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Abstract—Clusters of Symmetric MultiProcessing (SMP) nodes
with multi-core Chip-Multiprocessors (CMP), also known as
SMP-CMP clusters, are becoming ubiquitous today. For Message
Passing interface (MPI) programs, such clusters have a multi-
layer hierarchical communication structure: the performance of
intra-node communication is usually higher than that of inter-
node communication; and the performance of intra-node com-
munication is not uniform with communications between cores
within a chip offering higher performance than communications
between cores in different chips. As a result, the mapping from
Message Passing Interface (MPI) processes to cores within each
compute node, that is,processor affinity, may significantly affect
the performance of intra-node communication, which in turnmay
impact the overall performance of MPI applications. In this work,
we study the impacts of processor affinity on MPI performancein
SMP-CMP clusters through extensive benchmarking and identify
the conditions when processor affinity is (or is not) a major factor
that affects performance.
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I. I NTRODUCTION

Clusters of Symmetric MultiProcessing (SMP) nodes with
multi-core Chip-Multiprocessors (CMP), also known as SMP-
CMP clusters, are becoming ubiquitous today. We refer to
such clusters as SMP-CMP clusters. The majority of the
supercomputers in the Top 500 supercomputers list published
in June 2009 [1] are SMP-CMP clusters. Due to their high
performance to price ratios, SMP-CMP clusters are likely tobe
the dominating high performance computing platforms for the
foreseeable future. Hence, it is important to fully understand
the performance issues in such clusters.

We consider Message Passing Interface (MPI) applications
on SMP-CMP clusters, with focus on the pure MPI model
where each MPI process runs on one core [20]. Due to
nodal architecture features and the recent optimizations of
MPI intra-node communication using shared memory [7],
[9], [10], SMP-CMP clusters have a multi-layer hierarchi-
cal communication infrastructure for MPI applications. Intra-
node communication usually has higher performance than
inter-node communication. In addition, the performance of
intra-node communication is non-uniform: communications
between cores within a chip can usually achieve lower latency
and higher bandwidth than communications between cores in
different chips. Contemporary SMP-CMP clusters allow the
mapping between processes to cores to be specified through
processor affinityrules that describe how each MPI process can
be associated with the cores in a node [21]. Clearly, with the

multi-layer communication hierarchy, processor affinity can
influence intra-node communications in MPI applications and
affect the overall performance [6], [8].

While it is well known that processor affinity can affect
MPI performance [6], [8], [18], [23], the impacts of processor
affinity are still not well understood. In particular, the con-
ditions under which processor affinity is or is not critical
to the performance are unclear. Due to the lack of clear
understanding, there is no well-defined scheme to set processor
affinity; and the choice of processor affinity in practice is often
ad hoc. This is the issue we try to address in this paper. A
good understanding of the impacts of processor affinity is also
important in several related areas including the design and
evaluation of MPI collective algorithms, the development of
performance models, and the understanding of MPI application
performance in general.

In this work, we systematically study the impacts of pro-
cessor affinity on MPI performance, focusing on identifying
the situations when processor affinity is important and when
processor affinity is only a minor factor. The goal is to
develop a guideline to determine whether to consider processor
affinity or not when running MPI applications, evaluating MPI
communication performance, and modeling MPI performance.
We perform extensive experimentation with micro-benchmarks
and NAS parallel benchmarks on two representative platforms,
the Jaguar cluster at Oak Ridge National Lab (ORNL) with
AMD Opteron six-core processors and an Intel cluster with
Intel Xeon Quad-core processors. The major conclusions in-
clude the following:

• The impact of processor affinity depends heavily on
the inter-node to intra-node communication ratio. This
applies to both the Jaguar cluster and the Intel cluster
in our experiment although the Jaguar cluster has newer
generation processors and is less sensitive to processor
affinity. The inter-node and intra-node communication
ratio is a good indicator for predicting whether processor
affinity is critical to the performance for both collective
communications and MPI applications.

