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Abstract—Today’s schedulers for a parallel processing environ-
ment are generally optimized for submit-time elasticity of batch
jobs only, where resource needs are specified only at submission
time. They are not designed for runtime elasticity of heterogeneous
workloads comprising both batch and interactive jobs. By run-
time elasticity it is meant that resource requirements for a job
can change during its execution. This paper examines today’s
workload models and schedulers from this novel perspective. We
show the need for an extended workload model with runtime
elasticity. We then propose Delayed-LOS and Hybrid-LOS, two
novel scheduling algorithms that improve and build on an existing
Dynamic Programming based scheduler (LOS) designed only
for batch jobs. While Delayed-LOS improves significantly over
LOS, Hybrid-LOS is specifically designed for heterogeneous
parallel workloads. We further propose elastic versions of these
algorithms that incorporate runtime elasticity as well. Extensive
simulations with GridSim framework demonstrate that Delayed-
LOS & Hybrid-LOS improve average utilization by up to 4.1%
& 4.55%, thereby reducing mean job-waiting time and slowdown
by up to 31.88% & 25.31% and 30.3% & 24.29%, respectively.

Keywords-scheduling, high performance computing, runtime
elasticity, cloud computing

I. INTRODUCTION

The cloud computing model is emerging as the de facto
mechanism for offering computing services. Not surprisingly,
this new model is being embraced to improve the consumabil-
ity of High Performance Computing (HPC) services as well.
In this paper, we study the impact of demand elasticity—a
key ingredient in the cloud service model—on job scheduling.
In particular, we investigate the limitations of today’s HPC
schedulers in handling demand elasticity and advocate the
need for new techniques that are better suited for this emerging
workload model.

From a historical perspective, cloud computing is not an
entirely new concept in the HPC or parallel processing domain.
Grid Computing, for instance, has attracted significant research
interest over the last decade or so, much of which focused on
fundamental problems in federated resource management [1].
At a high level, HPC systems have generally used a queuing
model to schedule incoming jobs [2], [3], [4], [5], [6], [7],
[8]. Most optimizations revolve around how an HPC system
is packed and how the queue is managed to maximize system
utilization while minimizing job wait times. Much of the com-
plexity then arises when balancing a job’s expected runtime
needs against scheduling of future jobs.

A. Runtime Elasticity

To some extent, elasticity—in the cloud model—also oper-
ates across similar dimensions. Basically, all users are expected
to get what they want, when they want it, and pay for what
they use. We differentiate between two types of elasticity:
submit-time elasticity and runtime elasticity. The former allows
varying job execution time requirements to be specified at
submission time. In contrast, runtime elasticity gives its users
the ability to change their execution time requirements on-
the-fly. Today’s cloud resource demand model allows for both
types of elasticity, whereas general HPC schedulers implement
submit-time elasticity only. The challenge, then, is how can
HPC schedulers best manage the underlying resources under
the complete demand model, similar to what is being offered
by mainstream clouds.1

Part of the difficulty is due to the aggressive system utiliza-
tion levels that HPC systems target. It is not uncommon for an
HPC system to exceed 80% utilization. In contrast, mainstream
data centers often run at 15% utilization. Especially with
the use of virtualization, cloud data centers have significant
spare capacity to provide runtime elasticity. We believe that
even in the absence of both, abundant spare capacity and
virtualization, HPC schedulers can provide a certain degree
of runtime elasticity. A key dimension of runtime elasticity
is the time dimension. Here, a job can explicitly change
its execution time requirements after it starts (e.g., modify
the kill-by time). A straightforward implementation of time
elasticity can negatively impact scheduling of future jobs.
Therefore, a careful balance is required between running jobs
needing more time and future jobs waiting in queue when their
execution time requirements can change on-the-fly.

B. Heterogeneous Workloads

Unpredictable wait times have been long recognized as a
key issue in batch schedulers. For certain workloads, this
unpredictability can be tolerated. For other workloads, like
real-time workloads, better guarantees are a must. Especially

1Its important to note that while HPC systems make extensive use of job
priority to regulate demand, it is, however, less emphasized in the cloud model.
In its place, pricing plays a fundamental role in managing demand. This is
depicted, for example, by Amazon EC2’s three different pricing schemes:
reserved, on-demand, and spot.
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in the context of cloud, next-generation schedulers must
support a wide array of wait-time needs. Inspired by main-
stream cloud systems, we envision HPC schedulers to support
heterogeneous workloads. Heterogeneous workloads are de-
fined as those comprising both batch and dedicated/interactive
(reserved-capacity) jobs. By dedicated/interactive jobs it is
meant that instead of the jobs being scheduled by the scheduler
at some optimal time (like for batch jobs), users can specify
an exact start-time of the job and the job must be triggered
at that start-time. Thus, unlike batch jobs, dedicated jobs
are rigid in their start-times. Many scenarios in a parallel
processing environment can be envisaged where some users
need to run background simulation programs that are not
time or deadline critical, where as some users may require
rigid and fixed time slots such as for real-time traffic data
processing during certain periods of the day/week, real-time
geographical, satellite or sensor data processing during certain
periods of the month/year. In this case, a single HPC scheduler
must be capable of efficiently scheduling this mix of batch
and dedicated jobs. Present day HPC schedulers are designed
for handling only batch jobs and are incapable of efficiently
handling such heterogeneous workloads through a systematic
and optimal methodology.

C. Summary and Contributions

In this paper, we introduce two new schedulers called
Delayed-LOS and Hybrid-LOS that improve and build on
the Lookahead Optimizing Scheduler (LOS) [7]. LOS was
designed to handle only batch jobs. We also introduce elastic
versions of our algorithms, which optimize job placement for
execution time elasticity.

The main contributions of this paper are threefold:

1) We present a unified approach for designing schedulers
that are optimized for heterogeneous workloads and
incorporate runtime elasticity at the same time. To the
best of our knowledge, this unified approach has not
been taken before.

2) Delayed-LOS – an improved version of LOS is pro-
posed for greater efficiency in scheduling of batch jobs.
Delayed-LOS outperforms LOS and another popular
scheduler, Easy Backfill (EASY), in most scenarios.

