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Abstract—In recent years, the training requirements of many
state-of-the-art Deep Learning (DL) models have scaled beyond
the compute and memory capabilities of a single processor,
and necessitated distribution among processors. Training such
massive models necessitates advanced parallelism strategies [1],
[2] to maintain efficiency. However, such distributed DL par-
allelism strategies require a varied mixture of collective and
point-to-point communication operations across a broad range
of message sizes and scales. Examples of models using advanced
parallelism strategies include Deep Learning Recommendation
Models (DLRM) [3] and Mixture-of-Experts (MoE) [4], [S].
Communication libraries’ performance varies wildly across dif-
ferent communication operations, scales, and message sizes. We
propose MCR-DL: an extensible DL communication framework
that supports all point-to-point and collective operations while
enabling users to dynamically mix-and-match communication
backends for a given operation without deadlocks. MCR-DL also
comes packaged with a tuning suite for dynamically selecting
the best communication backend for a given input tensor. We
select DeepSpeed-MoE and DLRM as candidate DL models and
demonstrate a 31% improvement in DS-MoE throughput on 256
V100 GPUs on the Lassen HPC system. Further, we achieve a
20% throughput improvement in a dense Megatron-DeepSpeed
model and a 25% throughput improvement in DLRM on 32 A100
GPUs with the Theta-GPU HPC system.

Index Terms—Neural Networks, DNN, MPI, GPU

I. INTRODUCTION

Distributed DL has become the standard training method
for many state-of-the-art vision [6], language [7], [8], and
recommendation [9] DL models. As the largest models grow
from hundreds of millions [10] to hundreds of billions of
parameters [7], new parallelization schemes have arisen to
efficiently train DL models across thousands of processors
(L], (L, [12]]. While previous data-parallel DL models could
heavily rely on a few collective operations (namely Allreduce),
the model-parallel schemes of new models (e.g. sharding,
pipeline and model parallelism, tensor slicing, etc) require a
mixture of different collective and point-to-point operations
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(3], [13], [L1]. These advanced parallelization schemes rely
heavily upon communication backends such as the NVIDIA
Collectives Communication Library NCCL [14]] and CUDA-
Aware MPI libraries [15]], [16]. However, modern communica-
tion backends have wildly varied performance characteristics
across operations, within operations, and across releases (See
Section for a concrete example).

A. Problem Statement

There are two primary drawbacks to existing distributed
DL frameworks’ communication: a lack of completeness in
support for all communication operations/backends, and a
lack of support for mixed-backend communication. Since
modern distributed DL frameworks such as Horovod and
PyTorch’s Distributed module do not support all MPI or NCCL
operations (e.g. vectored collectives such as Gatherv), DL
researchers are required to either: (Option 1): implement
their desired collectives via Point-to-Point operations (if point-
to-point operations are supported in the chosen framework),
or (Option 2): transfer tensors between the distributed DL
framework and an external MPI Python wrapper such as
mpidpy [L7]. Option 1 sacrifices the performance enhance-
ments present in NCCL and most CUDA-Aware libraries,
while option 2 introduces significant program complexity. For
the second drawback, a lack of mixed-backend communication
forces the user to decide where to sacrifice performance, since
no communication backend performs all operations optimally
(see Section E] for a concrete example). These drawbacks
bottleneck programmer productivity (e.g. a DL scientist must
first implement an MPI_Igather before the intended optimiza-
tion) and performance (e.g. NCCL performs well for Allreduce
and MPI performs well for Alltoall. Which backend does one
choose?), respectively.

B. Proposed Solution

We believe that a single unified interface between a given
DL framework and the desired communication backend(s)
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Fig. 1. Computation vs. Communication and breakdown of Communication operations breakdown for ResNet-50 (64 V100 GPUs on Lassen), DS-MoE (64

V100 GPUs on Lassen), and DLRM (32 A100 GPUs on Theta-GPU)

(MPI, NCCL, etc) will alleviate these performance and pro-
ductivity bottlenecks, while introducing the possibility of
mixed backend communication (e.g. MPI Alltoall and NCCL
Allreduce).

In this paper, we introduce and evaluate a Mix-and-Match
Communication Runtime for Deep Learning (MCR-DL).
Specifically, MCR-DL is a lightweight unified interface be-
tween the DL framework (PyTorch) and any combination of
ABI—compatibleF_-] communication backends. MCR-DL users
can dynamically switch between communication backends
during distributed DL training. MCR-DL supports many ex-
isting communication backends (by implementing them as a
high-level backend class), and provides an extensible design
to enable new communication backends and performance
optimizations.

C. Motivation

First, we profiled the computation and communication
overhead of three representative DL models: DLRM and
DeepSpeed-MoE (state-of-the-art hybrid-parallel DL models),
and ResNet-50 (established data-parallel DL model). The
overall computation vs. communication split as well as com-
munication breakdown profiles are depicted in Figure [1| First,
we note that data-parallelism is strongly compute-dominated,
and its communication overhead is almost entirely made up of
Allreduce. Therefore, data-parallel applications like ResNet-50
are able to achieve the best performance on existing monolithic
distributed DL frameworks, and the choice of communication
backend is simply determined by whichever library has the
fastest CUDA-Aware Allreduce. We note that MCR-DL is
still applicable to data-parallel frameworks with tuning (See
Section [V-F and Table [[I] for details), but due to their much
lower communication overhead, the benefits are marginal.

