
The Effects on Branch Prediction when Utilizing Control Independence

Chris J. Michael, David M. Koppelman
Department of Electrical and Computer Engineering

Louisiana State University
Baton Rouge, Louisiana, USA

cmichael@cct.lsu.edu, koppel@ece.lsu.edu

Abstract—Though current general-purpose processors have
several small CPU cores as opposed to a single more com-
plex core, many algorithms and applications are inherently
sequential and so hard to explicitly parallelize. Cores designed
to handle these problems may exhibit deeper pipelines and
wider fetch widths to exploit instruction-level parallelism
via out-of-order execution. As these parameters increase, so
does the amount of instructions fetched along an incorrect
path when a branch is mispredicted. Some instructions are
fetched regardless of the direction of a branch. In current
conventional CPUs, these instructions are always squashed
upon branch misprediction and are fetched again shortly
thereafter. Recent research efforts explore lessening the effect
of branch mispredictions by retaining these instructions when
squashing or fetching them in advance when encountering
a branch that is difficult to predict. Though these control
independent processors are meant to lessen the damage of
misprediction, an inherent side-effect of fetching out of order,
branch weakening, reduces realized speedup and is in part
responsible for lowering potential speedup. This study formally
defines and works towards identifying the causes of branch
weakening. The overall goal of the research is to determine
how much weakening is avoidable and develop techniques to
help reduce weakening in control independent processors.

Keywords-computer architecture; pipeline processing; micro-
processors

I. INTRODUCTION

Though current general-purpose processors have several
small CPU cores as opposed to a single more complex
core, often all but one of these cores sits idle because
many algorithms and applications are inherently sequential
and thus hard to explicitly parallelize. A common research
approach involves designing CPUs heterogeneously with
many different types of cores, some of which may handle
these sequential codes by aggressively exploiting instruction-
level parallelism (ILP). These cores will most likely have
longer pipelines and wider fetch widths to exploit ILP via
out-of-order execution. As these parameters increase, so
does the number of instructions fetched along an incorrect
path when a branch is mispredicted. Some instructions are
fetched regardless of the direction of the branch. These
are referred to as control independent (CI) instructions. In
current conventional CPUs, these instructions are always
squashed upon a branch misprediction and are fetched again
shortly thereafter. Recent research efforts explore lessening

the effect of branch mispredictions by retaining CI instruc-
tions when squashing [1], [2] or fetching these instructions
in advance when encountering a branch that is difficult
to predict. Though these control independence processors
(CIPs) are meant to lessen the damage of misprediction, an
inherent side-effect of fetching out of order, branch weak-
ening, reduces realized speedup and is in part responsible
for lowering the potential of speedup. Branch weakening is
a property of many if not all proposed CIPs. The goal of
the research is to formally define and identify the causes
of branch weakening, determine how much weakening is
avoidable, and offer techniques to help reduce weakening
and its impact.

II. PRIOR WORK

In the Transparent Control Independence study by Al-
Zawawi et al. [1], a complex perceptron predictor [3] is used
to obtain worthwhile results in branch prediction accuracy.
Even with this predictor, 10 of 14 benchmarks suffered
weakening. The worst case caused the number of mispredicts
to rise by about 20%. It is mentioned that the decrease
in prediction accuracy is due to gaps in the global history
from the CD region. It is also mentioned that the reason the
perceptron predictor is chosen is because it is less affected
by these gaps when compared to other common predictors.

Perhaps the most attention to weakening in recently
proposed mechanisms is given in the Ginger implementation
study by Hilton and Roth [2]. In fact, it is mentioned explic-
itly that control independence interferes with conventional
branch predictors due to weakening: “It would be counter-
productive if Ginger induced more mispredictions than it
tolerated.”[2] The implementation attempts to resolve weak-
ening using two separate predictor states. The first of these
excludes any CD history outcomes from its global history.
In doing so, prediction accuracy is preserved for branches
not correlated to CD outcomes. To accommodate for cases
where branches may be correlated to these outcomes, a
second predictor state is added that uses contiguous global
history. A chooser is used to extract the best prediction of
the two states. It is said in the study that the table used
in the latter predictor can be small because the number of
branches that correlate to CD data is small. Overall results
are given to support this claim but there is no deeper look

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U.S. Government work not protected by U.S. copyright 



B

A C

D

E F

A Resolves
CD Region

CI Region

Figure 1. Example Control Flow of Execution

into weakening. It is shown that this scheme only improves
performance slightly as opposed to using a predictor which
does not contain CD information in its global history register
(GHR). In some cases, performance may lower when using
the dual scheme. One interesting result shows that using
a scheme that excludes CD data from history can actually
perform better than the perfect in-order case since there are
more useful outcomes that would otherwise not appear in
the global history.

