenarios; (2)
the relationship between low-level metrics and performance is
implicit, and ML excels at discovering complex relationships
between various factors. However, the results of ML models
are often hard to interpret for humans. There may also be
generalization problems as ML models often fail to work
well when faced with unfamiliar feature distributions, which
is likely to happen online when models encounter unknown
applications that are not in the training dataset.

We present a novel and interpretable ML-based frame-
work, Alioth, as an interference-aware performance monitor
for multi-tenancy applications in IaaS public clouds. Given
the low-level metrics of a target VM, Alioth estimates how
its performance changes compared with no interference. To
feed the data-hungry ML models, we first devise a set of
stressing programs to simulate various kinds of interference
and conduct co-location experiments under various workloads
and interference intensities on our testbed to make a dataset
called Alioth-dataset. We elaborate the experiments such that
the considered cases can match real-world scenarios.

We then construct Alioth by the following steps to address
the aforementioned challenges and limitations of ML methods:
(1) We augment input features via recovering low-level metrics
under no interference using denoising auto-encoders (DAE)
[25]. (2) To address the generalization issue in the online stage,
we combine domain adaptation neural network (DANN) [26]
and DAE to transfer knowledge learned in the offline stage and
make the ML models generalize on unknown applications. (3)
We develop a SHAP [27] based explainer to automate feature
selection and enhance model interpretability.

Experiments show that Alioth not only achieves high ac-
curacy—mean absolute error (MAE) of 5.29% on average in
estimating performance degradation offline but also maintains
a decent average MAE of 10.8% when testing with unknown
applications, outperforming the baseline methods, and is robust
in signaling 0/1 QoS violation under dynamicity. Finally, we
use a case study to demonstrate how Alioth can perform
attribution analysis, i.e., how much contribution each kind of
interference makes towards current performance degradation.

Thus, Alioth helps to gain more insights into the system by
identifying the source of interference and benefits the decision-
making of cloud operators.

The dataset and code of Alioth have been made publicly
available at Github1 to enhance reproducibility. In short, our
main contributions are listed as follows:

• We devise a set of interference generators and conduct
co-location experiments to make a dataset that reflects
the complexity of the real-world public cloud.

• We present a novel ML-based framework as an
interference-aware monitor of multi-tenancy applications
in IaaS public clouds, outperforming previous ML-based
solutions.

• We show that our design can enhance model generaliza-
tion and interpretability.

The rest of the paper is organized as follows: Section II
discusses related work. Section III formalizes the problem and
presents data observations. Section IV describes the methodol-
ogy for creating an accurate and explainable ML-based model.
Section V evaluates the accuracy of the model. Section VI
concludes our works.

II. RELATED WORKS

There has been a large amount of work that focuses
on predicting performance degradation of cloud applications
caused by shared resource interference [5], [15], [16], [18],
[20], [24]. According to their methodologies, previous works
for predicting QoS degradation can be divided into non-ML
methods and ML methods.

A. Non-ML Methods

Non-ML methods can be further categorized as follows:
Focusing on white-box scenarios: Works in this category
assume that application-level performance can be acquired via
some interface. PARTIES [13] and Heracles [28] guarantee
QoS for latency-sensitive applications via dynamic feedback
control. Proctor [14] uses a median filtering algorithm and step
detection to look for abrupt changes in the QoS.
Using classical performance indicators: Works that follow
this category assume a linear relation between QoS and metrics
like CPI. Bubble-up [2], CPI2 [22] and Wsmeter [23] use
CPI directly as ground-truth performance indicator. Recent
research [12] shows that CPI could be misleading as shifts
in workload intensity may cause significant changes in CPI.
Using additional hardware or online profiling: Deepdive
[16] clones the target VM to profile it online. Application
Slowdown Model (ASM) [15] devises non-standard hardware
counters to calculate slowdown caused by cache interference.
Bubble-flux [11] and Caliper [18] periodically hang up all
other VMs except the target to get in-isolation performance.
However, hanging up an interactive application could cause
catastrophic QoS violations.

Alioth differs from the works above in that: Alioth (1)
assumes no application-level information available, (2) models

1https://github.com/StHowling/Alioth
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the relationship between performance and low-level metrics
in a complex way, and (3) does not require costly additional
hardware or online profiling. Alioth also considers dynamicity
by incorporating resource usage metrics in its inputs.

B. ML Methods

There is also a large amount of work in recent years that use
ML models such as linear regression (LR), regression trees
(RT), support vector (SV) regressions, and neural networks
(NN) to predict performance degradation. In 2012, Dwyer et
al. [5] first proposed Practical Method, using machine learning
for modeling performance degradation of HPC workloads.
They tried a variety of ML models and found that bagged RT
performs best on their dataset. Later many works propose LR-
based models [19], [29], [30] to predict the degradation of total
execution time for long-computing tasks. ESP [20] introduces
a regularization method to perform feature selection. DIAL
[31] uses a decision tree (DT) model and a queuing model.
Cheng et al. [21] use ensembled LR, RT, and NN models to
predict performance degradation of pairwise co-located VMs.
There is also literature that involves performance prediction
but does not estimate the performance degradation of a current
running VM. Monitorless [24] trains binary classifiers for iden-
tifying resource saturation in components of microservices.