However, DLRM and DS-MoE have a significantly higher
communication overhead at scale. Further, their communi-
cation operation requirements are heterogeneous. Therefore,
there is a lot of room for mixing backends according to their
strengths in order to improve training throughput.

'An Application Binary Interface (ABI), is the low-level interface between
two program modules. An ABI determines such details as how functions
are called and the size, layout, and alignment of datatypes. With ABI-
compatibility, programs conform to the same set of runtime conventions.

Consider the case of DS-MoE. Given the communication
breakdown in Figure and the collective performance in
Figure |2| which communication backend should be used? A
myriad of application questions would need to be answered
such as which collectives DS-MoE uses, their relative frequen-
cies, and the range of message sizes for each collective. Any
decision on a single communication backend will lose out on
some collectives and at some message ranges. Specifically,
since DS-MoE relies mostly on Allreduce and Alltoall, we
could refer to Figure [2| and reduce communication overhead by
applying MVAPICH2-GDR for Alltoall and NCCL for Allre-
duce. However, such a decision will need to be reevaluated at
each subsequent release cycle of the communication backends.
If the user is able to dynamically switch among communica-
tion backends, they could squeeze more performance out of
their application while reducing the setup cost of changing
communication backends if future communication backend
releases change.

D. Contributions

Our contributions are as follows:

C1) We proposed, designed, and evaluated MCR-DL: an
extensible, scalable API for DL communication opera-
tions. MCR-DL supports all point-to-point and collective
communication operations on PyTorch tensors, and all
collective communication libraries (Section

C2) We enabled deadlock-free mixed-backend DL communi-
cation via fine-grained synchronization techniques (Sec-
tion

C3) We fully implemented MCR-DL in a C++ backbone

underneath a thin Python layer, and achieved a maximum

of 5% overhead (compared to a pure micro-benchmark
written in C) for small messages and a 1% overhead
for large messages (down from 18% and 4% in PyTorch

distributed, respectively) (Figure [7)

MCR-DL offers up to 31% throughput improvement

(12% in scaling efficiency) in DeepSpeed-MoE and 25%

throughput improvement (14% improvement in scaling

efficiency) in DLRM by dynamically selecting the best-
performing communication backend at each scale and

message size (Figures [8] and [9)

C4)
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Fig. 2. Comparison of communication backends’ collective performance on basic micro-benchmark with 64 V100 GPUs on Lassen

. Features
Studies
Point-to-Point | Collectives | Vector Collectives | Non-Blocking Operations | Mixed-Backend Communication | Backend as a Class

Horovod X v X NCCL Only Experimental X
PyTorch Distributed Module v v X NCCL Only X v
LBANN v v X v X X
mpidpy[17] v v v v X X
Proposed MCR-DL v v v v v (4

TABLE I
FEATURES OFFERED BY MCR-DL COMPARED TO EXISTING FRAMEWORKS

C5) Define and implement a tuning framework within MCR-
DL that enables the best communication backend to be
automatically selected for each communication operation
(Section

C6) Demonstrate the extensibility of MCR-DL by adding
support for communication compression, logging, and
tensor fusion (Section

II. RELATED WORK

A. DL Communication Framework Design

DeepSpeed [[12] uses PyTorch’s distributed module [18]] to
implement optimized DL communication at extreme scales.
Recently, DeepSpeed has added support for Mixture-of-
Experts (MoE) DL models [5], [4]. Horovod [[19] is a data-
parallel focused framework that experimentally supports mixed
communications without deadlock-avoidance support. The
Livermore Big Artificial Neural Network Toolkit (LBANN)
is an HPC-centric distributed DL framework that supports
multiple parallelism levels. The MPI for Python package [17]]
supplies Python bindings for the MPI standard. Our work
competes with these works by seeking to unify communication
calls into a single interface built atop PyTorch.

B. Mixing MPI with an External Framework

The work in [20] combined an MPI runtime with UPC
in a deadlock-free architecture by unifying the runtimes. The
resulting runtime shared resources between MPI and UPC to
avoid data-dependencies. In recent releases, the MVAPICH2-
GDR [16] CUDA-Aware MPI library has added support for
NCCL collectives. However, this support is not optimized for
non-blocking communication operations like those required
by DLRM. Aluminum [21] is a DL-focused communication

library built on MPI and NCCL, but is focused on latency-
bound communication operations. Our work is complementary
to the above works, since we choose the best backend for each
communication operation.

C. Scaling Mixture-of-Experts and DLRM Models

The work in [[13]] scaled a 600 billion parameter Mixture-of-
Experts (MoE) model to 2048 TPU v3 processors. DeepSpeed
has recently added support for MoE DL models [4] and scaled
beyond a trillion parameters [S]. MoE models are gradually
being applied to other domains such as vision [22]. DLRM
[3]] has scaled beyond a trillion parameters with 4D parallelism
techniques [9]]. We demonstrate that our work further improves
the scaling behavior of these complex parallel DL models.