III. CONTROL INDEPENDENCE AND BRANCH
WEAKENING

Figure 1 shows a sample of execution control flow
with each node representing a branch. Assume the system
predictor correlates on recent branch outcomes. Branch A
is difficult to predict so a CIP may protect it, exploiting
control independence so that the branch’s misprediction has
less impact on performance. All other branches shown in
the figure are predicted with nearly 100% accuracy in the
conventional system. The CI and CD regions are marked in
the figure. Branch C is the first branch independent of A and
so is called the reconvergence point of A. Also marked on
the graph is where the system is fetching when A resolves.
Assume C is very highly correlated to A. The two common
program paths in this area of execution are ABCDEF and
ACEF. A CIP may fetch similarly to a conventional system
until A resolves – at that point only the CD region will be
squashed and re-fetched as opposed to a conventional system
where all subsequent instructions are squashed. Fetching
then continues where it left off immediately before A re-
solved.

Weakening due to the increase in warm-up time when
exploiting CI, or insulated weakening, may occur when the
system predictor uses global history data to make predic-
tions. The branch E (which only sees two paths in the
conventional system at predict time) sees an additional two
paths in the CIP, ABCE and ACDE. This is because E is
fetched before A is resolved mispredicted but is not flushed.
These two additional paths require predictor warm-up and
the additional warm-up mispredicts are considered insulated
weakening. Insulated weakening can be lessened by using
special history update techniques that prevent the speculated
CIP paths from being observed in the system state.

Absentee weakening is caused by correlation data not
being available at a post-reconvergent branch’s predict time.

Table I
SELECTED BASE SNIPPER CONFIGURATION PARAMETERS

Core 8-way superscalar
512-entry ROB
20 cycle decode
8 integer, 4 floating pointALUs

Memory 64kiB 8-way 32B line 10 cycle lat L1 ICache
64kiB 4-way 64B line 1 cycle lat L1 DCache
8MiB 8-way 64B line 19 cycle lat L2 DCache
150 cycle minimum memory access latency

Predictor 16-bit GHR
64kiB entry 2 bits per entry BHT/PHT

Similarly to insulated weakening, absentee weakening may
occur when a system predictor uses history data to make pre-
dictions. Unlike insulated weakening, however, data crucial
to make a correct prediction is missing. In the figure, say
branch D is highly correlated to B. In a conventional system,
the outcome of B is always available at D’s predict time.
Now consider a CIP where D is seen on the new speculated
path ACDE. The history data for B is not observable in this
path and therefore D has nothing to correlate with, causing
absentee weakening. It is difficult to eliminate absentee
weakening when exploiting control independence, so any CI
mechanism may be turned off where it occurs to minimize
the damage it causes.

When employing any CI technique, there may be longer
predictor update times due to instructions’ speculative exe-
cution when waiting for a covered branch to resolve. This
causes predictor tables to update later than they normally
would on a conventional system. The increased update lag
causes the third type of weakening, delayed-update weak-
ening. This type of weakening may be avoided by updating
predictor tables earlier than commit time; for example, the
first time a branch resolves. However, this does not always
alleviate the damage. Dynamic branch instances in CIPs may
re-execute and re-resolve, changing their branch direction
multiple times before committing. This phenomenon, called
vacillation, may cause predictors to update incorrectly.