Alioth goes beyond the ML-based methods mentioned
above with an elaborated design. We augment input features
with denoising auto-encoders and develop a SHAP explainer
to enhance interpretability, providing insights to benefit the
decision-making of cloud operations.

III. MODELING, DATA, AND OBSERVATIONS

In this section, we first model the problem of estimating ap-
plications’ performance degradation in public clouds, describe
the nomenclature, the input and target of the ML model, and
how the ground-truth label of degradation is defined. Then we
show how to build Alioth-dataset, a dataset that well represents
the variety of application categories, workload intensity, and
interference type and intensity in the public cloud. Finally,
we present some key observations from Alioth-dataset that
motivate the design of ML models used in Alioth.

A. Modeling

A cloud is a set of physical nodes P = {p1, · · · , pM},
where M is the total number of nodes. Each node p ∈ P
can host many instances as VMs or Linux containers in a
virtualized environment. For simplicity, we only consider VMs
in Alioth, but the methodology can be seamlessly transferred
to suit containers. Let vi,j denote the i-th VM on host pj ,
and Vj = {v1,j , · · · , vnj ,j} be all nj VMs that are currently
running and sharing resource on pj . Each VM may be running
one or several applications or utilities, and some VMs may
work together to form a high-level multi-tier cloud service.
We only consider the performance degradation of every single
VM due to co-location interference.

At each timestamp t, the cloud provider is able to collect a
set of host metrics Rp,t which describe the overall resource

usage of node p (e.g., memory capacity and bandwidth usage
of the whole CPU socket), as well as two sets of VM
metrics Rv,t and Hv,t, which reflects resource usage (e.g.,
CPU/memory capacity, disk, and network packet read/write)
and hardware events (e.g., cache miss, branch mispredict) of
VM v respectively. For all VMs v ∈ Vj that are hosted on
the same node pj , they share the same value on the overall
host resource usage Rpj ,t. Moreover, there is a metric Qv,t

that represents the current performance of the application(s)
running in v, e.g. response latency, throughput, or finishing
time, but it cannot be observed by the provider online.

Suppose T ∗ denotes the set of timestamps when there is no
co-location interference, and Q(i)

v,T∗ refers to the average per-
formance when there is no interference, then the performance
deviation d

(i)
v,t of VM v running with workload intensity i at

timestamp t is defined as

d
(i)
v,t = Q(i)

v,t/Q
(i)

v,T∗ = Q(i)
v,t/

∑
t∈T∗ Q(i)

v,t

|T ∗|
.

If smaller Q(i)
v,t means better performance (e.g. latency), the

performance degradation D
(i)
v,t is defined as d

(i)
v,t − 1. Other-

wise, it is defined as 1− d
(i)
v,t.

The problem of estimating performance degradation of
some VM v at timestamp t is then stated as follows: given
low-level metrics Mv,t = (Rv,t, Hv,t, Rp,t), the model should
give an estimation of degradation D̂v,t. For the machine
learning problem, a dataset D = {(xv,t, yv,t)} is built from
VMs running different applications under various workload
intensities and co-location schemes to mimic the complexity of
real-world public cloud interference, where xv,t is the feature
vector built upon Mv,t and yv,t = Dv,t. The goal of ML is
to learn a function f mapping xv,t to ŷv,t = D̂v,t such that
the difference between ŷv,t and yv,t is minimized.

B. Building Alioth-Dataset

Experimental Setup: Table I lists the major hardware specifi-
cations of the experimental platform. We conduct our experi-
ments on 7 such physical nodes, each equipped with 500G
memory and connected by a 10Gbps switch. This testbed
hosts up to 100 VMs simultaneously, where each VM runs
one specific application and is allocated 4 logic cores and
8GB memory by default. VMs are allocated the same amount
of computing resources for simplicity, but our framework
supports varied flavors of VM scales. Due to the time limit,
we did not enable CPU over-committing to simulate extremely
crowded co-location scenarios when collecting data, and we
leave this issue for future work.