• Processor affinity has strong impacts on sparse commu-
nication patterns. Since MPI collective communication
operations are often realized with sparse communication
patterns (for example, the all-gather operation can be
realized by a logical ring pattern [22]), processor affinity
must be taken into consideration when evaluating and
developing collective communication routines for SMP-



CMP clusters.
• The impacts of processor affinity in general decrease as

the system size increases, which is a good news for people
building large scale SMP-CMP clusters.

• For many MPI applications, the inter-node communica-
tion dominates the total communication cost, and the
impact of processor affinity is negligible. This indicates
that in many cases, treating an SMP-CMP cluster as a
traditional SMP cluster is a close approximation.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 presents the background
of this work. Section 4 details the experimental methodology
and Section 5 reports experimental results. Finally, Section 6
concludes the paper.

II. RELATED WORK

Closely related to this work is the research on characterizing
MPI communication on multi-core clusters and MPI com-
munication optimization for SMP-CMP clusters. Chai studied
the application communication characteristics on SMP-CMP
clusters, pointed out the potential bottlenecks and ways to
avoid them, and investigated the scalability in multi-core
clusters [8]. Alam [6] studied the performance of scientific
MPI applications on SMP-CMP clusters and discovered that
processor and memory affinity can have significant impacts
on the performance. The results are confirmed in [18]. These
studies, however, did not try to determine the conditions when
processor affinity is (or is not) critical to the performance,
which is the focus of our work. Much work has been done to
improve MPI performance on SMP-CMP clusters. Techniques
were developed to improve both point-to-point communica-
tions [7], [9], [10], [12] and collective communications [14],
[15], [17], [19]. These optimizations further differentiate the
communication performance in the multi-layer communication
infrastructure in SMP-CMP clusters and manifest the impacts
of processor affinity.

III. MPI COMMUNICATION ON SMP-CMPCLUSTERS

We will use the architectures of the clusters in our ex-
periments to illustrate the communication issues in common
SMP-CMP clusters. We use two clusters in the experiments,
one with Intel Xeon processors and the other one with AMD
six-core Opteron processors, which will be referred to as the
Intel cluster and the AMD cluster, respectively. The compute
nodes in both clusters are 2-way SMPs. The overview of the
architectures of the two clusters is shown in Figure 1 (a), which
resembles a typical SMP-CMP cluster. The Intel cluster uses
Xeon quad-core processors (Clovertown), which is depicted
in Figure 1 (c) while the AMD cluster uses six-core Opteron
processors, depicted in Figure 1 (b). Intel Xeon Clovertown
quad-core processors put two dual-core processors with shared
L2 cache on the same chip. Every core in an AMD Opteron
quad-core processor, on the contrary, owns a private L2 cache
and shares a common L3 cache.

MPI communications on an SMP-CMP cluster can be
either inter-node or intra-node. Inter-node communications are
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Fig. 1: A SMP-CMP Cluster

between cores in different nodes and the messages must go
through network interface cards. Intra-node communications
are between cores within one SMP node. Contemporary MPI
libraries such as MVAPICH[2] and OPENMPI [3] realize
intra-node communications with shared memory operations.
Hence, intra-node communication has in general higher per-
formance than inter-node communication. Moreover, the cache
organization in the processors can significantly affect the
intra-node communication performance [8], [16]. Depending
on the location of the involving cores within a node, MPI
intra-node communication can be further classified into three
categories: shared-cache, intra-socket, and inter-socket com-
munication [16]. Inter-socket (or inter-CMP) communications,
(2) in Figure 1 (a), are between two cores residing on the same
node but different sockets. Shared-cache communications,(3)
in Figure 1 (c), are between two cores that share cache (e.g.
shared L2 cache in Intel Clovertown and shared L3 cache
in the AMD processor). Intra-socket communications, (4) in
Figure 1 (c), are between two cores within a socket, but not
sharing caches. The Intel cluster has all three types of intra-
node communications: inter-socket, intra-socket, and shared-
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cache, while the AMD cluster only has two types of intra-
node communications: inter-socket and shared-cache. Among
different intra-node communications, shared-cache is much
faster than intra-socket and inter-socket since it takes the
advantage of cache-to-cache data transfer [16].

