N

N
N

HAL

open science

Large Neighborhood Local Search Optimization on
Graphics Processing Units
Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

» To cite this version:

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Large Neighborhood Local Search Optimization
on Graphics Processing Units. Workshop on Large-Scale Parallel Processing (LSPP) in Conjunction
with the International Parallel & Distributed Processing Symposium (IPDPS), 2010, Atlanta, United
States. inria-00520465

HAL 1d: inria-00520465
https://inria.hal.science/inria-00520465
Submitted on 23 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00520465
https://hal.archives-ouvertes.fr

Large Neighborhood Local Search
Optimization on Graphics Processing Units

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

Abstract

Local search (LS) algorithms are among the most powerfiirtieies for solving computationally
hard problems in combinatorial optimization. These aftpons could be viewed as “walks through
neighborhoods” where the walks are performed by iteratik@cgdures that allow to move from a
solution to another one in the solution space. In these stiegj designing operators to explore large
promising regions of the search space may improve the gudlithe obtained solutions at the expense
of a highly computationally process. Therefore, the useraphics processing units (GPUs) provides
an efficient complementary way to speed up the search. Howaesigning applications on GPU is still
complex and error-prone. We provide a methodology to deaighimplement large neighborhood LS
algorithms on GPU. Finding efficient mappings of the neighbod structures onto the GPU threads
organization is a challenging issue dealt with in this papbe work has been experimented for binary
problems by deploying multiple neighborhood structurdse Bbtained results are convincing both in
terms of efficiency, quality and robustness of the providadt®ns at run time.

Keywords

Metaheuristics, Local Search, Neighborhoods, Graphicedasing Units (GPU), General-
Purpose Computing on Graphics Hardware, Permuted Peoceptoblem.

I. INTRODUCTION

Plenty of hard problems in a wide range of areas includingregging design, telecommu-
nications, logistics, biology, etc., have been modeledtankiled successfully with optimization
approaches such as metaheuristics (generic heuristiospl lsearch algorithms is a class of
metaheuristics which handle with a single solution iteed}i improved by exploring its neigh-
borhood in the solution space. Fig. 1 gives a general moddlS$ocalgorithms. At each iteration,
a set of neighboring solutions is generated and evaluatesl b€st of these candidate solutions
is selected to replace the current solution. The procestefatéd until a stopping criterion
is satisfied. Common LS heuristics of the literature are dlilnbing, simulated annealing,
tabu search, iterative local search and variable neiglimottsearch. A state-of-the-art of LS
algorithms can be found in [1].

The definition of the neighborhood is a required common stepttie design of any LS
algorithm. The neighborhood structure plays a crucial mléhe performance of a LS method.
Theoretical and experimental studies have shown that ttrease of the neighborhood size may
improve the effectiveness (quality of provided solutioagjhe LS algorithms [2]. Nevertheless,
as it is generally CPU time-consuming it is not often fullypkoited in practice. Indeed, experi-
ments with large neighborhood algorithms are often stopp#tbut convergence being reached.
That is the reason why, in designing LS methods, there is @teompromise between the size of
the neighborhood to use and the computational complexigxpdore it. As a consequence, in LS
algorithms, there is often a reduction of the size of the @qua neighborhood at the expense of
the effectiveness. To deal with such issues, only the usarallplism allows to design algorithms
based on large neighborhoods. Nowadays, GPU computingdgmeed as a powerful way to
achieve high-performance on long-running scientific aggtions [3]. Designing LS algorithms
based on large neighborhood structures for solving realewaptimization problems are good

| Init a solution
I
| Full evaluation
|
1
Choose a neighbor of the
solution

| Incremental evaluation |

yes
Next neighboor ?

no

Neighborhood
dependent

Replace the solution by the
the chosen neighbor

Fig. 1. General model for local search algorithms

challenges for GPU computing. However, to the best of oumikedge only few research works
related to evolutionary algorithms on GPU exist [4]-[7]dé®d, the parallel exploration of the
neighborhood on GPU is not immediate and several challepgessst and are particular related
to the characteristics and underlined issues of the GPUtacttre and the LS algorithms.