III. BACKGROUND

A. DL Training

Distributed DL can take several forms: data-parallelism,
model-parallelism, and hybrid-parallelism. Data-parallism
places a full model replica on each processor, and splits
the training data among processors. Model parallelism splits
the model across processors, and propagates each data sam-
ple through each device. Hybrid-parallelism splits the model
across sets of processors, and splits the training data among
complete-model sets of processors. There are tradeoffs for
each parallelism scheme: data-parallelism is the simplest and
has low communication overhead but is restricted to models
that fit in processor memory. Hybrid and model-parallelism
can accommodate any model size, but can require com-
plex communication with high overheads. All distributed DL
schemes are increasingly deployed on HPC systems [23]], [7].



B. Distributed DL Frameworks

Horovod is a distributed DL framework with a focus on
distributed data-parallelism to train DNNs [19]. As such,
Horovod primarily relies on Allreduce and Bcast collectives.
Due to Horovod’s focus, they provide a simple API, quick
installations, and powerful data-parallel optimizations and
profiling tools. Horovod supports many major DL frameworks
and communication backends, including MPI and NCCL [14]].

PyTorch’s distributed module is a built-in communication
API within the PyTorch [24] DL framework. PyTorch dis-
tributed supports most communication operations, and con-
tains several optimizations for distributed training (e.g. mixed-
precision, gradient bucketing, sharded optimizer states). While
official PyTorch wheels come packaged with the NCCL back-
end, other backends require a PyTorch source installation.

DeepSpeed is a distributed DL framework built atop Py-
Torch’s distributed module. DeepSpeed’s focus is on efficient
training of large-scale models that don’t fit into a single
processor’s memory. A myriad of parallelism schemes and
optimizer sharding techniques are included in DeepSpeed.

C. Communication Backends

MPI is a parallel programming standard that enables pro-
cesses to communicate with each other. CUDA-aware MPI
libraries such as SpectrumMPI [25], OpenMPI [15], and
MVAPICH2 [16] provide optimized support for heteroge-
neous systems containing GPUs. GPU communication opti-
mizations such as staging, CUDA Inter-Process Communica-
tion (IPC), and GPUDirect RDMA enable MPI libraries to
provide superior performance across different combinations of
GPU and interconnect [26].

NCCL implements optimized collective communication
patterns for NVIDIA GPUs [14]. The various collective
communication primitives found in NCCL are: Allgather,
Allreduce, Reduce, ReduceScatter, Alltoall, Point-to-Point,
and Broadcast. NCCL is not MPI-compliant, however, and
does not provide support for many common MPI operations
such as gather, scatter, and variable message-size collectives.
Microsoft’s Synthesized Collective Communication Library
(MSCCL) [27] creates custom collective algorithms for a given
hardware topology. MSCCL supports both AMD and NVIDIA
GPUs, and supports all major collective operations.

D. Mixture-of-Experts

Mixture-of-experts (MoE) is an ensemble machine learn-
ing technique where a collection of “expert” feed-forward
networks (FFNs) are trained on subtasks of the problem.
Only a few experts are applied to a given data sample. In
recent years, the MoE technique has been applied to trans-
former DL models in an effort to increase the model size
(and therefore accuracy) while lessening the computational
burden. MoE models require less computation to train than
equivalent standard (i.e. dense”) models because each token
only propagates through an expert subset of the full model.
Incoming tokens are routed to existing expert FFNs via a
gating function, and this routing as well as its subsequent

combination of FFN outputs require Alltoall operations. Such
Alltoall operations scale with the number of devices, and
quickly become a dominant communication overhead at large
scales. The distributed DL frameworks DeepSpeed [, [4]] and
Fairseq [28]] have recently added support for MoE transformer
models.

E. Deep Learning Recommendation Models

Deep Learning Recommendation Models (DLRMs) are a
family of recommendation models that rely upon at least
one deep neural network (DNN) [3], [9]. Such models are
composed of sparse embedding tables and dense multilayer
perceptrons (MLPs). Note that a MLP is a special case of
an FFN where every layer is fully connected to the next
layer in the network. While sparse categorical data must be
processed via embedding lookups (and are memory-bound),
dense continuous data is fed through the bottom MLPs (and are
compute-bound). The MLPs are trained via data-parallelism,
and hence depend on Allreduce. The embedding tables are
split across processes, and must be shuffled with an Alltoall
prior to being fed into the top MLP. Each batch’s Alltoall
operation is overlapped with the previous top MLP’s forward
pass from the previous batch, which necessitates non-blocking
Alltoall.

IV. CHALLENGES

The key challenge addressed in this paper is: Can we
improve the interface between a DL framework and communi-
cation backends with a single unified framework built on top
of PyTorch?. We seek to create an extensible framework that
encapsulates all MPI and NCCL functionality. To answer this
broad question, we solve the following concrete challenges:

o What are the key communication needs of modern dis-
tributed DL models and frameworks? Do existing dis-
tributed DL frameworks provide these needs?

o Can a unified framework improve rapid prototyping for
DL parallelism schemes while enabling mixed-backend
communications?

« What benefits can mixed-backend communications pro-
vide to improve DL training throughput?

V. DESIGN

MCR-DL is split into a C++ implementation layer under-
neath a thin Python wrapper. Each backend is implemented
as an object of a class, and implements the MCR-DL API in
accordance with each backend’s requirements.