IV. METHODOLOGY

Snipper is a CIP that retains CI instructions when squash-
ing covered branches [4]. It uses a hardware method of
detecting and analyzing CD regions and only protects a
branch when it detects potential for improving performance.
Once fetched, instructions remain in the scheduler until
they commit and are re-executed when necessary. Registers
may need to be re-mapped or preserved in Snipper since
instructions may be fetched out of order. This is done using
special injected instructions that correct register mappings
as needed. Branches may be protected and unprotected
dynamically in execution. Snipper has been configured as
shown in Table I. By default, CD global history is used
to predict CI branches, whether or not the data is correct.
This method was chosen because it outperformed the method



 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

bzip2 crafty
gcc gzip parser

twolf
vpr.place

vpr.route

Sp
ee

du
p

Benchmark

bimodal
gshare
hybrid

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

bzip2 crafty
gcc gzip parser

twolf
vpr.place

vpr.route

A
bs

ol
ut

e 
In

cr
ea

se
 in

 M
is

pr
ed

ic
tio

ns
 p

er
 1

k 
In

st
ru

ct
io

ns

Benchmark

bimodal
gshare
hybrid

Figure 2. Snipper speedup and weakening for several benchmarks

of leaving the CD outcomes out of the global history. The
benchmarks studied are those very active in exploiting CI
using Snipper of the SPEC CPU 2000 set [5]. Figure 2 shows
results for speedup and weakening in a Snipper system using
bimodal, GShare [6], and bimodal/GShare hybrid predictors.
As can be seen, weakening is certainly not negligible for
most of the benchmarks.

V. APPROACH

If weakened branches can be classified by their cause,
then the amount of reparable weakening may be measured.
The first plot of Figure 2 shows that substantial speedup is
possible despite weakening, with some benchmarks enjoying
20% or more speedup. But the second plot of the figure
shows a substantial amount of weakening, increasing the
mispredict rate by 1 misprediction per 1k instructions on
average across the set. Since the studied system may fetch
160-512 instructions down a wrong path of a mispredicted
branch, this represents over a 10% potential loss of useful
fetch. Methods to measure the different causes of weakening
on a range of predictors will soon be developed, but for now
it is possible to measure delayed-update weakening since it is
the only weakening that CIPs using a bimodal predictor are
vulnerable to. This is because the bimodal predictor does not
use any global history information. As shown in Figure 2,
several benchmarks are significantly affected by this type of
weakening.

Insulated weakening can be measured by collecting data
regarding correlated paths of branches. A path of a branch is
the state of the global history register at a dynamic instance
of the branch. A correlated path is a path that is highly
predictable. Each correlated path takes some time to warm-
up. For example, a path with biased behavior may mispredict
twice to set the predictor’s saturating counter towards its
bias. By measuring the increase in correlated paths from a
conventional system to a CIP, one can measure insulated
weakening. This type of weakening may be reduced by not

adding any CD data to the global history state. There are
a couple of reasons why this will not eliminate insulated
weakening completely. First, some CIPs, including Snipper,
dynamically protect and un-protect branches and it can not
be known before hand where the CD region is. Second,
when excluding CD data, the global history may contain
outcomes farther away from the branch being predicted
– these outcomes will not be observed in a conventional
system and may hinder prediction accuracy. Aside from
these problems, removing CD data from the GHR may
needlessly induce more weakening. For instance, Snipper
performs better when CD data is inserted in to the GHR
and predictor tables are updated regardless of any protected
branch being unresolved. The reasons for this behavior are
currently being researched.

Absentee weakening is perhaps the most difficult to
measure. To be weakened in this manner, a branch must be
correlated to data CD of some protected branch. Though
measurement may be difficult, the solution is simple. If
exploiting CI will induce absentee weakening, don’t do it.
If it turns out that the majority of weakened branches are
absentee, then control independence is unreasonable since
relieving one misprediction is causing another.

In targeting delayed-update weakening, branches must
be updated earlier than commit time. This is not a trivial
problem due to branch vacillation. Through comparison of
several techniques that allow predictors to update before
commit time, a change method is found to perform best.
When using this technique, a dynamic branch instance
updates its predictor entry on its first resolve and additionally
any other resolve which differs from its last. This helps ease
the predictor of incorrect updates due to vacillation while
allowing predictor tables to be updated earlier than commit
time.