TABLE I: Hardware Specification

CPU Intel Xeon Gold 6151
Virtualization technology QEMU-KVM + Openstack

Host OS Red Hat 2.8.5 (kernel 3.10)
Guest OS Ubuntu 16.04 (kernel 4.14)

Cores, Sockets 2 sockets, 18 physical cores per socket
Core frequency fixed at 3.0GHz, DVFS disabled
Hyperthreading Enabled, 2 threads per physical core

Last-level (L3) cache 22.5MB, 11 ways



Application Selection: The following describes the cloud
applications we use to build Alioth-dataset, along with the
corresponding method to generate their workloads. The appli-
cations can be roughly categorized into the following 4 classes:
(1) NoSQL databases: We use Cassandra and HBase (wide-
column store), and MongoDB (document store) as representa-
tive NoSQL applications, and choose YCSB [32] as a unified
workload generator for the three applications. We change
read/write ratios, request distributions, and query-per-second
(QPS) to simulate real-world workload flows. (2) Message
middlewares: They are vital building blocks of large-scale
cloud services nowadays. We choose Kafka and RabbitMQ
and use their official benchmark tools as workload generators.
We change the number of clients and QPS to achieve dy-
namic workload intensity. (3) Key-value stores: They serve
as a cache between disk-bound databases and main memory.
We use Redis and Etcd and use their official benchmark
tools as workload generators. (4) High-performance computing
(HPC): We use applications in SPEC CPU 2006 benchmark
suite as HPC workloads, and adjust its intensity via changing
the threads number running in parallel. Alioth is open to other
kinds of cloud applications that are not mentioned above,
such as web servers, search engines, big data analytics, ML
inference, and multi-tier services. We are confident in building
ML models that perform well on VMs that run them, either by
collecting their labeled data and retraining the models or by
adapting the models to the unlabelled data that is distributed
differently with Alioth-dataset via transfer learning.
Generating Interference: We use two different ways to
generate interference on the shared resources. The first is to
implement specialized stressing Bubbles, or micro-benchmarks
[2], [3], which are adjustable small programs that exhaustively
thrash target shared resources to interfere with co-located
VMs. We consider four kinds of shared resources that may
cause interference: LLC, memory bandwidth (MBW), net-
work bandwidth (NBW), and disk bandwidth (DBW).

Here we briefly describe the implementation method of the
four bubbles. (1) For LLC, the bubble continuously reads
chunks of memory where each chunk equals the size of a
cache line to occupy LLC space. We use Intel-CAT [33] to
restrict the number of cache ways the bubble can use to
adjust interference intensity: when the bubble can use all
cache ways, the induced interference is the strongest. (2)
For MBW, the bubble continuously copies a fixed chunk of
memory that equals cache line size, such that each operation
triggers one cache miss and memory access. The bubble
is constrained to use only 1 LLC cache way for 1 thread
to avoid further influence on LLC usage. The interference
intensity is controlled by parallel thread numbers. (3) For
NBW, the bubble uses iperf3 [34] to send UDP packets to
another VM as a client located on another host. We adjust the
consumed bandwidth by configuring iperf3 parameters. The
largest interference a single bubble can issue is 1500Mbps
when the client starts to drop packets. (4) For DBW, the bubble
uses fio [35] to perform asynchronous reads and writes. By
changing queue depths and the number of parallel threads, the

bubble adjusts the I/O operation per second.
Another way to generate interference is to co-locate the

applications on the same host directly. We set up 2 to 5
VMs on the same host socket to simulate real-world co-
location interference, where each VM runs one of 8 considered
applications at a certain workload intensity. That is, a VM
may or may not be running the same application with other
co-located VMs, but probably at a different intensity. We
try 35 different co-location schemes and an average of 5
different representative workload intensities for each of the
eight applications mentioned above. The details of the co-
location schemes can be found in Alioth-dataset.

(a) (b)
Fig. 2: (a) Generating MBW interference with adjustable intensity
leads to significant performance degradation of applications. The
interference intensity and performance degradation are approximately
positively linear-correlated. (b) MongoDB as an example to show the
effectiveness of bubbles. As the interference intensity increases, all
bubbles gradually start to deteriorate application performance.

Figure 2a and 2b shows the effectiveness of the interfer-
ence generation process discussed above. Note that 4 other
applications and the DBW bubble are omitted from the figures
for beauty considerations, as their lines largely overlap with
others. The DBW bubble’s behavior is very like that of NBW
since the disks in today’s cloud lie in a remote storage pool
and are attached through network connections.
Comments on Choice of Selection: We consider these shared
resources and applications as they are typical in previous
literature, e.g., Paragon [1], PARTIES [13], URSA [4], and
Alita [36]. Although cloud services nowadays seldom run as a
standalone application in a single container and are more often
organized as collections of micro-services, each micro-service
component operating in a separate container is still suitable
for the methodology of data collection described above.