Since different types of intra-node communications have
different performance, how MPI processes are mapped to cores
within a node can make a difference in the performance.
Most operating systems by default allow each process to be
mapped to any of the cores in a node. Contemporary SMP-
CMP clusters provide mechanisms for processor affinity, the
capability to specify that a process can run only on a specific
core or a set of cores. In Linux, a system call,set affinity(),
can restrict the mapping of a process to a subset of all cores.
In a large scale cluster such as ORNL Jaguar, thenumactl
command can be used to specify processor affinity.

IV. M ETHODOLOGY AND BENCHMARKS

A. TestBed

Two SMP-CMP clusters are used in our experiments. The
first one is the Jaguar cluster at ORNL, which is a Cray XT5-
HE with a total of 224162 cores and a proprietary interconnect
[4]. Each compute nodes in Jaguar consists of two AMD
Opteron six-core processors at 2.6GHz and 16GB memory.
The second one, Draco, is a local cluster, consisting of 16
compute nodes with a total of 128 cores. Each node is a Dell
Poweredge 1950 equipped with two 2.33Ghz quad-core Xeon
E5345 processors and 8GB memory. Every node runs Linux
with 2.6.9-42.ELsmp kernel and mvapich2.0.1.2. All compute
nodes are connected by a 20Gbps InfiniBand DDR switch
(CISCO SFS 7000D).

B. Benchmarks

To study the impacts of processor affinity, we select and
design a set of benchmarks, including a set of communication
intensive collective communication algorithms and a bench-
mark that performs random communications. We also use the
NAS parallel benchmarks [5] in the study.

1) Collective communication benchmarks:We use a set of
collective communication algorithms with different communi-
cation characteristics in the study: the logical ring all-gather
algorithm, the binomial tree broadcast algorithm, and the
recursive doubling all-gather algorithm. All these algorithms
are used in MPICH [22]. Next, we will briefly describe the
communication patterns in the algorithms. In the description,
we use the following notations.Pk is the process whose rank
is k, 0 ≤ k ≤ p − 1; p is the total number of processes;
Pi → Pj denotes a communication fromPi to Pj .

The logical ring all-gather algorithm organizesP0, P1, ...,
Pp−1 as a logical ring: the pattern isP0 → P1 → ... →
Pp−1 → P0. The algorithm communicates messages in the
logical ringp−1 times. Whenp is a power of 2, the recursive
doubling all-gather algorithm haslog(p) steps. In each stepk,
0 ≤ k ≤ log(p) − 1, Pi exchange data withPi

L

2k , where
⊕

is the exclusive or operation. The message size doubles
in every step. Assuming broadcasting from nodeP0 to all

other nodes andp is a power of 2, the binomial tree algorithm
works in log(p) steps. In stepk, 0 ≤ k ≤ log(p) − 1, Pi,
0 ≤ i ≤ 2k − 1, forwards the broadcast message toPi+2k .

2) Random communication benchmark:The random com-
munication benchmark allows us to experiment with random
communication patterns while controlling the inter-node and
intra-node communication ratio. This benchmark takes several
input parameters including the number of intra-node commu-
nications in each node (intra node), the ratio of inter-node
communications and intra-node communications (ratio), and
the message size (msize). It generates a random communica-
tion pattern with (1) the number of intra-node communications
in each node beingintra node, and (2) the inter-node to
intra-node communication ratio beingratio. After the random
pattern is computed, all communications in the random pattern
is posted with MPIIsend and MPIIrecv, followed by a
MPI Waitall.