-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

bzip2 crafty
gcc gzip parser

twolf
vpr.place

vpr.route

D
if

fe
re

nc
e

Benchmark

cud-cbi
sud-sbi
cbi-sbi

Figure 3. Differences in branch prediction ratio for several configurations

VI. PRELIMINARY RESULTS

In order to address delayed-update weakening, several
special-purpose predictors have been developed which at-
tempt to choose the best time to perform an update. Branches
are either updated earlier than commit time to reduce
delayed-update weakening or updated at commit time to
prevent incorrect update from vacillation. These predictors,
called flexible update predictors, can be used with any
branch predictor.

Of all flexible update predictors developed, the best results
are obtained by using the update chooser. This predictor
dynamically chooses what prediction time is best. There are
two core predictor states, identical in every way except that
one always updates at change and the other always updates
at commit. The core predictor is set to be either bimodal,
GShare, or bimodal/GShare hybrid. A 2-bit chooser table
similar to the hybrid chooser described in [6] is used to
reference the most accurate predictor entry among the two
states. The predictor will update entries at commit by default
and the choice table entry is updated at branch commit time.
This predictor is most direct of all that have been researched
but is also most demanding since it requires an additional
table look-up for the chooser and is two times the size of
the regular predictor.

Call a conventional system using a bimodal predictor
that updates at commit cbi and the same system using
a bimodal update chooser predictor cud. Call a Snipper-
enabled system using a bimodal predictor that updates at
commit sbi and one using a bimodal update chooser sud.
The systems are all configured as shown in Table I. Figure 3
shows differences in branch prediction accuracy for relevant
configuration pairs. The first result, cud-cbi, shows the
improvement of branch prediction ratio when using an
update chooser on a conventional system while the second,
sud-sbi, shows improvement for Snipper. The final result,
cbi-sbi, shows the differences in branch prediction ratio

due to weakening using a bimodal predictor.
The first result in the figure shows that even cbi benefits

from selectively updating earlier than commit time. The
benchmarks benefiting most have three significant common
behaviors. First, they usually exhibit a large amount of
biased or bistable branches. A bistable branch is one which
exhibits long runs of the same outcome. The second common
behavior is that branches generally have a long predict-to-
commit time. The last is that dynamic instances of a branch
will often overlap in execution, exhibiting a “tight-loop”
behavior. In studying branch behaviors it has been found
that it is these types of branches that benefit from updating
earlier than commit time.

The second result shows how Snipper benefits from the
update chooser. Note that in 6 of the 8 shown cases the
benefit is significantly larger than that of the conventional
system. This is expected since activating Snipper increases
branch’s predict-to-commit time by about 15 cycles on
average from a conventional system. When compared with
the last result, the alleviation of delayed-update weakening
can be estimated. For 4 of the benchmarks, the improvement
of using the update chooser with Snipper surpasses or
equalizes the branch prediction ratio to that of a conventional
system. In the cases of crafty, parser, and vpr.route it may be
appropriate to assume that most if not all of the weakening
has been overcome since the benefit of the Snipper system
far surpasses the sum of the conventional benefit and the
weakening. The benchmarks where benefit does not come
near the weakening have been examined. The main cause of
this irreparable weakening is either high vacillation rates or
erratic branch behaviors.

REFERENCES

[1] A. S. Al-Zawawi, V. K. Reddy, E. Rotenberg, and H. Akkary,
“Transparent control independence (tci),” in ISCA, 2007, pp.
448–459.

[2] A. D. Hilton and A. Roth, “Ginger: control independence using
tag rewriting,” in ISCA ’07: Proceedings of the 34th annual
international symposium on Computer architecture. New
York, NY, USA: ACM, 2007, pp. 436–447.

[3] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in HPCA ’01: Proceedings of the 7th Interna-
tional Symposium on High-Performance Computer Architec-
ture. Washington, DC, USA: IEEE Computer Society, 2001,
p. 197.

[4] “Rsiml,” http://www.ece.lsu.edu/koppel/work/proc.html.

[5] J. L. Henning, “Spec cpu2000: Measuring cpu performance
in the new millennium,” Computer, vol. 33, no. 7, pp. 28–35,
2000.

[6] S. McFarling, “Combining branch predictors,” WRL TN-36,
1993.