Although we have tried our best to simulate real-world sce-
narios, data collected into Alioth-dataset is still a small subset
of all possible co-location interference cases. This is due to
the exponential scale of all configurations w.r.t. applications,
number of co-located VMs, interference type and intensities,
workload type and intensities, hardware specifications, etc.
Therefore, building a dataset that includes all possibilities is
simply intractable. When the models are tested online, they
are bound to encounter unseen and differently distributed data
compared to Alioth-dataset. We must bear this in mind when
designing ML models.
Collecting Metrics: We collect the low-level metrics Mv,t =
(Rv,t, Hv,t, Rp,t) separately. For resource usage Rv,t of VM
v, we use libvirt; for hardware events Hv,t, we use Linux



perf, and for overall resource usage Rp,t of host p, we use
Linux sar and Intel-pqos. These metrics are monitored and
collected in the physical host OS. The performance metric
Qv,t is collected by the workload generator in client VMs
that are allocated 16 physical cores with 32G memory each
and located on a specialized host node to prevent the client
from being the performance bottleneck. For HPC applications,
we record their CPI; otherwise, we record both the throughput
and latency. Although execution time as the performance label
is more common for HPC applications, there are also papers
using CPI (e.g., Caliper [18]) as a performance label. CPI is
more convenient for data collection, but we are planning to
add execution time as labels in the future.
Alioth-dataset Overview: Merging all collected data, we get
around 46k data samples to make Alioth-dataset, where each
sample is a tuple of (Mv,t,Qv,t,Av,t) in a one-second period,
and Av,t is the additional label describing the application,
workload intensity, interference type, and interference intensity
of VM v at timestamp t. Each sample has 224 columns, among
which 15 belong to Rv,t, 175 belong to Hv,t, 28 belong to
Rp,t, and the rest are performance labels and additional labels.

C. Key Data Observations

In this part, we do some preliminary study into Alioth-
dataset, exploring in detail the implicity problem when we
directly use certain low-level metrics mv,t ⊂ Mv,t for
estimating performance.
Data Preprocessing: We first delete the features whose values
and variances are all 0 since they could not provide any
effective information. Then we omit extreme values in the
raw data that may appear due to hardware counter overflow or
inaccuracy from multiplexing and sampling. After that, we use
MinMaxScaler to normalize the remaining metrics, making the
features fall in the same numerical magnitude of [0,1].
Exploring implicity: Once we determine the workload inten-
sity of a VM, we can then examine the accuracy of directly
using deviations d̂

(i)
v,t of selected low-level metrics m

(i)
v,t to

represent performance degradation. We consider 2 different
approaches: (1) Best-Possible: Current workload intensity i

and corresponding performance baseline m
(i)
v are already

known, which is impractical in reality. (2) Best-Effort: We
estimate i and m

(i)
v from historical observations by fitting

two Gaussian mixture models (GMM) [37]. The first fitting
operates on memory usage to find the historical samples with
the same workload intensity i. The second operates on m

(i)
v,t

of these samples to find the cluster with the lowest (highest)
mean, and use the mean value as the performance baseline.

Here we only present the result of CPI, for (1) CPI is the
most frequently used low-level performance metric in previous
literature [6], [22]; (2) we tried other metrics such as cache
misses per kilo instructions (MPKI), and the error can be
as high as 5.0x of CPI’s result. Figure 3 compares the 2
approaches and the result suggests that directly using CPI
can lead to great error even for Best-Possible with an MAE
of 45.7%, and the Best-Effort method makes things worse. It
is only when the QoS violation threshold is loose can these

Cassandra Etcd HBase HPC Kafka MongoDB RabbitMQ Redis
Applications
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Fig. 3: Accuracy of using CPI under 2 approaches to estimate
performance.

methods be acceptable, and they are only suitable for signaling
0/1 QoS violation, rather than providing precise estimation for
performance degradation.

IV. METHODOLOGY OF ALIOTH

In this section, we first present the framework of Alioth
and an overview of its design. Then we move to the critical
techniques we use in constructing Alioth, i.e. denoising auto-
encoder (DAE), domain adaptation neural network (DANN),
eXtreme Gradient Boosting trees (XGBoost), and SHAP. We
explain their principles and rationales in detail. Finally, we
present the feature selection and result attribution analysis
process, as applications of the SHAP explainer.

A. Design Overview

Faced with the black-box, dynamicity, implicity challenge,
and the lack of generalization and interpretability of previous
ML methods, we present our design of Alioth in Figure 4.
Alioth operates differently in the offline and online stage.
Offline Alioth consists of 3 major parts: a data augmenter
based on DAE, a XGBoost performance estimator, and
a SHAP model explainer, each with different functions.
Online Alioth replaces the DAE with domain adaptation
DAE (DADAE), i.e. the combination of DAE and DANN,
to improve the model generalization.

Given a target VM v, Alioth first extracts features xv from
low-level metrics Mv as the feature engineering phase. For
each time stamp t and each low-level metric, We extract a set
of first-order statistics from time windows [t−T, t] of various
lengths T (t > T ). Specifically, the first-order statistics include
the mean, minimum, and maximum values, the difference
between max-min values, and the standard deviation. The time
window length T varies from 3, 5, 10, and 20 seconds.