3) MPI applications:We use four NAS benchmarks [5] in
the study: CG, LU,MG, and SP. We do not include BT since
it does not properly execute on Jaguar in some cases. Other
NAS benchmarks either do not have many communications
(EP) or are dominated by all-to-all communications (IS, FT)
that processor affinity does not play a role.

C. Experiment method

Communication matrix:In the study, we extract the commu-
nication pattern in each benchmark, and represent the pattern
using a matrix,m, where m[i][j] denotes either the total
amount of data send fromPi to Pj or the number of messages
from Pi to Pj . Figure 2 is the pattern matrix for the logical
ring pattern on 8-processes program (the values in the matrix
are the number of communications).

The communication matrices for collective communication
benchmarks and random benchmarks are straight-forward to
obtain. For the NAS parallel benchmarks, we obtain the
matrices as follows. We run the NAS benchmarks and collect
communication traces using the PMPI profiling interface. We
then analyze the traces and extract the communication pattern
matrices from the traces. Since the NAS benchmarks that we
use in the experiments are point-to-point benchmarks, we only
collect communication patterns for point-to-point communi-
cations: collective communications, which account for very
small fractions of all communications in these benchmarks,
are ignored.
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Fig. 2: Communication matrix for the logical ring all-gather
algorithm on 8 Processes
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Best and worst processor affinity:Once we obtain the
communication matrix, best and worst processor affinities for
the communication matrix is computed. To do this, we model
the nodal architectures of the two clusters with graphs: the
nodes in Draco are modeled as the graph in Figure 3 and
the nodes in Jaguar are modeled as the graph in Figure 4.
These models allow us to capture the three types of intra-node
communications: shared-cache communication, intra-socket,
and inter-socket communication. In Figures 3 and 4, links
marked by ’x’ are share-cache links; links marked by ’y’ are
intra-socket links; and links marks by ’z’ are inter-socketlinks.
In Draco, shared-cache communications go through share-
cache links; intra-socket communications go through intra-
socket links; and inter-socket communications go through the
bottom switch and inter-socket links. For nodes in Jaguar, there
are only two types of intra-node communications: shared-
cache communications and inter-socket communications as
shown in Figure 4. It should be clear from the figure that
the graphs are trees: from each node (core), there is only one
path to another node.

Processor affinity decides which MPI process is mapped to
which core. For a given communication pattern, the quality
of processor affinity is different: some incur many inter-
socket communications while others do not. Intuitively, one
would prefer mapping MPI processes such that inter-socket
communications are minimized. We define thebest processor
affinity to be a mapping that has the smallest inter-socket traffic
among all potential process-to-core mappings. When there are
multiple such mappings, the tie is broken by the intra-socket
traffics. If there are still ties, shared-cache communications are
considered. Theworst processor affinityis defined in a similar
but opposite manner.

The intra-node communication pattern is an8 × 8 matrix
for the 8-core SMP node and12 × 12 matrix for the 12-
core SMP node. For the 8-core node, the best processor
affinity is computed as follows. We enumerate all possible
process-to-core mappings, that is,8! = 40320 mappings.
For each mapping, we compute the loads on each link in
the graph model based on the communication matrix. The
computation is trivial since each source-destination pairis
connected by exactly one path. The mapping that results in
the lowest/highest load in the inter-socket link is the best/worst
affinity. If multiple mappings result in the same maximum load
in the inter-socket links, we compare the loads in the intra-
socket links, and so on. For the 12-core node, we enumerate all
possible mappings while taking advantage of the fact that two
processors are exactly the same, so the number of mappings to
be considered isC6

12 = 924 cases. For a benchmark that runs
on more than one compute node, we compute the best/worst
affinity for each individual node and different nodes can have
different processor affinity.