3) Hybrid-LOS – an extension of Delayed-LOS is pro-
posed to handle heterogeneous workloads comprising
both batch and dedicated/interactive jobs. Hybrid-LOS
also outperforms its LOS and EASY counterparts for
heterogeneous workload, in most scenarios.

We conduct extensive simulations to compare the perfor-
mance of our algorithms against EASY and LOS. Delayed-
LOS & Hybrid-LOS improve average utilization by up to
4.1% & 4.55%, thereby reducing mean job-waiting time and
slowdown by up to 31.88% & 25.31% and 30.3% & 24.29%,
respectively. Note that in a parallel processing environment,
improved utilization of the order of even 4% can lead to huge
energy savings.

This paper is organized as follows. Section II provides
description of related work on today’s schedulers. Section III

introduces our new algorithms. Section IV presents the sim-
ulation framework and a new Cloud Workload Format to
support runtime elasticity for heterogeneous workloads in an
HPC environment. A detailed performance evaluation study
through simulations is presented in Section V. In Section VI
we provide directions for future work and conclude this paper.

II. PROBLEM DESCRIPTION AND RELATED WORK

Scheduling of jobs in a parallel processing environment is a
well studied problem and an important aspect of the HPC do-
main [2], [3], [4], [5], [6], [7], [8]. The efficiency of a parallel
processing computing system depends on how tightly batch
jobs can be scheduled so as to maximize system utilization in
order to achieve energy savings. In addition to batch jobs we
also consider dedicated jobs whose requested start times are
fixed and are not decided by the scheduler. Therefore, mixing
of batch and dedicated jobs leads to additional complexity
and scheduling of flexible batch jobs around rigid dedicated
jobs becomes non-trivial. Adding the runtime elasticity feature
where jobs can expand and contract in their execution time
leads to further complexity as regards to capability and effi-
ciency of a scheduling algorithm to accommodate this feature.

A. Motivation

Currently, all scheduling algorithms support submit-time
elasticity for batch jobs only. Once batch jobs with user
estimated execution times are submitted, they can not be
explicitly altered at runtime. Today’s algorithms account for
both scheduled termination (kill-by time), and premature ter-
mination before the user estimated end time, but do not
account for the inter-play of explicit, on-the-fly extensions
or reductions in execution time, between batch and dedicated
jobs. Our new algorithms are specifically designed to address
these short-comings of todays’ schedulers.

B. State of the Art

The shortest-job-first [3] algorithm sorts, in increasing or-
der, the waiting jobs in the queue by their estimated job run-
time. This algorithm must precisely estimate jobs’ execution
times, either through repeated executions of jobs [4] or through
compile-time analysis [9]. Majumdart et al. [10] investigated
smallest-job-first scheduling, where they found that perfor-
mance is poor because jobs that require few resources do not
necessarily terminate quickly and cause large fragmentation in
resources. Li et al. [11] investigated largest-job-first schedul-
ing. This approach is motivated by results in bin packing
optimization where a simple first-fit algorithm achieves better
packing if the packed items are sorted in decreasing size [12].
It may be expected to cause less fragmentation than smallest-
job first scheduling. However, large jobs do not necessar-
ily require long execution times. Studies [5], [13] indicate
that both previously mentioned scheduling mechanisms do
not necessarily perform better than a straightforward FCFS
scheduling.

Backfill scheduling is a recent variation of FCFS. Jobs that
overrun their estimated execution times are killed. Mu’alem
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et al. [6] proposed an Easy Backfill algorithm to improve
the resource fragmentation by aggressively moving the small
jobs ahead to fill in the holes in the schedule, provided that
they do not delay the first job in the queue. However, the
results indicated no visible improvement when compared to the
conservative Backfill algorithm, where small jobs move ahead
only if they do not delay any job in the queue. The actual
performance depends on the characteristics of workload. It
also demonstrated that Backfill scheduling works better when
a job’s execution time is over-estimated by two times. Skovira
et al. [14] have shown that Backfill scheduling is an effective
means of improving resource utilization.

The Backfill algorithm only considers a single job at a time
and, thus, might miss better packing opportunities. Shmueli
et al. [7] proposed Lookahead Optimizing Scheduler (LOS)
that uses dynamic programming to find the best multi-job
combination for filling the schedule. Trace based evaluation
exhibited that LOS indeed improves utilization over Easy
Backfill. However, as packing is in general NP-complete,
this raises concerns regarding the runtime complexity of the
algorithm. By limiting the lookahead to 50 jobs, the authors
demonstrated that computation time can be reduced without
significant reduction in packing efficiency.

Krevat et al. [8] investigate the effectiveness of migration
combined with FCFS and Backfill in the IBM BlueGene/L
system. BlueGene/L is a massively parallel cellular archi-
tecture system with a toroidal interconnect, which typically
requires jobs to be both rectangular and contiguous. These
restrictions introduce fragmentation and affect the resource
utilization. Migration moves jobs around the toroidal machine,
performing on-the-fly de-fragmentation to create larger con-
tiguous free spaces for waiting jobs. The paper investigated
the scheduling algorithm using simulations and showed that
it can improve BlueGene’s resource utilization. The benefits
of combining migration and Gang scheduling have also been
demonstrated [15]. However, these studies did not include the
performance impact by migration due to application preemp-
tion overhead.

Finally, Netto et al. [16] introduced a service level agree-
ment (SLA) concept into scheduling through advance resource
reservation. The advance reservation is not strictly observed
but can be flexible and adaptive and is a trade off between
quality of service and resource utilization.

III. NEW SCHEDULING ALGORITHMS

We looked at LOS [7] as a starting point for our new algo-
rithms. The dynamic programming approach of LOS seemed
adaptable for handling cloud workloads. LOS is shown to
perform better than EASY for the real system traces (CTC,
SDSC and KTH logs) used in [7]. We have implemented
LOS and EASY in our simulation framework and performed
experiments to validate that LOS indeed performs better
than EASY for the real system traces. Implementation and
simulator details are presented later in Section IV. Plotting
the results from our experiments with the SDSC log, Figure
1 shows performance comparison between EASY and LOS
algorithms. Clearly LOS outperforms EASY in terms of the
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Fig. 1. Performance comparison between EASY and LOS for the SDSC log
[7], using our simulation framework

mean job waiting time. On x-axis of Figure 1 the offered Load
by a real system trace or log is calculated by multiplying the
job’s sizes by their runtimes, summing these values, and then
dividing the result by the log’s duration and the size of the
machine in terms of number of processors.