In this paper, we contribute with the first results of LS aitions based on large neigh-
borhoods on GPU. The main objective of this paper is to finctiefit mappings between the
neighborhood structure and the hierarchical GPU. Moretgxabe focus is on the mapping of
the neighborhood of the currently processed solution to Gitelads. Since the neighborhood
structure strongly depends on the target optimizationlprabwe focus on binary problems all
along of this paper. We propose to deal with three neighlmdbmf different sizes. For each
handled neighborhood, the mappings of the neighborhoatttste to the GPU thread blocks
organization is particularly challenging.

To be valided the work has been experimented on the permwestmron problem (PPP)
introduced by Pointcheval [8]. The problem is a cryptograpdentification scheme based on
NP-complete problems, which seems to be well suited foruregoconstrained devices such as
smart cards. The work has been experimented on differentl@omstances of the literature.
We investigate to measure the impact on how the increaseeddiie of the neighborhood can
improve the quality of the obtained solutions.

The rest of the paper is organized as follows: Section 2 ptedbe three handled neighbor-
hoods for binary problems. In Section 3, efficient mappingsdach neighborhood structures
are performed on GPU. Application of this methodology is eé&alr the permuted perceptron
problem in Section 4. Finally, conclusions and a discussiothis work are drawn in Section 5.

[I. NEIGHBORHOODS FORBINARY PROBLEMS

Designing any iterative metaheuristic needs an encodirggsalution. The encoding must be
suitable and relevant to the tackled optimization probl&ar. binary problems, any candidate
solution is represented by a vector (or string) of binaryugal Moreover, the efficiency of a
representation is related to the search operators appheti® representation i.e. the neighbor-
hood.

e

(0,1,1) (0,1,1)

(0,0,0) (0,1,0) % (0,0,0) (0,1,0)

1-Hamming distance neighborhood
Candidate solution ngd 9

(1,0,1)

(0,1,0) (0,1,0)
2-Hamming distance neighborhood 3-Hamming distance neighborhood

Fig. 2. Three neighborhoods for binary problems

1|11

I

A candidate solution

0 1 2 3 4 t
nnn nnn Its associated
neighborhood

1

;

-
-

1

-
=
-

Fig. 3. 1-Hamming Distance Neighborhood

The natural neighborhood for binary representations igdas the Hamming distance. This
distance measures the number of positions between twastoh equal length in which the
corresponding symbols are different. Fig. 2 gives an ithtgin of the Hamming distance for
strings of length 3. For instance, the Hamming distance éetwthe nod€0, 1,0) (represented
by a triangle) and each node represented by a circle is equadot Therefore, nodes of a same
shape in the graph constitute a particular neighborhoothe@ibde(0, 1, 0).

e 1-Hamming Distance Neighborhookh most cases, the associated neighborhood for binary
representations is based on the Hamming distance equal&o lonthis neighborhood,
generate a neighbor consists in flipping one bit of the caatdiglector solution (see Fig. 3).
Considering a candidate vector solution of sizethe size of the associated neighborhood
IS n.

e 2-Hamming Distance NeighborhooBor binary problems, an improved neighborhood for
LS algorithms is based on the Hamming distance of two. It ist&i®n building a neighbor
by flipping two values of a candidate solution vector. Twoeres represent a particular
neighbor. For a candidate solution of size the number of neighbors iw. Fig. 4

0 1 2 3 4 _
|0|1|1|0|0| A candidate

solution
L1fofr]o]o]
[1[a]ofoo] [ofofofo]o]
Lefalafefo] [ofofa]afof [ofsfo]s]o]
1 i f f t 1
Lefofafolo] [ofofafofe] [ofrfofofs] [ofa]afe]:]

Its associated neighborhood

Fig. 4. 2-Hamming distance neighborhood

|0|1|1|0|0| Acandi_date
solution

Its associated
JoJo]o][o] |
| neighborhood

Lefofalefof [efafofsfo]
(I — (N

Lefofafols] [afafofofe] [afn]afefe]
T (e e e R 1

Lofofofr]o]

Lofofofolsf [ofofa]sfs]
(N (R

Lofrfofefe]
L

Fig. 5. 3-Hamming distance neighborhood

gives an illustration of this neighborhood.

e 3-Hamming Distance Neighborhoo#n instance of a large neighborhood is a neighborhood
built by modifying three values called 3-Hamming distanegghborhood. This neighbor-
hood is much complex since each neighboring solution istifieth by 3 indexes. The
number of elements associated to this neighborhoo8 8-~ Fig. 5 shows an
illustration of this neighborhood.