V. EXPERIMENT RESULTS

A. Collective communication benchmarks

Figures 5 to 7 show the results for the collective benchmarks
on the two platforms. On Draco with 128 processes (16
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Fig. 3: Graph model for the nodes in the Intel cluster
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Fig. 4: Graph model for the nodes in the AMD cluster

nodes), the logical ring algorithm, whose results are shownin
Figure 5, has a smallest inter-node communication and intra-
node communication ratio in terms of the number of messages
in the pattern,1 : 7 = 0.142. The binomial tree broadcast
algorithm, whose results are shown in Figure 6, has a ratio
of 0.65. The recursively doubling all-gather algorithm, whose
results are shown in Figure 7, has a ratio of 1.00. For the
Jaguar cluster (AMD) with 128 processes (we use 11 nodes
with 8 cores in the last node), the ratio is0.09 for the logical
ring all-gather algorithm,0.66 for the binomial tree broadcast
algorithm,1.0 for the recursive doubling all-gather algorithm.

As can be seen from the figures, when communications are
within one node (all 8 processes cases), process affinity has
significant impacts on all cases for both platforms: the best
affinity and worst affinity result in significant different total
communication times. This reveals the NUMA nature of the
SMP nodes and indicates that process affinity can significantly
affect the intra-node communication performance. The Jaguar
cluster uses the most recent AMD processors, which is one
generation newer than those in the Draco cluster. As a result,
the intra-node communication is more efficient in the Jaguar
cluster. For example, both with the best affinity setting, 8-
process recursive-doubling all-gather of 128KB data takes0.98
microseconds on Jaguar and 1.68 microseconds on Draco.
Moreover, the impact of affinity is also less on Jaguar than on
Draco. For example, for the logical-ring all-gather of 128KB
data, the best affinity results in 17% improvement over the
worst affinity on Jaguar and 100% improvement on Draco.
This demonstrates the superiority of the newer generation
Jaguar cluster.

For the 128-process cases, however, processor affinity only
has impacts on two schemes with smaller inter-node to intra-
node communication ratios: the logical ring all-gather andthe
binomial tree broadcast algorithm. For the recursive doubling
algorithm, even though process affinity affects intra-node
communication performance, it does not change the overall
communication time for the whole pattern. This is due to
the significant inter-node communications that dominate the
overall performance in this pattern. Another interesting obser-
vation is that for the logical ring algorithm and the binomial
tree broadcast algorithm, the overall communication timesare
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Fig. 5: Logical Ring All-gather Results

similar for both clusters with the best affinity settings. This
indicates that the link bandwidth on the Jaguar cluster mustbe
similar to that on Draco (20Gbps). However, for the more com-
plex recursive-doubling all-gather, the communication times
are much higher on Jaguar than on Draco. This is because
Draco is connected by a single crossbar switch while Jaguar
is connected by a large Interconnect, which can have network
contention with complex communication patterns [11], [13].

B. Random communication pattern benchmarks

The results for the collective communication benchmarks
clearly show that process affinity may or may not have impacts
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Fig. 6: Binomial Tree Broadcast Results

on a given communication pattern. It tends to significantly
affect the performance communication patterns with low inter-
node to intra-node communication ratios and has a negligible
impact on communication patterns with high inter-node and
intra-node communication ratios. In this experiment, we will
use the random communication benchmark that allows the
control of inter-node and intra-node communication ratios
to further quantify the impacts of processor affinity, and to
study the impact on different communication patterns, different
message sizes. All the results reported in this section are from
Draco, the results for Jaguar have a similar trend. Each data
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Fig. 7: Recursive Doubling All-gather Results

point reported is the average of 32 random samples. All the
experiments are performed on 16 nodes (128 cores).

Figure 8 shows the effect of different inter-communication
to intra-communication ratios. In this experiment, each node
has a fixed of 15 random intra-node communications. Different
inter-node to intra-node communication ratios are achieved
with different numbers of random inter-node communications.
The x-axis is the ratio. The y-axis is the performance improve-
ment percentage that the best affinity achieves over the worst
affinity. As can be seen from the figure, processor affinity
has less effect as the ratio increases, which is consistent with
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the results in the collective communication benchmarks. This
applies to different message sizes.