Anomaly in LOS: Authors in [7] have performed experiments
with variation in load only by multiplying the arrival time of
each job by a constant factor (Section 4.1, [7]). We have taken
the same approach for our results in Figure 1. They state that
varying the load by changing the job sizes would affect their
packing properties and do not consider that direction.

Our Claim: We claim here that changing job sizes for varying
the load has a significant impact on the performance of LOS
scheduler. Through experiments it is shown later in Section V
that LOS performs worse than EASY when job sizes are var-
ied. Our experiments make use of synthetic workloads that are
generated using well derived and established analytical models
of [17]. Job size related parameters in these analytical models
are varied for generating the variable job size workloads.

Based on the above discussion, we propose a modified
version of the LOS algorithm that performs better than EASY
not just with real system logs, but with model generated
synthetic workloads [17] as well. We name this improved
version as Delayed-LOS. Like EASY and LOS, Delayed-LOS
schedules homogeneous workload comprising batch jobs only.
We then propose the Hybrid-LOS algorithm which schedules
heterogeneous workload comprising both batch and dedicated
(interactive) jobs.

A. Delayed-LOS: Improving LOS for Batch Jobs

The design of Delayed-LOS is motivated as follows. Let
us first take a closer look at LOS which uses dynamic
programming [7]. LOS examines all jobs in the waiting queue
and tries to find a combination of jobs that together maximize
utilization. It takes a greedy approach that achieves local opti-
mum, but not necessarily global optimum. A globally optimal
algorithm that uses off-line, linear or quadratic programming
may run into scalability issues with large number of jobs or
when anticipating future arrival of jobs. Moreover, it is hard
to accurately predict future arrivals and an off-line algorithm
can not be used for runtime elastic workload.

Authors in [7] develop LOS in two stages. They first
propose a basic algorithm (Algorithm 1 in [7]) and then add
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reservations to the basic algorithm to avoid starvation of large
sized jobs (Algorithm 3 in [7]). For our convenience, we
name the corresponding dynamic programs as Basic DP and
Reservation DP. In Basic DP, the waiting queue of batch jobs
is processed to find a set of jobs that will maximize current
system utilization. This is better than Backfilling approach
in which the queue is serially scanned to schedule any job
whose size is less than or equal to the current free capacity.
The reader is referred to Section 3.1 in [7] for a detailed
discussion on this improvement using an example. Authors in
[7] then observe that if there are large number of small jobs
waiting behind a large job at the head of the queue, the small
jobs can be repeatedly picked to maximize utilization, if the
available capacity is less than the size of the large job. Thus,
the large job at head of queue could be skipped repeatedly. So,
instead of finding the right combination of jobs that maximize
utilization at a given time, they propose to start the job at
head of queue right away if enough capacity is available. This
bounds the waiting time of the large job at head of queue. If
enough capacity is not available then a reservation is made
for this head job in future by considering the remaining or
residual execution time of running jobs, and then the queue
is scanned to find the right set of jobs to fill in holes before
the reservation time. This modified version of Basic DP is the
Reservation DP.

We claim that starting the job at head of queue right away
is too aggressive an approach for bounding the head job’s
waiting time. Consider our example illustrated in Figure 2
which is analogous to the example in Figures 1 and 2 in [7].
There are a total of 10 processors in the machine. Suppose the
waiting queue is empty and no job is running on the machine,
i.e., total free capacity is 10 processors. Then jobs of size
7, 4 and 6 processors (with any duration) arrive in that order.
Therefore, job at head of queue is of size 7 followed by job of
size 4 and then 6. In this case starting the head job right away
(Alternative-(a)) will clearly be a bad choice. It would lead to
utilization of only 7 instead of 10 which could be achieved by
selecting the rear two jobs (Alternative-(b)).

We therefore propose Delayed-LOS, a modified version of
LOS, as follows. Delayed-LOS is presented in Algorithm 1
where it first calls Basic DP (line 7). We introduce a new
attribute, skip count, denoted by 𝑠𝑐𝑜𝑢𝑛𝑡, that represents the
number of times the head job in waiting queue is skipped
while selecting jobs using Basic DP. 𝑠𝑐𝑜𝑢𝑛𝑡 is initially set
to zero for a new head job and is incremented by one at
every scheduling cycle if the head job is not selected in
that cycle using Basic DP (lines 6 − 11). When 𝑠𝑐𝑜𝑢𝑛𝑡
surpasses a pre-determined maximum skip count threshold
denoted by 𝐶𝑠, Delayed-LOS switches to the Reservation DP
(lines 3 − 5; 12 − 20). This design will lead to a utilization
of 10 in our Figure 2 example and still allow bounding
the waiting time of head job when 𝑠𝑐𝑜𝑢𝑛𝑡 exceeds 𝐶𝑠. We
shall provide guidelines on choosing the value of 𝐶𝑠 through
experimentation in Section V. Formulating a systematic or
analytical methodology to compute the optimal value of 𝐶𝑠

using any characteristics of the workload is a non-trivial
problem and lies outside the scope of this paper. It can be
studied as a separate research problem in itself since it involves

multiple workload characteristics such as job arrival time, job
arrival rate, job size, job execution time, etc. The notation used
in Section V is presented in the ‘Notations’ box which also
details some definitions used later in this paper. The reader is
strictly advised to read the ‘Notations’ box before proceeding
further.