Most of the LS algorithms use neighborhoods which are in ggreelinear (e.g. 1-Hamming
distance) or quadratic (e.g. 2-Hamming distance) functérthe input instance size. Some
large neighborhoods may be high-order polynomial of the sit the input instance (e.g. 3-
Hamming distance). Then, the complexity of the search wellnhbuch higher. So, in practice,
large neighborhoods algorithms are unusable because iofhtigh computational cost. In the

other sections, we will show how the use of GPU computingnadito fully exploit parallelism
in such algorithms.

IIl. EFFICIENT MAPPINGS OFNEIGHBORHOODSSTRUCTURES ONGPU

In this section, the focus is made on the neighborhood ggaeran GPU. Indeed, this step
is crucial in the design of new large neighborhood LS along for binary problems since it
is clearly identified as the gateway between a GPU procesa arahdidate neighbor.

A. GPU Kernel Execution Model

Each processor device on GPU supports the single progratipiaudata (SPMD) model, i.e.
multiple autonomous processors simultaneously execetedame program on different data. For
achieving this, the concept é&krnelis defined. The kernel is a function callable from the host
and executed on the specified device simultaneously by algweycessors in parallel.

This kernel handling is dependent of the general-purposguiage. For instance, CUDA
(Compute Unified Device Architecture) is a parallel compgtienvironment, which provides
an application programming interface for NVIDIA architexds [9]. The concept of thread in
CUDA does not have exactly the same meaning as CPU threadreadhon GPU can be
seen as an element of the data to be processed. Compared tth€ads, CUDA threads are
lightweight. That means that changing the context betwenthreads is not a costly operation.

Regarding their spatial organization, threads are organwithin so called thread blocks. A
kernel is executed by multiple equally threaded blocks.cB$ocan be organized into a one-
dimensional or two-dimensional grid of thread blocks, am@ads inside a block are grouped in
a similar way. All the threads belonging to the same threadlbWill be assigned as a group to a
single multiprocessor, while different thread blocks canalssigned to different multiprocessors.
Thus, a uniqued can be deduced for each thread to perform computation oerelift data.

B. Efficient mappings

As suggested in Fig. 6, the challenging issue is to find efftaeappings between a threatl
and a particular neighbor. Indeed, on the one hand, thedlnlda represented by a single index.
On the other hand, the move representation of a neighbagssadcording to the neighborhood.

1) 1-Hamming DistanceFor neighborhoods based on a Hamming distance of one, a ntappi
between LS neighborhood encoding and GPU threads is quettdindeed, for a binary vector
of sizen, the neighborhood size is exactlywhere each neighbor is represented by one index
varying from0 to n — 1. Regarding the GPU threads, they are provided with a uniduend
thus associated with one single index in a similar manneat Way, the associated kernel can be
launched withn threads (each neighbor is associated to a single thread).r@sult, alN — IN
mapping can be made in constant time.

2) 2-Hamming Distancefor a binary vector of size:, the size of this new neighborhood
is (=1 The associated kernel is executed B2~ threads. For this encoding a mapping
between a neighbor and a GPU thread is not straightforwadeed, on the one hand, a neighbor
is composed by two indexes to modify. On the other hand, ttwreae identified by a unique
id (single index). As a result, & — IN x IN mapping has to be considered to transform one
index into two. In a similar way, &N x IN — IN mapping must be handled to transform two
indexes into one.

Proposition 1: Two-to-one index transformation

N
\ | Mappings /(

C i \
urrent solution VA

.\»

Generated
neighborhood

Fig. 6. Mappings between threads and neighbors

Giveni and; the indexes of two elements to modify in the binary represtéon, the corre-
sponding index (z, j) in the neighborhood representation is equa‘l>tcén—1)+(j—1)—%,

wheren is the vector size.

Proposition 2: One-to-two index transformation
Given f(i, 7) the index of the element in the neighborhood representati@ncorresponding

indexi is equal ton —2— L\/sx(m D171 | andjj is equal tof (i,) —ix (n—1) + X0 41
in the binary representation, Whemels the vector size anéh the neighborhood size.

The proofs of one-to-two and two-to-one index transforovaiare respectively in appendices
B and A. The complexity of such mappings is dependent of theutaion of the square root
on GPU (nearly constant time).