As for the offline ML models, we use DAE [25] and XG-
Boost [38]. A key data observation we find is that interference
can be viewed as noise applied on low-level metrics under no
interference to synthesize interfered features. DAE is used to
augment the input features via denoising xv,t and recovering
possible x̂v,tni . The two forms of features are merged for
XGBoost to compare and estimate current performance.

The online DADAE model combines DAE with DANN
[26]. After the models are trained offline and before they are
pushed online, we first collect some unlabelled data from the
online environment to act as the road map of transfer learning.
The unlabelled online data and labelled offline data are fed into
DADAE together. With the help of the domain classifier, we
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Fig. 5: Comparison of Cassandra’s (a) interfered data, (b) data under
no interference and (c) the interfered data processed by DAE. The
horizontal axis represents 218 low-level metrics. The vertical axis
represents 220 consecutive timestamps.

conduct adversarial training to transfer the denoising encoding
ability of DAE encoder, such that the tuned DADAE can
output accurate result on unseen data.

Finally, we develop a model explainer based on SHAP to
perform feature selection and enhance model interpretability.
It automates the feature selection process and provides insights
for cloud operators to make optimizing decisions.

We implement components in Alioth using Python 3.8.0,
scikit-learn 0.24.1, Pytorch 1.8.0 with CUDA 10.2, and xg-
boost 1.5.0. The model is trained on an NVIDIA V100 GPU,
but does not necessarily require so much computing resource
to be trained well. As we will see in Sec. V-B, Alioth uses
fairly lightweight models that converge and infer fast.

B. ML Based Models

Here we briefly demonstrate the critical techniques we use
in designing Alioth and the motivation for choosing them.

1) Denoising Auto-Encoder:
We use DAE to augment the input features by providing

what the features should be like under no interference with
their current values to the regressor r, such that the perfor-
mance change can be inferred by comparing the difference
between them. This design is based on the following evidence
observed from data: the values of low-level metrics can be
seen as a combination of interference noise and no-interference
values.

Figure 5 shows three grayscale data plots for 218 metrics
at 220 timestamps for a VM running Cassandra. The data in
(a) corresponds to when it is being interfered with, which is
the input of DAE. The data in (b) has the same workload
intensity as that of (a) but is collected without interference and
acts as the target of DAE in training. The difference in data
distribution before and after timestamp 100 is due to a shift
in workload intensity. We can see that there are glitches and
perturbations in (a) compared with that of (b), which depicts
the interference effects as noise applied on metrics under no
interference. Data in (c) is the output of DAE and shows that
DAE can denoise the interfered data, approximating metrics
under no stress. Data processed by DAE slightly deviate from
data under no interference, meaning that DAE does not work
by memorizing.

2) Domain Adaptation DAE
We have mentioned the problem of unseen and differently

distributed data. To demonstrate its severeness, we train DAE
and XGBoost on the training set which excludes an application
X , and test the models on the testing set that solely contains
data of X . Compared to the standard setting where both
training and testing set contains X (see Tab. III), the average
error reaches 0.4597, about 8x of normal offline performance.
The most extreme case happens to Etcd, where in normal case
the error is 0.0277, while in this setting the error is 1.5466,
reflecting very different data distributions between Etcd and
the rest applications.

As said in Sec. III-B, the models are bound to face unseen
cases not in the training set when running online, for which the
ML models that cannot generalize on unseen and differently
distributed data are impractical. As XGBoost has shown good
generalization through its wide industrial use, transferring the
denoising ability of DAE to unseen data becomes critical.
Therefore, we combine the classical transfer learning model
DANN with DAE to devise DADAE.

Specifically, DADAE contains three components: (1) an
encoder that maps the feature vector xv,t to a new feature



space, where not only is the invariant information representing
the no-interference states is maintained, but also the data from
source domain (i.e. data seen in offline training stage) and
target domain (i.e. unlabelled online data) is confused. In other
words, the encoder tries to learn a domain-invariant feature
representation. (2) A decoder that decodes the representations
learned by the encoder into feature vectors under no interfer-
ence is the same as the original DAE. (3) A domain classifier
that helps the encoder to achieve its goal via adversarial
training. Note that the Gradient Reversal Layer (GRL) [26]
is used to simplify training.

The optimization target of DADAE can be described as
E(θF , θG , θD) =

∑
i=1,··· ,N

di=0

Li
R(θF , θG)−

∑
i=1,··· ,N

Li
d(θF , θD;Rλ),

where LR(·, ·) is the reconstruction error of DAE (min-square
loss), and Ld(·, ·) is the loss of domain classification (logistic
loss), di = 0(1) refers to data from the source (target) domain,
Rλ is the special network layer GRL, and Li

R, L
i
d means the

loss w.r.t. sample i. The optimization process can be done with
standard stochastic gradient descent.