A. MCR-DL API

MCR-DL implements all communication operations as de-
picted below in Listing

1 def
2 def
3 def
4 def
5 def
6 def

def

get_backends ()

init (list<str> backends)

finalize (list<str> backends)

synchronize (list<str> backends)

get_size (str backend)

get_rank (str backend)

send (str backend, torch.Tensor t, int rank,
bool async_op)
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def

def

def

def

> def

3 def

v def

def

def

def

def

def

def

def

recv (str backend, torch.Tensor t, int rank,

bool async_op)

all to_all _single(str backend, torch.Tensor

output, torch.Tensor input, bool async_op)

all_to_all(str backend, list<torch.Tensor>

output, list<torch.Tensor> input, bool async_op
)

all_reduce (str backend, torch.Tensor output,

ReduceOp op, bool async_op)

all gather (str backend, torch.Tensor output,

torch.Tensor input, bool async_op)

gather (str backend, torch.Tensor output, int
root, bool async_op)

scatter (str backend, torch.Tensor output, int
root, bool async_op)

reduce (str backend, torch.Tensor output, int
root, ReduceOp op, bool async_op)

reduce_scatter (str backend, torch.Tensor output
, int root, ReduceOp op, bool async_op)

bcast (str backend, torch.Tensor output, int
root, bool async_op)

gatherv (str backend, torch.Tensor output, int
root, list<int> rcounts, list<int> displs, bool
async_op)

scatterv(str backend, torch.Tensor output, int
root, list<int> scounts, list<int> displs, bool
async_op)

all _to_allv(str backend, torch.Tensor output,
torch.Tensor input, list<int> scounts, list<int
> rcounts, list<int> def sdispls, list<int>
rdispls, bool async_op)

all_gatherv (str backend, torch.Tensor output,
int root, list<int> rcounts, list<int> displs,

bool async_op)

Listing 1. High-level MCR-DL API

# Before MCR-DL

def

allgather_host (self,
comm,
cupy_sign,
cupy_rbuf_sign,
cupy_scale,
cupy_rbuf_scale) :

# 1. Convert cupy to numpy
numpy_rbuf_sign = np.zeros (
[comm.Get_size (),
cupy_sign.size],
dtype=cupy_sign.dtype)
numpy_rbuf_scale = np.zeros ([comm.Get_size(),
11,
dtype=
cupy_scale.dtype)

numpy_sign = cupy.asnumpy (cupy_sign)
numpy_rbuf_sign = cupy.asnumpy (cupy_rbuf_sign)
numpy_scale = cupy.asnumpy (cupy_scale)
numpy_rbuf_scale = cupy.asnumpy (cupy_rbuf_scale

)

cupy.cuda.get_current_stream() .synchronize ()

# 2. Communicate numpy buffers
comm.Allgather (numpy_sign, numpy_rbuf_sign)
comm.Allgather (numpy_scale, numpy_rbuf_scale)
comm.Barrier ()

# 3. Convert numpy back to cupy

cupy_sign = cupy.asarray (numpy_sign)
cupy_rbuf_sign = cupy.asarray (numpy_rbuf_sign)
cupy_scale = cupy.asarray (numpy_scale)
cupy_rbuf_scale = cupy.asarray (numpy_rbuf_scale

)

cupy.cuda.get_current_stream() .synchronize ()

39
40
41

14
45
46

48
49

50

return cupy_sign, cupy_rbuf_sign, cupy_scale,
cupy_rbuf_scale

# After MCR-DL

def allgather_host (self,
comm,
sign,
rbuf_sign,
scale,
rbuf_scale) :

comm.all gather_base (rbuf_sign, sign)
comm.all_gather_ base (rbuf_sign, sign)

return sign, rbuf_sign, scale, rbuf_scale

Listing 2. Example of simplified prototyping with MCR-DL

There are a few key takeaways from this API listing:

o All operations take either a single backend string that
matches an underlying backend class (e.g. “mv2-gdr”,
”nccl”, etc) or a special backend flag "auto”, which will
dynamically choose the best message size for a given
scale and message size if tuning tables are available.
(Note: MCR-DL comes packaged with a tuning suite
which first runs communication operation benchmarks for
each backend, and uses this data to map each message
size, scale, and operation to a given backend. This optimal
backend choice is then used at runtime if “auto” is
chosen)

e We conform to the PyTorch distributed module API
conventions when possible to ease code refactoring to
MCR-DL. An example of this is all_to_all, which shuffles
lists of tensors rather than individual tensor elements.
This is a common usecase in distributed PyTorch ap-
plications. Another example is all_to_all_single, which
directly shuffles the tensor elements themselves on each
rank.

e Vectored collectives (e.g. gatherv/scatterv) and non-
blocking collectives are supported for all backends.

B. Advanced Communication Support

Most distributed DL frameworks do not support the full

underlying communication backend, only the operations that
matter for DL parallelism (e.g. Allreduce). If a user needs a
communication operation that is not currently supported by
their distributed DL framework (e.g. advanced parallelism or
data processing), they would need to sacrifice performance or
productivity as mentioned in Section [[-C]

MCR-DL is a thin layer atop each currently-supported

backend, and fully implements each backend on PyTorch
tensors (See Figure |§| for the software stack). The MCR-DL
”Backend” class can be easily extended to new communication
backends such as MSCCL [27]], Gloo, oneAPI, etc.