B. Hybrid-LOS for Heterogeneous Workload

Here, we consider scheduling of batch jobs in presence of
dedicated or interactive jobs that are required to be scheduled
at requested start time as described earlier. For this, we
introduce an additional queue of waiting dedicated jobs. While
batch jobs are selected to be scheduled with the objective of
maximizing utilization, dedicated jobs must be scheduled at
their requested start time. For this, we make explicit reserva-
tions for dedicated jobs in future and schedule the batch jobs
around them similar to the approach in Delayed-LOS. Hybrid-
LOS is thus an extension of Delayed-LOS for heterogeneous
workload and is presented in Algorithm 2. If the dedicated
queue is empty (line 3) then batch jobs are scheduled as per
the Delayed-LOS algorithm (line 4). Otherwise, if the first
dedicated job’s requested start time has reached, it is moved to
the head of batch queue to be scheduled in the next scheduling
cycle (lines 6− 7). If the first dedicated job’s requested start
time has not yet reached, then ‘freeze end time’ and ‘freeze
end capacity’ defined in ‘Notations’ box are computed (lines
8 − 15) for scheduling batch jobs around the dedicated jobs
with explicit reservations for the dedicated jobs. For a given
requested start time of the first dedicated job in queue, in
future, if there is enough capacity for all other dedicated jobs
with identical start times (lines 16− 17), lines 18− 22 allow
scheduling of batch jobs around these dedicated jobs. Since
there is enough capacity for all dedicated jobs, they will be
scheduled on time at their requested start times. If enough
capacity is not available, lines 24 − 30 allow scheduling of
batch jobs around the dedicated jobs, but some dedicated jobs
will be scheduled with delay as regards to their requested start
times. This delay is unavoidable due to insufficient capacity
available for dedicated jobs. Lines 35 − 37 take care of the
situation when the first batch job’s 𝑠𝑐𝑜𝑢𝑛𝑡 parameter surpasses
the 𝐶𝑠 threshold and lines 39 − 42 again take care of the
dedicated queue when batch queue is empty.

C. Scheduling with Runtime Elasticity

As such, Delayed-LOS and Hybrid-LOS process only non-
elastic workload in which duration of jobs do not dynamically
change at runtime. For elastic workload we introduce the
concept of Elastic Control Commands (ECCs), detailed later
in Section IV-C. ECCs are commands issued by the user
for extending or reducing the user-estimated execution time
that was originally specified at submission time. ECCs can
be issued both for jobs in execution and those that are still
queued. These commands are explicitly issued by the user and
are different from the implicit kill-by time computed from the
user-estimated execution time. In fact, ECCs result in changes
to kill-by time and thus the actual job execution time. This will
then change the residual or remaining execution times of jobs
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Fig. 2. Example for motivating Delayed-LOS

Notations:
∙ 𝑀 : Total number of compute nodes (processors) that are available on an HPC system such as IBM’s

BlueGene/P.
∙ 𝑚 : Total number of free or unreserved nodes available at time 𝑡; 𝑀 −𝑚 are reserved at time 𝑡.
∙ 𝒲𝑏 : Queue of all waiting batch jobs. 𝒲𝑏 = {𝑤𝑏

1, 𝑤
𝑏
2, . . . , 𝑤

𝑏
𝐵}, 𝐵 = ∣𝒲𝑏∣. Each 𝑤𝑏

𝑖 is represented by the
tuple 𝑤𝑏

𝑖 = (𝑛𝑢𝑚, 𝑑𝑢𝑟, 𝑎𝑟𝑟, 𝑠𝑐𝑜𝑢𝑛𝑡)𝑏𝑖 , where 𝑛𝑢𝑚 denotes the size or number of nodes required as part of
this batch job, 𝑑𝑢𝑟 denotes duration or user-estimated execution time of the job, 𝑎𝑟𝑟 denotes arrival time
of job and 𝑠𝑐𝑜𝑢𝑛𝑡 denotes the skip count, i.e., number of times or scheduler cycles the job was skipped
and did not get scheduled. 𝐶𝑠 denotes an upper limit on 𝑠𝑐𝑜𝑢𝑛𝑡.

∙ 𝒲𝑑 : List of all waiting dedicated (interactive) jobs. 𝒲𝑑 = {𝑤𝑑
1 , 𝑤

𝑑
2 , . . . , 𝑤

𝑑
𝐷}, 𝐷 = ∣𝒲𝑑∣. Each 𝑤𝑑

𝑖 is
represented by the tuple 𝑤𝑑

𝑖 = (𝑛𝑢𝑚, 𝑑𝑢𝑟, 𝑠𝑡𝑎𝑟𝑡)𝑑𝑖 , where 𝑛𝑢𝑚 denotes number of nodes required as part
of this dedicated job, 𝑑𝑢𝑟 denotes duration of job and 𝑠𝑡𝑎𝑟𝑡 denotes the user requested start time of the
dedicated job.

∙ 𝒜 : Sorted list of all active/running jobs including both batch and dedicated jobs. 𝒜 = {𝑎1, 𝑎2, . . . , 𝑎𝐴},
𝐴 = ∣𝒜∣. Each 𝑎𝑖 is represented by the tuple 𝑎𝑖 = (𝑛𝑢𝑚, 𝑟𝑒𝑠)𝑖, where 𝑛𝑢𝑚 denotes number of nodes on
which this active job is running and 𝑟𝑒𝑠 denotes residual or remaining execution time of the active job.

∙ 𝒮 : Set of all jobs selected to be scheduled at time 𝑡 computed after the Basic DP is called.
∙ 𝒮𝑓 : Set of all jobs selected to be scheduled at time 𝑡 computed after the Reservation DP is called.

Reservation DP implements shadow times [7] or what we call freeze durations to avoid starvation of large
jobs [7].

∙ 𝑓𝑟𝑒𝑡𝑏 and 𝑓𝑟𝑒𝑡𝑑 denote ‘shadow time’ or what we call ‘freeze end time’ for batch and dedicated jobs,
respectively. 𝑓𝑟𝑒𝑐𝑏 and 𝑓𝑟𝑒𝑐𝑑 denote ‘shadow free capacity’ [7] or what we call ‘freeze end capacity’
for batch and dedicated jobs, respectively. 𝑓𝑟𝑒𝑛𝑢𝑚 denotes number of nodes required at freeze end time
(‘shadow size’ in [7]) for the batch jobs present in 𝒲𝑏.