3) XGBoost
We use XGBoost [38] as the regressors in the performance

estimators for its high accuracy, strong robustness, good gen-
eralization, fast convergence and inference, and light-weight
model size. For the training process of performance estimators,
we first train the DAEs by minimizing the denoising loss,
and then fix the DAEs to optimize XGBoost models. To
fully exploit the generalization ability of XGBoost, we use 5-
fold cross validation and grid search to adjust the parameters
in a 3-pass process, sequentially tuning tree splitting, data
augmentation and regularization parameters.

4) SHAP
SHAP [27] is a “model interpretation” package developed in

Python which builds an Additive interpretation model inspired
by cooperative game theory. For each predicted sample, SHAP
leverages the model being interpreted to generate a predicted
value, and outputs the Shapley value assigned to each feature.
When using SHAP, we pass the trained ML model and the
prediction results of the test set into the interpreter, which
calculates and outputs the global and local Shapley values.
Shapley value reflects the influence of features in each sample
and shows the polarity of the influence.

C. Feature Selection and Model Interpretability

1) Feature Selection
Alioth first uses SHAP to select features. To evaluate the

importance of different features, Alioth first uses the Wrapper
method by SHAP to calculate the Shapley value of each
feature in the prediction model. Then it sets an appropriate
threshold value, and selects the indices with Shapley values
above the threshold as selected features. Take Cassandra as
an example, Table II shows the top 10 metrics ranked by
absolute global Shapley value (i.e. importance), where MBR
and MBL refer to memory bandwidth usage of remote and
local sockets respectively; net rd byte and net wr byte refer

TABLE II: Top 10 features by importance for Cassandra.

MBR.10.maxidff
MBL.10.maxdiff
net rd byte.5.std

UNHALTED REFERENCE CYCLES.10.std
kbcached.10.mean

system time.5.maxdiff
MEM INST RETIRED:STLB MISS LOADS.10.mean

net wr byte.5.std
RS EVENTS:EMPTY CYCLES.10.std

CORE SNOOP RESPONSE:RSP IFWDFE.5.std

to network read and written in bytes. Cassandra is a NoSQL
database whose workload pattern involves memory reads and
network I/O. Therefore, changes in these metrics may indicate
performance change, which is in line with engineers’ intuition.
We use the result of feature selection to retrain the models used
in Alioth.

Another function of feature selection is to reduce the
number of metrics to monitor in production, as collecting 224
features at system runtime is costly. We only select features
that show general importance among most applications: for
each application, we select the top 20 largest features in terms
of positive and negative values of global importance (which
means 40 features). We then select the 22 features appearing
in the 40-feature set for more than 4 out of 8 applications
in Alioth-dataset as final features to use. The details can be
found in the released dataset.

2) Model Interpretability
Alioth utilizes SHAP, not only for feature selection but

also to provide accurate and consistent explanations. SHAP
can quantify the magnitude and direction of each feature’s
impact on the predicted values, based on which we propose
an application on attribution analysis. Namely, we view each
type of shared resource VMs may contend on as a source of
interference (SoI), and try to quantify its contribution to the
final degradation.

Suppose we have identified the top-k interference-intensity-
correlated low-level metrics sk = {lx1 , lx2 , · · · , lxk

} for each
SoI. We now use linear regression to build a simple model of
estimating interference intensity level IILi of shared resource
i : IILi =

∑k
j=1 α

i
j l

i
j and we use Least-Min-Square to

optimize the model, and save value of ωi = (αi
j)1×k. We

then enlarge it to ω̃i to the same dimension of input features,
following the original input order: if xj equals to lxj

and
belongs to sk, ω̃i

j is set as αi
xj

, if not, we set ω̃i
j as 0.

Suppose prediction for an input x of n-dimension and the
corresponding Shapeley value vector Φ = {ϕ1, ϕ2, · · · , ϕn}
are obtained. For each shared resource i, we compute a
interfering score ci based on Φ and ωi: ci =

∑n
j=1 ω̃

i
jϕj . We

stack the scores as an ns-dim vector c = [c1, c2, · · · , cns
]⊤,

where ns is the number of SoIs. Finally we normalize c as
c̃ = c∑

ci
= [c̃1, c̃2, · · · , c̃ns ]

⊤, where c̃i is the contribution
of SoI i made on x’s performance degradation. We present a
case study in Sec V-D to demonstrate Alioth’s interpretability.