C. Synchronization

One of the most important design considerations for a

distributed framework is synchronization. We seek to add
enough synchronization to rid the programmer of having to
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Fig. 3. The MCR-DL Software Stack. MCR-DL is a thin layer between
a target DL framework and the HPC system, and supports any number of
stream-aware communication backends along with CUDA-Aware MPI.

frequently debug deadlocks and data validation issues, while
achieving enough overlap to maintain high performance at
scale. With the right synchronization strategy, we are able to
efficiently both overlap computation with communication, and
overlap across communication backends without deadlocks or
data validation issues.

I import torch
> import mer_dl

v def tensor():

5 return torch.rand(1,1)
6

7 X = tensor () .cuda()

8§ y = tensor () .cuda()

o mer_dl.init ('nccl')

this scheme in Listing [3] a prototypical example of available
communication/computation overlap faced in distributed DL.
The resulting serial execution is depicted in Figure
In MCR-DL, we exploit communication/computation overlap
by creating a pool of communication streams for each
backend. These streams are managed internally to MCR-DL.
Communication operations posted to a backend’s stream(s) are
synchronized with fine-grained CUDA events. For figure 4(b)l
this translates to: (1): An all_reduce(x) operation is posted to a
NCCL communication stream in MCR-DL, and a distributed
work handle is stored in %, (2): MCR-DL records a CUDA
event e onto the communication stream and begins executing
the all_reduce(x), (3): the PyTorch default stream is able to
progress with operations unrelated to x, (4): when a data-
dependency on x is encountered, the user must call waif() on
the work handle #, which MCR-DL uses internally to wait on
the prior event e.

This scheme is similar to PyTorch’s distributed module, but
there are a few key implementation details that enable greater
performance: (1): The use of multiple streams enables con-
current small-message operations (concurrent large-message
operations are bandwidth-bound and show no benefit), (2):
Instead of having an overall communication stream, each back-
end contains its own stream for overlap across backends. This
synchronization behavior is extended to multiple backends in
MCR-DL, which we will now discuss.

D. Mixed-Backend Communications

Since MCR-DL is a thin layer atop communication back-
ends, we can pass the desired backend for any given com-
munication operation dynamically within a Python script. An
example of this is depicted below in Listing [4]

| import torch
> import mer_dl

1 h = mer_dl.all_reduce('nccl', x, async_op=True)
ny=y-+ty
13 h.wait ('nccl'")
14 result = x + vy
Listing 3. Example of available overlap between communication and °

computation in a DL setting

CPU Thread CPU Thread
rea Time Time

PyTorch Default Stream (s,) 1

x = tensor().cuda()
y = tensor().cuda()

h = all_reduce(‘nccl’, x
async_op)

NCCL Comms Stream (Syecy) PyTorch Default Stream (s,)

x = tensor().cuda()
y = tensor().cuda()

| 1
1 I
1 1
v v

EventRecord(e, Swc)

h = all_reduce(‘nccl’, x,
async_op)

cudaStreamSynchronize(s,) /

|

h.wait()

Eventhait (Syc,€)

y=y+y

result = x + y

(a) Naive synchronization (b) Synchronization in MCR-DL

Fig. 4. Synchronization diagrams of Listing [3] for the naive scheme and
MCR-DL’s fine-grained CUDA event scheme

First consider a naive synchronization scheme where a) all
communication operations are posted to the PyTorch default
stream, and b) we synchronize operations with cudaStream-
Synchronize on that stream. We demonstrate the behavior of

. def tensor():

5 return torch.rand(1,1)

6
7 X = tensor () .cuda()

§ y = tensor () .cuda()

o z = tensor () .cuda()

0o mer_dl.init(['nccl', 'mpi'l])

2 hl = mer_dl.all_reduce('nccl', x, async_op=True)
3 h2 = mer_dl.all_reduce('mpi', y, async_op=True)
1 2 = Z2 + z
5 hl.wait ()

16 h2.wait ()

result = x +y + z

Listing 4. Example of explicit mixed-backend communications in MCR-
DL. All inter-backend synchronization is performed internally. MCR-DL can
dynamically choose the best backend to use at runtime if ’auto’ is passed as
the backend (See Section [V-F)

However, each communication backend conforms to its own
synchronization scheme. NCCL and its derivatives are syn-
chronized on the CUDA streams, while MPI is synchronized
on a host thread. If we are to mix backends without deadlocks,

2The length of operation boxes in Figures is purely for synchronization
discussion
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y = tensor().cuda()
Z = tensor().cuda()
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/ H MPI_Wait()

Fig. 5. In MCR-DL, communication backends can be explicitly chosen, or
users can dynamically choose the best backend for a given operation with
“auto”

we will need to loop over each implemented backend and syn-
chronize with their respective thread/stream. For the mixture of
CUDA-Aware MPI and non-blocking NCCL, for example, this
entails a call to CUDA-event based synchronization for NCCL
(as discussed in section [V-C), followed by an MPI Wait for
MPI. Handling CUDA-aware MPI is a challenge since CUDA
streams are not exposed by MPI to the application, this leads
to two options (which MCR-DL provide at the initialization
of an MPI backend): (1): Allow MPI to handle all streams,
which sacrifices some MCR-DL overlap across backends, but
preserves multiple CUDA stream logic (if it exists) within
MPI. (2): Intercept calls to cudaStreamCreate and manage
streams in MCR-DL, which exploits overlap across backends,
but could potentially lead to deadlocks if multi-stream logic
is used in MP]EI An example of streams managed by MCR-
DL is depicted by Figure [5] For ease of synchronization,
every work handle’s wait() call waits on the PyTorch default
stream (i.e. synchronization purely between communication
streams is not supported). We note that stream-aware MPI like
the implemention by MPICH [29] allows MCR-DL to fully
overlap communication backends by self-managing streams.