Constraints: The invariant constraints are,

∙ 𝑛𝑢𝑚 ≤𝑀 , 𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡+ 1.
∙ 𝒲𝑏 is maintained as FIFO queue, i.e., 𝑤𝑏

1.𝑎𝑟𝑟 ≤ 𝑤𝑏
2.𝑎𝑟𝑟 ≤ . . . ≤ 𝑤𝑏

𝐵 .𝑎𝑟𝑟.
∙ 𝒲𝑑 is maintained as sorted list in increasing instants of start time of dedicated jobs, i.e., 𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡 ≤
𝑤𝑑

2 .𝑠𝑡𝑎𝑟𝑡 ≤ . . . ≤ 𝑤𝑑
𝐷.𝑠𝑡𝑎𝑟𝑡.

∙ 𝒜 is maintained as sorted list in increasing order of residual duration 𝑎𝑖.𝑟𝑒𝑠, i.e., 𝑎1.𝑟𝑒𝑠 ≤ 𝑎2.𝑟𝑒𝑠 ≤ . . . ≤
𝑎𝐴.𝑟𝑒𝑠.

Input/Output: The input to Delayed-LOS and Hybrid-LOS algorithms are {𝑀 , 𝒲𝑏} and {𝑀 , 𝒲𝑏, 𝒲𝑑},
respectively. 𝒲𝑏 and 𝒲𝑑 are updated in real-time with new arriving jobs. The output of the algorithms are the
sets 𝒮 and 𝒮𝑓 which translate into an update of 𝒜.

6467



Algorithm 1 𝐷𝑒𝑙𝑎𝑦𝑒𝑑− 𝐿𝑂𝑆 : Delayed LOS Batch Scheduler(𝑚)

1: 𝑚←𝑀 −∑𝐴
𝑖=1 𝑎𝑖.𝑛𝑢𝑚;

2: if (𝑚 > 0) and (𝒲𝑏 ∕= 𝜙) then
3: if (𝑤𝑏

1.𝑛𝑢𝑚 ≤ 𝑚) and (𝑤𝑏
1.𝑠𝑐𝑜𝑢𝑛𝑡 ≥ 𝐶𝑠) then

4: Remove 𝑤𝑏
1 from 𝒲𝑏 and add to 𝒜;

5: Activate 𝑤𝑏
1;

6: else if (𝑤𝑏
1.𝑛𝑢𝑚 ≤ 𝑚) and (𝑤𝑏

1.𝑠𝑐𝑜𝑢𝑛𝑡 < 𝐶𝑠) then
7: Call Basic DP;
8: Compute 𝒮;
9: if (𝑤𝑏

1 /∈ 𝒮) then 𝑤𝑏
1.𝑠𝑐𝑜𝑢𝑛𝑡++;

10: Remove 𝒮 from 𝒲𝑏 and add to 𝒜;
11: Activate 𝒮;
12: else if (𝑤𝑏

1.𝑛𝑢𝑚 > 𝑚) then
13: Compute 𝑠 such that: 𝑚+

∑𝑠−1
𝑖=1 𝑎𝑖.𝑛𝑢𝑚 < 𝑤𝑏

1.𝑛𝑢𝑚 ≤ 𝑚+
∑𝑠

𝑖=1 𝑎𝑖.𝑛𝑢𝑚;
14: 𝑓𝑟𝑒𝑡𝑏 ← 𝑡+ 𝑎𝑠.𝑟𝑒𝑠;
15: 𝑓𝑟𝑒𝑐𝑏 ← 𝑚+

∑𝑠
𝑖=1 𝑎𝑖.𝑛𝑢𝑚− 𝑤𝑏

1.𝑛𝑢𝑚;
16: ∀𝑤𝑏

𝑖 ∈ 𝒲𝑏 such that 𝑤𝑏
𝑖 .𝑛𝑢𝑚 ≤ 𝑚: 𝑤𝑏

𝑖 .𝑓𝑟𝑒𝑛𝑢𝑚← (𝑡+ 𝑤𝑏
𝑖 .𝑑𝑢𝑟 < 𝑓𝑟𝑒𝑡𝑏) ? 0 : 𝑤𝑏

𝑖 .𝑛𝑢𝑚;
17: Call Reservation DP(𝑓𝑟𝑒𝑐𝑏);
18: Compute 𝒮𝑓 ;
19: Remove 𝒮𝑓 from 𝒲𝑏 and add to 𝒜;
20: Activate 𝒮𝑓 ;
21: end if
22: end if

as well. ECCs can be issued for both batch and dedicated jobs
that were previously submitted. A maximum count on number
of ECCs can be imposed for a given job.

For processing a workload that is injected with ECCs, we
introduce an additional ‘elastic control queue’. ECCs from this
queue are processed on a first-come first-served (FCFS) basis
by an ECC processor (Figure 3). Since EASY, LOS, Delayed-
LOS and Hybrid-LOS, all four consider the residual execution
times in their design, processing of ECCs would impact their
performance. We shall explore this performance impact later
in Section V. For processing the ECC workload, we append
the Delayed-LOS and Hybrid-LOS algorithms with the ECC
processor (Figure 3) and name the new algorithms as Delayed-
LOS-E and Hybrid-LOS-E.

Since both Delayed-LOS and Hybrid-LOS use the Ba-
sic DP and Reservation DP at their core, their time and space
complexities are identical to that of LOS (see Section 3.4.1 in
[7]).

IV. SIMULATION FRAMEWORK

The algorithms presented in Section III were implemented
within a simulation framework written in Java programming
language. The entire simulation framework comprises three
different and complementary simulation packages: GridSim,
ALEA 2 and CWF workload generator. These are described
here and Figure 3 shows an architecture of the entire simula-
tion framework. The entities shaded in grey belong to one of
the three packages and the non-shaded entities were developed
by us.

A. GridSim

GridSim is a grid simulation toolkit for resource modeling
and application scheduling for parallel and distributed com-
puting [18]. It allows modeling and simulation of an HPC
environment with parallel processors. Entities such as system-
users, applications, resources (processors, memory, disks, etc.),
and resource brokers (schedulers) can be modeled and simu-
lated for design and evaluation of scheduling algorithms. It
provides a comprehensive framework for creating different
classes of resources on which compute and data intensive
applications (jobs) can be scheduled for studying the per-
formance of new scheduling algorithms. We used GridSim
to simulate IBM’s BlueGene/P system on which nodes are
clustered in groups of 32 processors each. In other words,
only integer multiples of 32 processors can be assigned to
jobs [19]. The system was simulated to have a total of 320
processors. GridSim is depicted in Figure 3 by the block on
the right. GridSim does not include an event-based simula-
tion framework and a workload generator; both are required
separately.