3) 3-Hamming DistanceFor an array of size, the size of this nelghborhoodﬁi

The associated kernel on GPU is executecﬁbw threads. A mapping here between a
neighbor and a GPU thread is also particularly challengIﬁg—> INXxINxIN andINxIN xIN —
IN mappings must be handled efficiently.

The mapping here is a generalization of the 2-Hamming distareighborhood with a third
index. In this case, a 3D abstraction must be consideredtheosake of simplicity, instead of
having a 3D view, we consider a set of plans where each plan2iB abstraction. The main
difference with the 2D abstraction is the introduction ofh&d index which represents a plan
in the 3D abstraction.

A methodology to perform one-to-three and three-to-onexnttansformations is given in
appendices C and D. The complexity of the mappings are ligaic in practice (complexity
of the numerical Newton-Raphson method).

__global__ void MovelncrEvalKernel const intx V, intx new_fitness)
{
int move_ index = blockldx .x = blockDim.x + threadldx.x;
if (move_index < N)
new_fitness[moveindex] = computefitness (V, moveindex);

Fig. 7. Mapping source code for a neighborhood based on a Hagndistance of one

IV. APPLICATION TO THE PERMUTED PERCEPTRONPROBLEM
A. Permuted Perceptron Problem

As illustration of a binary problem, the PPP is a NP-complateblem that has received a
great attention given its importance in security protocAls e-vector is a vector with all entries
being either +1 or -1. Similarly agrmatrix is a matrix in which all entries are either +1 or -1.
The PPP is defined as follows:

Definition 1: Given ane-matrix A of sizem x n and a multiset S of non-negative integers of
sizem, find ane-vector V of sizen such that{{(AV),/j ={1,...,m}}} = S.

Let Y = AV be a matrix-vector product. Determine a histogram veéfoover the integers
such thatd; = #{Y; =i | j = 1,...,m}. Let V' denote the candidate for the secret keylet
Y’ = AV’ and letH! denote the histogram vector &f. Then an objective function is given in
[10] by:

FV) =30 x> ((AV)il = (AV))) + > (|H; — H])).
i=1 i=1
This corresponds to a minimization problem where a vaf¢€’) = 0 gives a successful
solution to the problem.

B. Configuration

A tabu search [11] has been implemented on GPU for each nailgbbd. This algorithm is
an instance of the general LS model presented in introducBasically, this algorithm uses a
tabu list (a short-term memory) which contains the solditmat have been visited in the recent
past. More details of this algorithm are given in [11].

The used configuration is an Intel Xeon 8 cores 3GHz with a NXIGTX 280 card. The
number of multiprocessors of this card is equal to 32 and tmestcaints of memory alignment
are relaxed in comparaison with the previous architect(@80 series). Therefore, GTX 280
get better global memory performance.

The following experiments intend to measure the qualityhef $olutions for the instances of
the literature addressed in [10]. A tabu search was execiftd¢imnes with a maximum number
of »X(2=x(=2) jterations (stopping criterion). The tabu list size wasitaaby set to a2 where
m IS the number of neighbors. The average value of the evaludtinction (fitness) and its
standard deviation (in subindex) were measured. The nuwibsuccessful tries (fitness equal
to zero) and the average number of iterations are also euexh

C. 1-Hamming Distance

Table | reports the results for the tabu search based on Heniming distance neighborhood
and Fig. 7 shows the code source of the associated mappirgy.short execution time, the
algorithm was able to find few solutions for the instanees= 73,n = 73 (10 successful tries

TABLE |
PERMUTED PERCEPTRON PROBLEM-HAMMING DISTANCE

Problem Fitness | # iterations| # solutions| CPU time | GPU time

73 X 73 10.35.1 59184.1 10/50 4s 9s

81 x 81 10.85.6 77321.3 6/50 6s 13s
101 x 101 | 20.214.1 166650 0/50 16s 33s
101 x 117 | 16.45.4 260130 0/50 29s 57s

PPP GPU Acceleration
1200 T T T T T T T T T T T T T T T

CPU
GPUTexture

1000

800 - 1

600 —

Execution time

400 g

X

200

¥
X

|
|

601-617 4\’

101-117 ¢
201-217
301-317
401-417
501-517 —+
701-717 |
801-817 |
901-917 |

1001-1017 F

1101-1117 F

1201-1217 F

1301-1317 |

1401-1417 |

1501-1517 F

Problem size

Fig. 8. GPU acceleration factor on the permuted perceptrobl@m

on 50) andm = 81,n = 81 (6 successful tries on 50). The two other instances are kmeNvn
for their difficulties and no solutions were found. Regagdexecution time, GPU version does
not offer anything in terms of efficiency. Indeed, since tleghborhood is relatively smalk(
threads), the number of threads per block is not enough lypdaler the memory access latency.