While Figure [5] depicts the mixture of a stream-aware
backend (NCCL) and a backend without streams exposed to
the user (MPI), the combination of any number of stream-
aware backends (NCCL, SCCL, etc) is supported in MCR-DL
and synchronized with CUDA events. Further, the combination
of ABI-compatible MPI backends is supporte(ﬂ In our exper-
iments, the initialization overhead for multiple communication
libraries is negligible after being amortized over a few (< 10)
DL training steps.

E. Communication Optimization Extensibility

In PyTorch’s distributed module and Horovod, there are a
number of commmunication optimizations (e.g. Tensor Fusion,

3In our experiments, we find that the best choice for this option is dependent
on the MPI library

4In our experiments, we found that mixing at most one non-stream-aware
backend is optimal for overlap

Padding, etc) built atop the communication layer to improve
performance. Similarly, by encapsulating all communication
operations into MCR-DL, these optimizations can be easily in-
tegrated into all communication operations and backends. One
can utilize the rich Python ecosystem to insert optimizations
into MCR-DL’s Python layer as depicted in Figure[§] As exam-
ples, we have implemented lossy communication compression
with zfp [30], Tensor Fusion (combining small tensors into a
bandwidth-optimal large tensor), and communication logging
(which is used to generate Figures [I] and [12). Further, future
optimizations (e.g. persistent collectives) can be easily added
with minimal changes among backends and operations. These
optimizations can be applied to incoming messages with only
a few lines of Python code before routing the operation to its
respective C++ backend.

There are two parameters for Tensor Fusion: the maximum
fusion buffer size B and the maximum time 7T to wait
for that fusion buffer to fill with small tensors. MCR-DL
introduces a small optimization for Tensor Fusion, where if
the Fusion buffer does not reach B before T' (and therefore
does not saturate bandwidth), the communication is overlapped
with other backends’ Fusion buffers, if available. This Tensor
Fusion optimization is used in all DL training results in Section

VI

[ PyTorch ]
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+
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Logging Engine
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Allreduce[‘nccl”] Alltoall[“openmpi”] Send/Recv[“auto”]
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Fig. 6. In MCR-DL, communication backends can be explicitly chosen, or
users can dynamically choose the best backend for a given operation with the
”auto” backend option. Further, MCR-DL routes all communication operations
through an optional set of optimizations, including Tensor Fusion (combining
small tensors into a bandwidth-optimal large tensor), message compression,
and logging.

F. Communication Tuning

Tuning is an established problem in distributed communica-
tion [31], [32]], [33]. MCR-DL comes packaged with a tuning
suite that seeks to map an input communication operation
(with associated message size) to the best-performing backend
(e.g. all_reduce — NCCL). This introduces additional com-
plication since not only are distinct communication operations
mixed-backend (e.g. all_reduce and gather), but MCR-DL
allows a single operation to choose the best backend with
the “auto” backend option (e.g. mcr_dl.gather(”auto”) routes
{small-message gather} — MPI, and {large-message gather}
— NCCL). This behavior is depicted in Figure [6] where solid
lines depict the backend chosen for a given operation.

This tuning is implemented as a static tuning table. The
tuning suite is composed of a set of micro-benchmark scripts



Message Size | Backend
256 MVAPICH2-GDR
512 MVAPICH2-GDR
1024 MVAPICH2-GDR
2048 MVAPICH2-GDR
4096 NCCL
8192 NCCL
16384 SCCL
32768 SCCL

TABLE II

EXAMPLE TUNING TABLE FOR THE ALL_GATHER COLLECTIVE OPERATION
AT A SINGLE WORLD SIZE GENERATED BY MCR-DL

that evaluate end-to-end time on a set of overlapped com-
munication operations for each backend. By choosing the
backend with the minimum end-to-end time for each input
tensor size, MCR-DL generates a table like Table [II| for each
world size (i.e. the number of GPUs) trained over. Every
collective requires its own static tuning table. The size of each
collective’s tuning table is dependent both on the number of
specific message sizes we wish to tune for, as well as the
number of scales (world size) we are tuning over. Specifically,
a given table entry is first mapped by the world size, then
by the message size. Therefore, the total number of tuning
table entries is given by: (Num_Collectives X Num_Scales x
Num_Message_Sizes). Since the performance of each com-
munication backend depends heavily on the combination of
inter-node fabric, intra-node fabric, and compute hardware
used, tuning tables are not transferable across HPC systems.
However, we find that general trends tend to hold across
systems with a coarsely similar architecture (e.g. MVAPICH2-
GDR consistently performs the best for small messages).

VI. PERFORMANCE CHARACTERIZATION

1) Node Architecture

All experimental evaluationsﬂ were carried out on the
Lassen cluster at Lawrence Livermore National Laboratory
and the ThetaGPU cluster at Argonne Leadership Computing
Facility [34]. Lassen is composed of 792 nodes each consisting
of four 16 GB NVIDIA V100 GPUs and two 44-core IBM
Power 9 CPUs. Nodes are connected via Mellanox Infiniband

5The choice of cluster for a given application was purely made out of
external factors such as available compute and ease of software compatibility
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Fig. 7. Overhead over OMB for MCR-DL and PyTorch Distributed for a

fixed backend on ThetaGPU (32 A100 GPUs). MCR-DL reduces overhead
by ensuring top-level Python logic is minimal.