B. ALEA 2

ALEA (version 2) [20] is a job scheduling simulator that
builds on the latest GridSim 5.0 simulation toolkit. It provides
an event-based simulation framework with queues and an
experiment controller. The framework allows for implemen-
tation of new scheduling algorithms and their performance
evaluation. The two blocks in center of Figure 3 depict ALEA.
ALEA includes a JobLoader class that can read jobs or gridlets
from a text file specifying the job characteristics, but does not
include a workload generator.
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Algorithm 2 𝐻𝑦𝑏𝑟𝑖𝑑− 𝐿𝑂𝑆 : Hybrid LOS Scheduler

1: 𝑚←𝑀 −∑𝐴
𝑖=1 𝑎𝑖.𝑛𝑢𝑚;

2: if (𝑚 > 0) and (𝒲𝑏 ∕= 𝜙) then
3: if (𝒲𝑑 = 𝜙) then
4: Call Delayed LOS Batch Scheduler(𝑚);
5: else if (𝒲𝑑 ∕= 𝜙) and (𝑤𝑏

1.𝑠𝑐𝑜𝑢𝑛𝑡 < 𝐶𝑠) then
6: if (𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡) then
7: Call Move Dedicated Head To Batch Head;
8: else if (𝑡 < 𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡) then
9: 𝑓𝑟𝑒𝑡𝑑 ← 𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡;
10: if (𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡+ 𝑎𝐴.𝑟𝑒𝑠) then
11: Compute 𝑠 such that: 𝑡+ 𝑎𝑠−1.𝑟𝑒𝑠 < 𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡+ 𝑎𝑠.𝑟𝑒𝑠;
12: 𝑓𝑟𝑒𝑐𝑑 ←𝑀 −∑𝐴

𝑖=𝑠 𝑎𝑖.𝑛𝑢𝑚;
13: else
14: 𝑓𝑟𝑒𝑐𝑑 ←𝑀 ;
15: end if
16: 𝑡𝑜𝑡 𝑠𝑡𝑎𝑟𝑡 𝑛𝑢𝑚←∑

𝑖∣𝑤𝑑
𝑖 .𝑠𝑡𝑎𝑟𝑡=𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡
𝑤𝑑

𝑖 .𝑛𝑢𝑚;
17: if (𝑡𝑜𝑡 𝑠𝑡𝑎𝑟𝑡 𝑛𝑢𝑚 ≤ 𝑓𝑟𝑒𝑐𝑑) then
18: 𝑓𝑟𝑒𝑐𝑑 ← 𝑓𝑟𝑒𝑐𝑑 − 𝑡𝑜𝑡 𝑠𝑡𝑎𝑟𝑡 𝑛𝑢𝑚;
19: ∀𝑤𝑏

𝑖 ∈ 𝒲𝑏 such that 𝑤𝑏
𝑖 .𝑛𝑢𝑚 ≤ 𝑚: 𝑤𝑏

𝑖 .𝑓𝑟𝑒𝑛𝑢𝑚← (𝑡+ 𝑤𝑏
𝑖 .𝑑𝑢𝑟 < 𝑓𝑟𝑒𝑡𝑑) ? 0 : 𝑤𝑏

𝑖 .𝑛𝑢𝑚;
20: Call Reservation DP(𝑓𝑟𝑒𝑐𝑑);
21: Compute 𝒮𝑓 ;
22: if (𝑤𝑏

1 /∈ 𝒮𝑓 ) then 𝑤𝑏
1.𝑠𝑐𝑜𝑢𝑛𝑡++;

23: else
24: Compute 𝑠 such that: 𝑚+

∑𝑠−1
𝑖=1 𝑎𝑖.𝑛𝑢𝑚 < 𝑡𝑜𝑡 𝑠𝑡𝑎𝑟𝑡 𝑛𝑢𝑚 ≤ 𝑚+

∑𝑠
𝑖=1 𝑎𝑖.𝑛𝑢𝑚;

25: 𝑓𝑟𝑒𝑡𝑑 ← 𝑡+ 𝑎𝑠.𝑟𝑒𝑠;
26: 𝑓𝑟𝑒𝑐𝑑 ← 𝑚+

∑𝑠
𝑖=1 𝑎𝑖.𝑛𝑢𝑚− 𝑡𝑜𝑡 𝑠𝑡𝑎𝑟𝑡 𝑛𝑢𝑚;

27: ∀𝑤𝑏
𝑖 ∈ 𝒲𝑏 such that 𝑤𝑏

𝑖 .𝑛𝑢𝑚 ≤ 𝑚: 𝑤𝑏
𝑖 .𝑓𝑟𝑒𝑛𝑢𝑚← (𝑡+ 𝑤𝑏

𝑖 .𝑑𝑢𝑟 < 𝑓𝑟𝑒𝑡𝑑) ? 0 : 𝑤𝑏
𝑖 .𝑛𝑢𝑚;

28: Call Reservation DP(𝑓𝑟𝑒𝑐𝑑);
29: Compute 𝒮𝑓 ;
30: if (𝑤𝑏

1 /∈ 𝒮𝑓 ) then 𝑤𝑏
1.𝑠𝑐𝑜𝑢𝑛𝑡++;

31: end if
32: Remove 𝒮𝑓 from 𝒲𝑏 and add to 𝒜;
33: Activate 𝒮𝑓 ;
34: end if
35: else if (𝒲𝑑 ∕= 𝜙) and (𝑤𝑏

1.𝑠𝑐𝑜𝑢𝑛𝑡 ≥ 𝐶𝑠) then
36: Remove 𝑤𝑏

1 from 𝒲𝑏 and add to 𝒜;
37: Activate 𝑤𝑏

1;
38: end if
39: else if (𝒲𝑑 ∕= 𝜙) then
40: if (𝑤𝑑

1 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡) then
41: Call Move Dedicated Head To Batch Head;
42: end if
43: end if
44: Call Hybrid LOS Scheduler at next event;