To measure the efficiency of the GPU-based implemententafiahis neighborhood, bigger
instances of the PPP must be considered. Fig. 8 shows the Gtaleeation factor for different
PPP instance sizes on the basel @00 iterations.

Fromm = 201 andn = 217, the GPU version starts to be faster than CPU version (aetilp
factor of x1.1). As long as the problem size increases, the speed-up gigwsicantly (up to
x10.8 for m = 1501 andn = 1517).

D. 2-Hamming Distance

A tabu search has been implemented on GPU using a 2-Hammsétgnde neighborhood.
The source code of the mapping is given in Fig. 9. Results efetkperiment for the PPP are
reported in Table II.

By using this other neighborhood, in comparison with Tabléhé quality of solutions was
significantly improved: on the one side the number of sudaesses for bothm = 73,n =73

__global__ void MovelncrEvalKernel const intx V, intx new_fitness)
{
int move_ index = blockldx .x = blockDim.x + threadldx.x;
if (move_index < Nx(N—1)/2) {
int move_first, move_second;
move_index = floorf(((sqrtf(8« ((Nx(N—1)/2) — move_index — 1)
+ 1 +0.1Ff)) 1)/ 2) - 1;
move_first = N - 2 — move_index;
move_second = moveindex — move_first « (n—1) +
move_first x (move_first + 1)/2 + 1;
new_fithness[moveindex] = computefitness (V, movefirst, move second);

Fig. 9. Mapping source code for a neighborhood based on a Hagndistance of two

TABLE I
PERMUTED PERCEPTRON PROBLER-HAMMING DISTANCE

Problem Fitness | # iterations| # solutions| CPU time | GPU time | Acceleration
73 x 73 16.417.9 43031.7 19/50 81s 8s x9.9

81 x 81 15.516.6 67462.5 13/50 174s 16s x11.0
101 x 101 | 14.214.3 138349 12/50 748s 44s x17.0
101 x 117 | 13.810.8 260130 0/50 1947s 105s x18.5

(19 solutions) andn = 81,n = 81 (13 solutions) is more important. On the other side, 12
solutions were found for the instange= 101, n» = 101. Regarding execution time, acceleration

factor for GPU version is really efficient (from9.9 to x18.5). Indeed, since a large number

of threads are executed, GPU can take full advantage of th&pnagessors occupancy.

E. 3-Hamming Distance

A tabu search using a 3-Hamming distance neighborhood wakeimented for the PPP. Fig.
10 shows a part of the source code for the mapping. Since thgu@ational time was too
exhorbitant, the average expected time for the CPU impl¢atien was deduced from the base
of 100 iterations per execution. Results are collected in Table I

In comparison with Knudsen and Meier article [10], the res@ibund by the generic tabu
search are competitive without any use of cryptoanalysibrtigues. Indeed, the number of
successful solutions was drastically improved for eveistance (respectively 35, 28 and 18
successful tries) and a solution was even found for thenestax = 101, 7 = 117. Regarding

__global__ void MovelncrEvalKernel const intx V, intx new_fitness)
{
int move_ index = blockldx .x = blockDim.x + threadldx.x;
if (move_index < Nx(N—1)x(N—2)/6) {
int move_first, move_second, movethird;
newtonGPU (moveindex,&move first ,&move_second ,&movethird);
new_fitness[moveindex] = computefitness (V, movefirst, move second, movethird);
}
}

Fig. 10. Mapping source code for a neighborhood based on antitagndistance of three

TABLE 11l
PERMUTED PERCEPTRON PROBLEM-HAMMING DISTANCE

Problem | Fitness| # iterations| # solutions| CPU expected timg GPU time | Acceleration
73 x 73 2.443 21360.2 35/50 1202s 50s x24.2

81 x 81 3.94.4 43230.7 28/50 3730s 146s x25.5
101 x 101 | 6.25.4 117422 18/50 24657s 955s x25.8
101 x 117 | 7.72.7 255337 1/50 88151s 3551s x24.8

execution time, acceleration factors using GPU are vemyifsigint (from x24.2 to x25.8).