V. EVALUATION OF ALIOTH

In this section, we evaluate the performance of Alioth in the
following aspects. Firstly, we show the results for classifying
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Fig. 6: Mean Absolute Error (MAE) of Practical Method, Moniterless, CART, XGBoost, and Alioth on different applications. CART is
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TABLE III: Online MAE of Practical Method, Moniterless, CART, XGBoost, and Alioth on different applications.
Cassandra Etcd Hbase HPC Kafka MongoDB RabbitMQ Redis Mean

Homogeneous Train&Test 0.0508 0.0277 0.0470 0.0542 0.1481 0.0372 0.0207 0.0375 0.0529
Oracle DAE+XGBoost 0.0820 0.0654 0.0550 0.1264 0.1720 0.0426 0.0707 0.0567 0.0838
Practical Method 0.1323 0.7844 0.0677 0.1723 0.2124 0.2877 0.1963 0.1587 0.2514
Monitorless 0.1287 0.5673 0.0891 0.2197 0.3144 0.2503 0.1538 0.1479 0.2339
CART 0.1264 0.9602 0.0743 0.5741 0.4442 0.0997 0.1776 0.1373 0.3242
XGBoost 0.1102 0.2658 0.0545 0.2453 0.3037 0.0784 0.1432 0.1440 0.1681
Offline Alioth 0.1376 1.5446 0.0883 0.7635 0.295 0.3713 0.226 0.2512 0.4597
Online Alioth 0.1047 0.0839 0.0650 0.1628 0.2373 0.0487 0.0782 0.0847 0.1082

applications and identifying unknown applications. Then we
evaluate the estimation accuracy by comparing against two
representative baseline methods [5], [24] and two basic ML
methods. Thirdly, we show the robustness of Alioth on 0/1
QoS violation of applications under dynamicity. Finally, we
discuss the interpretability of Alioth, using a case study to
illustrate that Alioth can provide more information to improve
the management of cloud systems.

A. Offline Performance of Performance Estimator

We first compare our model with two representative base-
lines on the offline performance.
Practical Method [5] is the first to introduce ML method
to this domain. It uses CfsSubset in Weka to select features
and bagged REPTree to predict application performance. We
re-implement it using SelectKBest based on F-value in scikit-
learn to select features and bagged decision tree to predict
since they have similar performance.
Monitorless [24] originally predicts the resource saturation,
but it can also be used to predict the QoS degradation with
modification. Monitorless adds binary and time-dependent
features as feature engineering. It transforms the bytes-values
metrics to a logarithmic scale and combines features using
multiplication. Random forest is used to select the most
relevant features and do the prediction. We follow its original
methodology except for data labeling.

Figure 6 compares Alioth with these two representative
baseline and two basic ML methods (CART [39] and XGBoost
[38]) on all target applications. Alioth outperforms the others,
providing the most accurate predictions. Moniterless requires
operations to filter and integrate features, while Alioth not
only requires no additional operations but also has higher

accuracy. The comparison between Alioth and XGBoost shows
DAE’s effectiveness in reducing noise and extracting features.
It is worth mentioning that Alioth has low makespan and
high efficiency. Each training epoch takes an average of 0.45
seconds, and Alioth can converge with less than 200 epochs.
The average time of giving inference for a test sample is
1.0048ms on GPU.

B. Online Performance of Performance Estimator
What is more important is how these methods perform

on unseen and differently distributed data w.r.t. the training
data. A key problem is that the real online data is unlabelled,
which prevents evaluation. Therefore, we use the experimental
scheme described in Sec IV-B 2) to evaluate the online
performance. We exclude the application X in the training set,
and make the testing set only includes data of X . For online
Alioth, the testing set acts as the unlabelled target domain data
to perform adversarial training.

Table III shows the result of the methods mentioned above.
There are two performance baselines, the first is the first
row in the table which is performance of Alioth when the
training and testing sets are homogeneous (i.e. offline stage
performance shown in Fig. 6). This baseline is used to see how
bad the methods deteriorate compared with the offline stage.
The second baseline is “Oracle DAE”, which means to directly
use the ground truth feature vectors under no interference
rather than predictions of DAE as the input of XGBoost. This
baseline can reflect how much effective the designed DADAE
is on improving the generalization ability. As the best results
are emphasized with bold texts, we can see that Online Alioth
achieves most of the best performance and ranks top in terms
of average MAE. Online Alioth is also close to “Oracle DAE”,
which demonstrate the effectiveness of DADAE.



C. Robustness Analysis

In real-world scenarios, the criteria for QoS violation are
dynamic. Methods like [24] preset a degradation threshold and
predict whether an application degrades no longer work when
the criteria change dynamically. By taking QoS deterioration
ratio as a prediction target, Alioth can dynamically determine
application states based on varying thresholds.

We set 6 degradation thresholds, from 5% to 20% with
intervals of 5%, and examine Alioth’s average performance
in identifying 0/1 QoS violation for all applications. Figure 7
shows that Alioth exhibits considerable and robust predictive
performance for any degradation threshold. This indicates that
Alioth’s ability to signal 0/1 QoS violation is not affected by
the violation criteria.

Fig. 7: Results of sensitivity analysis. Four typical evaluation metrics
of binary classification are considered, and all of their values have
very small volatility. The maximum volatility is 0.07, and the
minimum is 0.01.