Algorithm 3 Move Dedicated Head To Batch Head

if (𝑤𝑑
1 ∕= 𝑛𝑢𝑙𝑙) then

𝑤𝑏 ← 𝑛𝑒𝑤();
𝑤𝑏.𝑛𝑢𝑚← 𝑤𝑑

1 .𝑛𝑢𝑚;
𝑤𝑏.𝑑𝑢𝑟 ← 𝑤𝑑

1 .𝑑𝑢𝑟;
𝑤𝑏.𝑎𝑟𝑟 ← 𝑤𝑑

1 .𝑎𝑟𝑟;
𝑤𝑏.𝑠𝑐𝑜𝑢𝑛𝑡← 𝐶𝑠;
Remove 𝑤𝑑

1 from 𝒲𝑑 and add 𝑤𝑏 to head of 𝒲𝑏;
end if
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Fig. 3. Simulation framework

C. Cloud Workload Format (CWF)

To create an effective cloud workload generator, we had
to modify the Standard Workload Format (SWF) [21] to
support runtime elasticity. The SWF is a simple way of
representing all properties of a workload in a single text file
using numerical values. Each job is represented by a single line
in the file and the entire file can comprehensively represent
any given workload for a parallel machine. SWF provides a
generic framework to ease the use of real-system workload
logs and mathematical model generated workload traces, in
evaluating performance of job schedulers in HPC systems.
In its current form, it does not support runtime elasticity
nor it easily supports heterogeneous requests (i.e., mixing of
batch and dedicated jobs) due to absence of a ‘requested
start time’ field for dedicated jobs. We thus propose a new
format, Cloud Workload Format (CWF), as a natural extension
to SWF. Figure 4 presents the relevant fields in SWF and
our proposed extensions (Fields 19-21). These new fields
constitute the Elastic Control Commands (ECCs) introduced
earlier in Section III-C. ECCs allow a previously submitted
job to be explicitly extended or reduced in its execution time
requirements. Whether a batch or dedicated job is running or
queued, an ECC is equivalent to the job requesting changes
to its own execution time requirements. This is different from
the job pre-maturely terminating before its kill-by time.

D. CWF Workload Generator

The CWF workload generator produces a synthetic se-
quence of jobs to be executed in a parallel processing en-
vironment. The sequence of jobs are represented in the Cloud
Workload Format. The CWF workload generator extends an
SWF workload generator which is available at the Parallel
Workloads Archive [22]. The SWF workload generator is
based on the analytical workload models for parallel computer
systems developed by Lublin et al. [17]. Intuitively, the size,
duration and inter-arrival times of jobs could have been mod-
eled with Pareto, exponential and exponential distributions,
respectively. However, Lublin et al. have analyzed real system
workload logs at parallel computing clusters around the world
and derived thorough analytical models that better fit the actual
workload logs. Their models are based on a detailed statistical
study of distribution fitting and involve inherent character-
istics of real workloads such as degree of parallelism, job
runtime model, correlation between parallelism and runtime,
arrival process and workload consistency. The Kolmogorov-
Smirnov test [17] is employed to assess the goodness of fit
of a particular distribution. Since the approach of modeling
real system workloads in [17] is very rigorous, we consider
the analytical workload models of [17] as a fairly good
representation of real workloads. Obviously, the purpose here
is to be able to modify the model parameters and generate
synthetic workloads that well represent the reality. This is

6770



Fig. 4. Cloud Workload Format: the shaded rows belong to SWF

much less time-consuming an exercise than measuring real
system workloads in a parallel data center over a long period
of time. We discuss here the various attributes of jobs in their
workload model and provide values of various parameters that
were chosen for our experiments:

∙ Size of a job/gridlet is sampled from a two-stage
uniform distribution. The two uniform distributions are
for sampling the size of small and large sized jobs. Size
of small jobs is obtained by uniformly sampling from
the interval [1, 3] and multiplying the rounded sampled
value by 32. Thus, all small sized jobs are of size either
32, 64 or 96 processors. Similarly, size of large jobs is
obtained by uniformly sampling from the interval [4, 10].
Thus, the size of large jobs is either 128, 160, . . . , or
320 processors. This way the packing properties of our
synthetically generated workload are different from those
of the SDSC log used in [7]. The first distribution is
chosen with probability 𝑃𝑆 and the second with prob-
ability 1 − 𝑃𝑆 , respectively. In other words, size of a

Parameter Value
𝛼1 4.2
𝛽1 0.94
𝛼2 312
𝛽2 0.03
𝑝𝑎 -0.0054
𝑝𝑏 0.78

TABLE I
PARAMETER VALUES FOR JOB RUNTIMES

Parameter Value
𝛼𝑎𝑟𝑟 13.2303
𝛽𝑎𝑟𝑟 Varies in [0.4101, 0.6101]
𝛼𝑛𝑢𝑚 15.1737
𝛽𝑛𝑢𝑚 0.9631
𝐴𝑅𝐴𝑅 1.0225

TABLE II
PARAMETER VALUES FOR ARRIVAL PROCESS

job in the synthetically generated workload is small with
probability 𝑃𝑆 and large with probability 1 − 𝑃𝑆 . The
value of 𝑃𝑆 is varied across most of the experiments in
Section V to vary the packing properties of the synthetic
workload and study its impact on the performance of
various algorithms.

∙ Runtime or duration of a job is sampled from a bimodal
hyper-Gamma distribution with parameters 𝛼1 and 𝛽1 for
the first Gamma distribution, 𝛼2 and 𝛽2 for the second
and 𝑝 which determines the probability of sampling either
of the Gamma distributions [17]. The parameter 𝑝 is
correlated with the job size 𝑠 through a linear relationship,
𝑝 = 𝑝𝑎 ⋅𝑠+𝑝𝑏 [17]. Thus, runtimes of jobs are correlated
with their size. Consequently, we do not vary job runtime
parameters throughout our experiments and Table I shows
the fixed values that we use.