The conclusion from this experiment indicate that the us&BfJ provides an efficient way
to deal with large neighborhoods. Indeed, 3 Hamming-deg#aneighborhood on PPP were
unpracticable in terms of single CPU computational ressesirSo, implementing this algorithm
on GPU has allowed to exploit parallelism in such neighbothand improve the quality of
solutions.

V. DISCUSSION ANDCONCLUSION

Local search algorithms based on large neighborhoods n@ay & enhance the effectiveness
in combinatorial optimization [2]. However, their explaiion for solving real-world problems
is possible only by using a great computing power. Highgrenbince computing based on GPU
accelerators is recently revealed as an efficient way to lisehtige amount of resources at
disposal and fully exploit the parallelism of neighborheodo the best of our knowledge, no
research work has been published on LS algorithms on GPW laselifferent neighborhoods
exploration.

In this paper, we patrticularly focused on the design of effitimappings of three different
neighborhoods to the hierarchical GPU for binary probleifise designed and implemented
approaches have been experimentally validated on a cmgygb application. The experiments
indicate that GPU computing allows not only to speed up tleeckeprocess, but also to exploit
large neighborhoods structures to improve the quality efdhtained solutions. For instance, LS
algorithms based on a Hamming distance of three were ungabtd on traditional machines
because of their high computational cost. So, GPU computagypermitted their achievement
and the obtained results are particularly promising in seoheffectiveness. Indeed, all along
the paper, we investigated on how the increase of the sizeighbhorhood allows to improve the
quality of the solutions. Furthermore, we strongly beliévat the quality of the solutions would
be drastically enhanced by (1) increasing the number ofingniterations of the algorithm and
(2) introducing appropriate cryptonanalysis heuristics.

Beyond the improvement of the effectiveness, the paraitelof GPUs allows to push far
the limits in terms of computational resources. As a conseqge, a next perspective is to use
a multi-GPU approach to allow handling larger neighborlsdt will consist of partitioning
the neighborhood set, where each patrtition is executed angéesGPU. That way, multi-GPU
approach will allow to increase the speed-up of the explmmaspace of a given solution. But
since each GPU has its own private memory, managing thexdoemecution of different GPUs
in an efficient way is not a straighforward task.

In the future, GPU concepts will be integrated in the PaE@iplatform. This framework was
developped for the design of parallel hybrid metaheusstiedicated to the mono/multiobjective
resolution [12]. ParadisEO can be seen as a white-box ebjemted framework based on a clear
conceptual separation of metaheuristics concepts. Thal&dEvolving Objects (PEO) module

i
01" 1

02 12>,

il 13@ .

04 14 24 34

05 15 25 35 45

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 11. IN x IN — IN mapping

of ParadisEO includes the well-known parallel and distedumodels for metaheuristics. This
module will be extended in the future with GPU-based impletaton.

APPENDIX A
TWO-TO-ONE INDEX TRANSFORMATION

Let us consider a 2D abstraction in which elements of thehimighood are disposed in a
zero-based indexing 2D representation in a similar way ahlatver triangular matrix. Let be
the size of the solution representation andriet nx(n=1) he the size of its neighborhood. Let
1 andj be the indexes of two elements to modify in a binary encodingandidate neighbor is
then identified by both and j indexes in the 2D abstraction. Lét:, j) be the corresponding
index in the 1D neighborhood fitnesses structure. Fig. 1éggikirough an example an illustration
of this abstraction.

In this examplen = 6, m = 15 and the neighbor identified by the coordinates-(2 , j = 3)
is mapped to the corresponding 1D array elemgfit;) = 9.

The neighbor represented by the,(j) coordinates is known, and its corresponding index
f(i,7) on the 1D structure has to be calculated. If the 1D array seewn, the 2D abstraction
would be similar to a matrix and th&y x IN — IN mapping would be:

f,5) =ix(n=1)+(—1)

Since the 1D array size im = =Y in the 2D abstraction, elements above the diago-

nal preceding the neighbor must not be considered (illtestren Fig. 11 by a triangle). The
corresponding mappiniN x IN — IN is therefore:

ix (i+1)

g o

f,5) =ix(n=1)+(G —1) -

APPENDIX B
ONE-TO-TWO INDEX TRANSFORMATION

Let us consider the 2D abstraction previously presentdtielelement corresponding fdi, ;)
in the 2D abstraction has a givémabscissa, then let be the distance plus one between the
i+ 1 andn — 2 abscissas. It is known, the value of can be deduced:

V8X +1-1

i=n—2—| 5

] (2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HEEEEERCEEEEEEN

X next elements

X next elements

Fig. 12. IN — IN x IN mapping

Let X be the number of elements followingyi, j) in the neighborhood index-based array
numbering:

Since this number can be also represented in the 2D abstratitie main idea is to maximize
the distancé: such as:
kx (k+1)

2

Fig. 12 gives an illustration of this idea (represented byiangle).
Resolving (4) gives the greatest distarice

= R ©)

A value of i can then be calculated according to (2). Finally, by usingj(¢an be given by:
ix (i+1)
2

<X (4)

J=107) —ix(n=1)+

IN — IN x IN mapping is also done.

+1 (6)

APPENDIX C
ONE-TO-THREE INDEX TRANSFORMATION

f(z,y,2) is a given index of the 1D neighborhood fithesses structucetha objective is
to find the three indexes, y and z. Let n be the size of the solution representation and
m = X=bx(=2) Ko the size of the neighborhood. The main idea is to find in kigian
(coordinatez) corresponds the given elemefitz, y, z) in the 3D abstraction. If this correspond-
ing plan is found, then the rest is similar as fNe— IN x IN mapping for the one-to-two index
transformation previously seen. Figure 13 illustrates xem®le of the 3D abstraction.

In this representation, since each plan is a 2D abstractimnnumber of elements in each
plan is the number of combinatior@ wherek € {2,3,...,n—1} according to each plan. For

a specific neighbor, if a value df is found, then the value of the corresponding ptais:

z=n—k—1 (7)

’0|1 I 2|3|4‘m ’25|26|27é8§29|30|31|32|33|34‘

Y next elements

Plan 0 (6) Plan 2 (@) \
2 2
012 o e e k
013 023 ..
Y next elements
014 024 034
015 025 035 045 .. 235‘ /
016 026 036 046 056 236 246 256
5 3
Plan 1 (2) Plan 3 (2)
123 L
. 124 134 ..
. 125 135 145 .. e e ... |345 ...
. 126 136 146 156 eee e ... |346 356

Fig. 13. IN — IN x IN x IN mapping

For a given indexf(x,y, z) belonging to the plark in the 3D abstraction, the number of
elements contained in the following plans(@ (also equal to’L)())
Let Y be the number of elements following(z,y, z) in both 1D neighborhood fithesses

structure and 3D abstraction:
Y =m-— f(x,y, 2)

Then the main idea is to minimize such as:
kx(k—1)x(k—2)

6 >=Y (8)
By reordering (8), in order to find a value bf the next step is to solve the following equation:
k2 — ki —6Y =0)

Cardano’s method in theory allows to solve cubic equatiogvextheless, in the case of finite
discrete machine, this method can lose precision espgbmalbig integers. As a consequence, a
simple Newton-Raphson method for finding an approximataevafl &, is enough for our prob-
lem. Indeed, this iterative process follows a set guidelmapproximate one root, considering
the function, its derivative, an initial arbitra,-value and a certain precision (see Algorithm
1).

Finally, since the minimization of in (8) is expected, the value @f is:

k= k]

Then a value ot can be deduced with (7). At this step, the plan corresponitiniige element
f(z,y, z) is known. The next steps for findingandy are identically the same as the one-to-two
index transformation with a change of variables.

Algorithm 1 Newton-Raphson method for solvidg — k; — 6Y = 0
1k < initial_value;
2: repeat
3 term «— (kyxkixky — ki —6%xY) / (3xkyxk —1);
4.k — ki —term;
5. until |term / ki| > precision

First, the number of elements precedifigr, v, z) in the neighborhood index-bas array num-
bering is exactly:
(k+1)xkx(k-1)
6

Second, the number of elements contained in the samezpéay (z,y, z) is:
kx(k—1)

2
Finally the index of the last element of the plans:

nbElementsBefore = m —

nbElements =

lastElement = nbElementsBefore + nbElements — 1
As a result, one-to-two index transformation is appliedwatchange of variables:
f(i,j) = f(z,y,z) — nbElementsBefore
n=n—(2+1)
X = lastElement — f(z,y, 2)

After performing this transformation, a value efandy can be deduced:
r=1i+(z+1)
y=Jj+(=+1)

IN — IN x IN x IN mapping is done.