EDR in a fat-tree topology. ThetaGPU is composed of 24
NVIDIA DGX A100 nodes, each containing two AMD Rome
CPUs and eight 40 GB NVIDIA A100 GPUs.

2) Communication Backends

We used a mixture of MVAPICH2-GDR 2.3.7 [16], Open-
MPI v5.1.0 [15] (built with UCX v1.13.1), the latest MSCCL
[27], and NCCL 2.14.3-1 [14] for all DL experiments. All
backends and frameworks were built with CUDA 11.4.152 on
ThetaGPU and CUDA 11.4.100 on Lassen.

3) Software Libraries

All micro-benchmark evaluations were carried out with
OSU Micro-Benchmarks (OMB) 6.1. For our DL evaluations,
we used source-built PyTorch v1.12.1 and DeepSpeed v0.7.4.

4) DL Training Settings

For both DS-MoE and DLRM, we had to replace all
dependencies on PyTorch’s distributed module with MCR-DL
calls. Since MCR-DL conforms to the PyTorch API wherever
possible, this step is a straightforward search-and-replace.

We trained a 4B parameter DS-MoE model (350M+PR-
MOoE-32/64) on the Pile [35]]. For more details on this model
and on DS-MOoE, see [3].

For DLRM, we trained 100 synthetic data batches of size
8k with bottom and top MLPs of size (512-512-64) and (1024-
1024-1024-1), respectively. The embedding table size used is
le6 X (num_ranks).

The dense Megatron-DeepSpeed model contained 6.7B pa-
rameters with a model-parallelism degree of 2 and ZeRO stage
2. It was also trained on the Pile [35]].

A. Micro-Benchmarks

Before proceeding to application-level performance evalu-
ations, we first created simple collective and point-to-point
benchmarks to ensure MCR-DL doesn’t introduce significant
performance overhead when compared to micro-benchmarks
implemented at the C-level, as investigated earlier with OMB.
As demonstrated in Figure [/, MCR-DL introduces an overhead
of around 5% for small MPI_Alltoall operations (under 4kB).
However, this overhead quickly reduces to 1% in the MB
message range, which is the message range expected for most
DL training applications [36]. PyTorch’s distributed module
built atop MVAPICH2-GDR, however, has a high overhead
(18%) for small messages, and converges to a higher overhead
(4%) in the MB message range. MCR-DL doesn’t introduce
significant overhead for communication operations.

In order to spare users the OMB evaluations like Figure
[2l we created a tuning suite to generate a static tuning
table for later use in applications. The tuning suite first runs
basic collective and point-to-point evaluations over a range of
message sizes, scales, and backends. Then, the tuning scripts
create a tuning table which maps a given message size and
number of processes to a given communication backend. The
tables for Lassen and ThetaGPU are used in subsequent DL
evaluations. This tuning table is used whenever the “auto”
backend is passed to a collective as described in Section
The difference between static-backend mixing and tuned



mixing is depicted in all DL training figures as MCR-DL and
MCR-DL-T, respectively.

B. DL Training

With the setup described above in through
we carried out DL training evaluations with MCR-DL on

the Lassen HPC system. Baseline experiments were carried
out with PyTorch’s distributed module built against a single
communication backend (e.g. “Baseline SCCL* is PyTorch
distributed built with the SCCL backend). Neither tensor
fusion nor compression from Section [V-E| were used in eval-
uationﬂ Further, to compare coarse-grained mix-and-match
(i.e. one backend per collective such as NCCL Allreduce and

SWhile we expect performance benefits from tensor fusion and compres-
sion, we wish to isolate the effect of mixing communication backends.

| [JBaseline NCCL E=Baseline MVAPICH2-GDR C—IJMCR-DL EZIMCR-DL-T =#=Speedup

16 32 64 128

#GPUs

1.4

13

Speedup

1.2

11

0 =
8

(a) DS-MoE Throughput

MPI Alltoall) against fine-grained mix-and-match (i.e. one
backend per (collective, message size) pair such as NCCL
Allreduce for 1IMB messages and MPI Allreduce for 512KB
messages. These two settings of MCR-DL are depicted in
Figures as MCR-DL and MCR-DL-T, respectively.
First, we run pre-training throughput experiments DS-MoE
for pure NCCL, pure MVAPICH2-GDR and mixed backends.
Results are depicted in[8(a)} At smaller scales, NCCL performs
better than MVAPICH2-GDR because Alltoall is not yet a
dominant factor in communication time. We see a crossover
threshold from Allreduce-bound to Alltoall-bound communi-
cation at around 32 GPUs, beyond which MVAPICH2-GDR’s
improved Alltoall starts to show benefits. The performance
difference between pure NCCL and pure MVAPICH2-GDR
is still small, however, because NCCL’s Allreduce collective

O Baseline NCCL = Baseline MVAPICH2-GDR T MCR-DL @ MCR-DL-T

TFLOPS per V100 GPU
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#GPUs

(b) DS-MoE Scaling Efficiency

Fig. 8. Throughput and scaling efficiency improvements for DS-MoE with pure MVAPICH2-GDR, pure NCCL, and mixed-backends with MCR-DL on

Lassen
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Fig. 9. Throughput and scaling efficiency improvements for DLRM with pure MVAPICH2-GDR, pure NCCL, and mixed-backends with MCR-DL on

ThetaGPU
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is more performant than MVAPICH2-GDR’s at this message
range.