D. Interpretability Analysis

In this part, we use a case study to show how Alioth
provides result interpretability with the SHAP explainer.
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Fig. 8: Correlations between 20 top-correlated features and SoI. The
feature names are replaced with column numbers in Alioth-dataset
due to space limit.

As mentioned in Sec. IV-C 2), we first identify the most
relevant low-level metrics with respect to interference inten-
sity levels. Figure 8 shows the heat map of the correlation
coefficient matrix between the four resources of LLC, MBW,
NBW, DBW, and the 20 metrics most relevant to them. Due
to space limits, we have to replace these long feature names
with their corresponding column numbers in Alioth-dataset.
For example, the feature most relevant to DBW is No.194
bread S, which describes the total block reads on the host
and complies with intuition.

We then take RabbitMQ as an example to demonstrate how
to use Alioth to perform attribution analysis. For a testing
sample, if Alioth estimates that there is a QoS violation
(violation threshold set at 5%), we calculate a 1×4 vector
c. Each value of the vector corresponds to the contribution
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Fig. 9: Results of attribution analysis. (a) shows the contribution of
SoI for one test sample. (b) presents the accuracy for 5 applications.

of LLC, MBW, NBW, and DBW to the estimated result. The
resource with the highest value c̃i can be seen as the major
reason for QoS violation. For example, if Alioth estimates
D̂v,t =0.1008, with the contribution of each SoI shown on
the left of Figure 9a, we can infer that MBW is the main SoI.

We further use the interference type information in Alioth-
dataset to examine the accuracy of this attribution analysis
procedure. The top-1 accuracy results of the attribution analy-
sis for several applications are shown in Figure 9b. The mean
accuracy is 0.62, which indicates that Alioth can help cloud
platform operators identify the main sources of interference
for application performance degradation and provide evidence
to support subsequent scheduling operations.

VI. CONCLUSIONS

To conclude, in this paper, we propose Alioth, a novel ML
based framework as an interference-aware performance moni-
tor of multi-tenant applications in public clouds. Alioth relies
solely on low-level metrics that can be easily acquired, and
well suits various workload intensity and interference types.
To satisfy the data needs of ML methods, we first elaborate
interference generators and conduct a set of comprehensive
co-location experiments to make Alioth-dataset that reflects
the real-world public clouds. Then we design the framework
of Alioth with techniques like DAE and DANN to balance
model accuracy and generalization. We further enhance the
model interpretability and automate feature selection via de-
vising a SHAP based explainer. Our comparative experimental
results demonstrate the effectiveness of Alioth, outperforming
baseline methods on estimating precision. Finally, we present
how to perform attribution analysis with Alioth’s explainable
results to provide more insights for cloud system operators.

There are several issues remaining for future work, includ-
ing but not limited to: the influence of CPU overcommitting,
other categories and QoS metrics of cloud services, scheduling
algorithms based on Alioth’s results, identifying the inter-
ference intensity generated by the applications, etc.. We are
also about to deploy our framework in production clusters of
Alibaba Cloud to examine Alioth with real-world data.
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[33] M. Aleksiński, “intel-cmt-cat: User space software for intel(r) resource
director technology,” https://github.com/intel/intel-cmt-cat, 2021.

[34] E. . L. B. N. Laboratory. (2020) Iperf3. https://iperf.fr/.
[35] J. Axboe, “Fio-flexible io tester,” https://github.com/axboe/fio, 2014.
[36] Q. Chen, S. Xue, S. Zhao, S. Chen, Y. Wu, Y. Xu, Z. Song, T. Ma,

Y. Yang, and M. Guo, “Alita: comprehensive performance isolation
through bias resource management for public clouds,” in IEEE/ACM
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020, p. 32.

[37] L. Xu and M. I. Jordan, “On convergence properties of the EM algorithm
for gaussian mixtures,” Neural Comput., vol. 8, no. 1, pp. 129–151, 1996.

[38] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2016, pp. 785–794.

[39] M. A. Razi and K. Athappilly, “A comparative predictive analysis
of neural networks (nns), nonlinear regression and classification and
regression tree (CART) models,” Expert Syst. Appl., vol. 29, no. 1, pp.
65–74, 2005.


	Introduction
	Related Works
	Non-ML Methods
	ML Methods

	Modeling, Data, and Observations
	Modeling
	Building Alioth-Dataset
	Key Data Observations

	Methodology of Alioth
	Design Overview
	ML Based Models
	Denoising Auto-Encoder: 
	Domain Adaptation DAE
	XGBoost
	SHAP

	Feature Selection and Model Interpretability
	Feature Selection
	Model Interpretability


	Evaluation of Alioth
	Offline Performance of Performance Estimator
	Online Performance of Performance Estimator
	Robustness Analysis
	Interpretability Analysis

	Conclusions
	References