Figure 9 shows the effect of processor affinity on different
message sizes. This is a different presentation of the data in the
last experiment. The figure shows that processor affinity has
similar effect on different message sizes. When the message
size is sufficiently large (32KB in our experiment), the impact
of processor affinity is similar on different sizes.

Figure 10 shows the impacts on different communication
patterns. The legend X/Y in the figure denotes that there are
X intra-node communications within each node and the inter-
node and intra-node ratio is Y. As can be seen from the figure,
processor affinity has more impacts on sparse pattern with a
small ratio such as the 15/0.1 patterns. When the number of
communications is large, even with the same ratio, the impact
is not as significant because with the same ratio, the number of
inter-node communications is larger, which reduces the effect
of processor affinity.
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No. of processes 16 32/36 64 121/128
CG 0.143 0.231 0.407 0.600

Jaguar LU 0.200 0.486 0.534 0.571
MG 0.219 0.433 0.992 0.989
SP 0.500 0.500 0.959 1.793
CG 0.200 0.231 0.280 0.600

Draco LU 0.200 0.429 1.000 0.571
MG 0.337 0.685 1.032 1.725
SP 0.286 0.500 1.816 2.000

TABLE I: Inter-node/Intra-node communication ratios

In summary, the impact of processor affinity is significantly
affected by the inter-node and intra-node communication ratio
and can be very significant when the ratio is small. Processor
affinity has similar effects on communication patterns with
different message sizes when the size is sufficiently large.
For the same inter-node and intra-node communication ratio,
processor affinity has more impact on patterns with less
communications.

C. NAS benchmarks

This section reports the results for the NAS parallel bench-
marks, including CG, LU, MG, and SP. We use class C
problem size in all experiments and run the benchmarks with
16, 32/36, 64, and 128/121 processes. The inter-node and intra-
node communication ratios of the four benchmarks in term of
the total amount of data communicated are summarized in
Table I. Figures 11 to 14 show performance results for the
benchmarks. Since all of these benchmarks are dominated by
the computation time, to understand the impacts on commu-
nications, we show the results for the total communication
times in these programs. The communication time is obtained
through PMPI that captures the entry and exit times for each
of the communication routines.
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Fig. 11: CG Results
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Fig. 12: LU Results

The results confirm that the inter-node intra-node com-
munication ratio is a good indicator to predict whether the
overall performance will be affected by processes affinity.
With few exceptions, when the ratio is larger than 0.8, the
impact of processor affinity is negligible and when the ratiois
smaller than 0.5, the impact is noticeable. For all of the four
benchmarks, as the number of nodes increases, the impact
of processor affinity becomes less significant. On Jaguar, the
impact for all four benchmarks becomes negligible with 128
processes.

In some cases, the default affinity performs better than
our “optimal” affinity. There are two reasons for this. First,
default affinity allows processes to migrate among cores. This
sometimes can have a better performance than fixing the
affinity setting since it allows more load balancing among
cores. Second, our “optimal” affinity is computed based on
the communication trace for the whole program, which may
yield lower performance when the program has phases of com-
munications where in each phase, a subset communications
dominate the performance. In this case, our “optimal affinity”
may result in sub-optimal results.

VI. CONCLUSION

In this paper, we study the impacts of process affinity on
MPI performance on SMP-CMP clusters. Through extensive
experiments, we show that the impact of processor affinity is
closely related to the inter-node to intra-node communication
ratio. In particular, processor affinity can significantly affect
the performance of patterns with sparse communications when
the message size is sufficiently large. These results can be
used as a guideline to decide whether processor affinity
should be considered in several areas including the design and
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evaluation of MPI collective communication algorithms, the
development of performance models, and the understanding
of MPI application performance in general.
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