MCR-DL is able to exploit MVAPICH2-GDR’s improved
Alltoall and NCCL’s improved Allreduce to perform best
at all scales without deadlocks. At 256 GPUs, we see a
31% improvement over pure MVAPICH2-GDR and a 35%
improvement over pure NCCL. Scaling efficiency [8(b)| is also
greatly improved with MCR-DL, maintaining a 81% efficiency
at 256 V100 GPUs.

Second, we have evaluated pure NCCL, pure MVAPICH2-
GDR and mixed backends on the ThetaGPU HPC system
for DLRM. Results are depicted in Figure 0(a)] NCCL again
beats MVAPICH2-GDR at small scales due to its improved
Allreduce. At higher scales, MVAPICH2-GDR again starts
to perform better due to Alltoall’s scaling, and MCR-DL is
able to use each backend’s strengths to improve performance,
achieving a 25% improvement over pure MVAPICH2-GDR
and a 30% improvement over pure NCCL. Scaling efficiency
is less that of DS-MoE, but still improved by MCR-DL,
maintaining a 75% efficiency at 32 A100 GPUs.

500

400
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100

Throughput (Samples/sec)

o

Horovod PyTorch MCR-DL

Distributed

mpidpy

Fig. 11. Comparison of MCR-DL against competing PyTorch-compatible
frameworks on a Mixture-of-Experts transformer using 256 Lassen V100
GPUs.

In order to directly compare the performance of MCR-DL
with all PyTorch—compatibl competing frameworks in Table
I-B] we swapped all communication operations in Megatron-
DeepSpeed with each respective framework’s implementation.
The results on 256 Lassen V100 GPUs is depicted in Figure
[I1] In order to compare each framework’s best performance,
MCR-DL, Horovod, and PyTorch-distributed were run with
tensor fusion enabled, which leads to the performance gap
between mpidpy and both Horovod and PyTorch-distributed.
MCR-DL performs the best due to its mixed-backend opti-
mizations coupled with tensor fusion.

For completeness, we have also trained a dense Megatron-
DeepSpeed model on the ThetaGPU cluster with a mixture
of MSCCL [27] and MVAPICH2-GDR [16]. As a secondary
result, we have taken the compute vs. communication break-
down for DS-MoE and DLRM when using MCR-DL at 256
Lassen V100 GPUs and 32 ThetaGPU A100 GPUs, respec-
tively. MCR-DL is an important component in reducing the
computation bottleneck at scale, demonstrating a 9% reduction

7LBANN does not provide any MoE implementation, and is not compatible
with any mainstream DL frameworks such as PyTorch

10

in communication time for DS-MoE and a 7% reduction in
communication time for DLRM.
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Fig. 12. Communication overhead reduction with MCR-DL at 256 Lassen
V100 GPUs (DS-MoE) and 32 ThetaGPU A100 GPUs (DLRM).

VII. DISCUSSION

The throughput and scaling efficiency improvements in
Figures [8] [0l and [I0] demonstrate that a mixed-backend DL
communication framework can significantly improve the per-
formance of emerging DL models by reducing the commu-
nication bottleneck. Further, it was confirmed that a C++
backbone underneath a thin Python layer ensures low-overhead
communication operations, which enables the exploration of
small-message latency-bound operations for emerging models.

These results are in agreement with the original observation
that modern communication backends vary widely in per-
formance characteristics across operations, within operations,
and across releases. By mix-and-matching backends for a
given operation (and within an operation), significant commu-
nication performance improvements were achieved. Further,
since our communication operations are implemented in low-
latency C++ code underneath a thin Python interface, we have
maintained low overhead while ensuring compatibility with
Python-based DL frameworks.

The performance improvements inherent in mixing commu-
nication backends are consistent with the findings of previous
NCCL and MPI studies [37]] and studies exploring the mixture
of MPI with external runtimes in [20].

VIII. CONCLUSION

State-of-the-art deep learning (DL) models are pushing the
boundaries of existing fields while pioneering entirely new
areas of study. However, such DL models are often impossible
or impractical to train on single processors or small-scale
workstations. Further work in novel parallelism schemes and
optimizations will require a robust and extensible interface
between DL frameworks and communication backends. In
this paper, we present and evaluate MCR-DL: a Mix-and-
Match Communication Runtime for DL. MCR-DL supports all
communication operations and backends, and enables mixed-
backend communication to ensure the most performant back-
end is being used for a given communication operation. The
proposed design is demonstrated on state-of-the-art DL models
such as DLRM [3]] and Mixture-of-Experts (MoE) [4], [S]]. We
report up to a 31% improvement in DeepSpeed-MoE through-
put on 256 V100 GPUs on the Lassen HPC system and a 25%
improvement in DLRM on 32 A100 GPUs on the Theta-GPU



HPC system. We believe that MCR-DL will pave the way

for

designing and implementing future DL communication

enhancements and distributed DL frameworks.
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