APPENDIX D
THREE-TO-ONE INDEX TRANSFORMATION

x, y and z are known and its corresponding indékz, y, z) must be found. According to the
3D abstraction, since a value ofis known, k can be calculated:
k=n—1-—=z

Then the number of elements precedifigr, y, z) in the neighborhood index-based array
numbering can be also deduced.

If each plan size wagn — 2) x (n — 2), each 2D abstraction would be similar to a matrix and
the N x IN — IN mapping would be:

filz,y,z)=2x(n—=2)x(n—=2)+(x—1) x(n—2)+ (y —2) (20)

6 4
Plan 0 (2) ng\ Plan 2 (2)
012 ™
- n3
013
014 024 034 | 234
n4
015 025 035 | 235 245
016 026 036 046 056 | 236 246 (256)
ni
5 3 2
Plan 1 2 Plan 3 2 Plan 4 2
. |124 134 ..
. |125 135 . 345 ..
. |126 136 146 156 . 346 356 o . 456
01 2 3 4 25 26 27 28 29 30 31 32 33 34
Ve
NN &)

Fig. 14. IN x IN x IN — IN mapping

Since each 2D abstraction is some kind of triangular masome elements must not be
considered. The advantage of the 3D abstraction is thas #lements can be found by geometric
construction (see Fig. 14).

First, given a plarn:, the number of elements in the previous plans to not conssder

nl =z x(n—2)x (n—2)—nbElementsBefore
Second, the number of elements on the left side to not cansidée planz is:
n2=zx(n—2)
Third, the number of elements on the upper side to not congidéhe planz is:
nd=(y—z)x(n—k—1)
Fourth, the number of elements on the upper triangle alfgvey, =) to not consider is:

(y—2)x(y—=2-1)
2
Finally a value off(z,y, z) can be deduced:

f(x,y,z):fl(x,y,z)—nl—n2—n3—n4 (11)
IN x IN x IN — IN mapping is also done.

n4d =

(1]
(2]

(3]
(4]

(5]
(6]
(7]
(8]
(9]
[10]
[11]

[12]

REFERENCES

E.-G. Talbi, From design to implementation Wiley, 2009.

R. K. Ahuja, J. Goodstein, A. Mukherjee, J. B. Orlin, and $harma, “A very large-scale neighborhood search algarith
for the combined through-fleet-assignment moddFORMS Journal on Computingol. 19, no. 3, pp. 416-428, 2007.
S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, .SU2ng, S. S. Baghsorkhi, and W. mei W. Hwu, “Program
optimization carving for gpu computingJ. Parallel Distrib. Comput.vol. 68, no. 10, pp. 1389-1401, 2008.

J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An efficienfine-grained parallel genetic algorithm based on
gpu-accelerated,” ilNetwork and Parallel Computing Workshops, 2007. NPC WanshIFIP International Conferenge
2007, pp. 855-862. [Online]. Available: http://dx.dogt¥0.1109/NPC.2007.108

D. M. Chitty, “A data parallel approach to genetic progmaing using programmable graphics hardware,GECCQ
2007, pp. 1566-1573.

T.-T. Wong and M. L. Wong, “Parallel evolutionary algthims on consumer-level graphics processing unit,Pamallel
Evolutionary Computations2006, pp. 133-155.

K.-L. Fok, T.-T. Wong, and M. L. Wong, “Evolutionary corofing on consumer graphics hardwaré&EE Intelligent
Systemgsvol. 22, no. 2, pp. 69-78, 2007.

D. Pointcheval, “A new identification scheme based on beceptrons problem,” iEUROCRYPT1995, pp. 319-328.
NVIDIA, CUDA Programming Guide Version 2.2009.

L. R. Knudsen and W. Meier, “Cryptanalysis of an identfion scheme based on the permuted perceptron problem,” in
EUROCRYPT1999, pp. 363-374.

E. D. Taillard, “Robust taboo search for the quadratic assignt problem,”Parallel Computing vol. 17, no. 4-5, pp.
443-455, 1991.

S. Cahon, N. Melab, and E.-G. Talbi, “Paradiseo: A framokk for the reusable design of parallel and distributed
metaheuristics,J. Heuristics vol. 10, no. 3, pp. 357-380, 2004.