∙ Arrival process of jobs is modeled with two separate
Gamma distributions and an additional parameter 𝐴𝑅𝐴𝑅
(Arrive Rush-to-All Ratio) [17]. The first Gamma with
parameters 𝛼𝑎𝑟𝑟 and 𝛽𝑎𝑟𝑟 represents the inter-arrival time
for jobs arriving with in a 1-hour interval. They are
independent of the hour the jobs arrived in. The second
Gamma with parameters 𝛼𝑛𝑢𝑚 and 𝛽𝑛𝑢𝑚 represents the
number of jobs that arrive in each interval. Table II
lists values of all these parameters that we choose for
our experiments. The value of 𝛽𝑎𝑟𝑟 is varied across
experiments to obtain variation in the average load on
a machine which is defined as,

𝐿𝑜𝑎𝑑 =
𝜆

𝑀

𝑁𝐽∑

𝑖=1

𝑤𝑖.𝑛𝑢𝑚

𝜇𝑖
.

Here, 𝜆 is the inverse of total duration of an experiment,
𝑀 is the total number of processors on an HPC system,
𝑁𝐽 is the total number of jobs scheduled during an exper-
iment, 𝑤𝑖.𝑛𝑢𝑚 is the number of requested processors for
job 𝑖, and 𝜇𝑖 is the inverse of duration (runtime) of job 𝑖.
By varying 𝛽𝑎𝑟𝑟, we effectively vary 𝜆. We additionally
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introduce,

𝜇̄ =
1

𝑁𝐽

𝑁𝐽∑

𝑖=1

𝜇𝑖 ,

and

𝑛̄ =
1

𝑁𝐽

𝑁𝐽∑

𝑖=1

𝑤𝑖.𝑛𝑢𝑚 ,

where, 𝜇̄ denotes average job runtime and 𝑛̄ denotes
average job size over a given experiment.

The above discussion on various parameters applies to both
batch and dedicated jobs in a heterogeneous workload. Further,
a job is chosen to be a dedicated one with probability 𝑃𝐷 and a
batch one with probability 1−𝑃𝐷 in a synthetically generated
heterogeneous workload. The value of 𝑃𝐷 is varied across
some experiments in Section V to vary the proportion of batch
and dedicated jobs and study its impact on the performance
of various algorithms.

As for the presence of ECCs with in a synthetic workload,
the 𝐸𝑇 commands are injected with a job runtime extension
probability, 𝑃𝐸 , and 𝑅𝑇 commands are injected with a job
runtime reduction probability, 𝑃𝑅. For brevity we keep these
values fixed at 𝑃𝐸 = 0.2 and 𝑃𝑅 = 0.1 for all our exper-
iments. The ‘Requested Start Time’ for dedicated jobs and
‘Extension/Reduction Amount’ for job runtime are sampled
from a Poisson (exponential) distribution.

V. PERFORMANCE COMPARISON OF ALGORITHMS

Performance of EASY, LOS and Delayed-LOS can be com-
pared directly as they all process only batch jobs. However,
performance of Hybrid-LOS can not be compared directly
with EASY and LOS algorithms since the former is for
heterogeneous workload. For this, we append the EASY and
LOS algorithms with the dedicated job queue and name these
new algorithms as EASY-D and LOS-D. EASY-D and LOS-
D schedule batch jobs around the rigid dedicated jobs whose
start times are fixed or modifiable through ECCs. Performance
of Hybrid-LOS can then be directly compared with EASY-D
and LOS-D.

For performance comparison of Delayed-LOS-E with EASY
and LOS we append the latter two with the ECC processor and
name them as EASY-E and LOS-E. Performance of Hybrid-
LOS-E can be compared with their counterparts by appending
EASY-D and LOS-D with the ECC processor as well. This
leads to two new algorithms that are termed as EASY-DE and
LOS-DE whose performance can be directly compared with
Hybrid-LOS-E.

Table III summarizes the scope of all algorithms defined
above. The various performance metrics that we consider
in our simulation study are, mean values of HPC system
utilization, job waiting time and slowdown. Slowdown is
defined as the fraction,

𝑎𝑣𝑔.𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑡𝑖𝑚𝑒+ 𝑎𝑣𝑔.𝑟𝑢𝑛𝑡𝑖𝑚𝑒

𝑎𝑣𝑔.𝑟𝑢𝑛𝑡𝑖𝑚𝑒
.

While the plots depict only system utilization and job
waiting time metrics, slowdown metric data is only listed
in Tables IV-VII for the sake of brevity. Each point on the

Algorithm Workload Scheduling ECC Processor
EASY Batch No

EASY-D Heterogeneous No
EASY-E Batch Yes

EASY-DE Heterogeneous Yes

LOS Batch No
LOS-D Heterogeneous No
LOS-E Batch Yes

LOS-DE Heterogeneous Yes

Delayed-LOS Batch No
Hybrid-LOS Heterogeneous No

Delayed-LOS-E Batch Yes
Hybrid-LOS-E Heterogeneous Yes

TABLE III
LIST OF ALL ALGORITHMS

plotted lines in all figures presented hereafter corresponds to
a single simulation run with a total of 𝑁𝐽 = 500 jobs over
a simulated BlueGene/P parallel processing environment with
𝑀 = 320 processors. We also ran simulations for a couple of
scenarios with 10, 000 jobs and found no significant difference
in performance metrics from the 500 job runs.

A. Performance Improvement with Delayed-LOS

We discuss here the performance improvement obtained by
Delayed-LOS over LOS and EASY and validate our claims
made in Section III.

Validating our Claims: Recall the maximum skip count
threshold 𝐶𝑠 from Section III-A. Figure 5 shows variation
of mean utilization and mean job waiting time metrics with
increasing value of 𝐶𝑠 from 1 to 20 for all three batch schedul-
ing algorithms. Clearly, Delayed-LOS outperforms LOS and
EASY in terms of these metrics. Moreover, for Delayed-
LOS it can be seen that until about 𝐶𝑠 = 7 or 8, mean
values of job waiting time decrease and then become stable
after a slight increase. Similarly, utilization first increases
and then decreases slightly to become stable. This clearly
indicates an optimal value of 𝐶𝑠 beyond which no performance
improvement can be obtained. In other words, queue head
jobs could be skipped on an average 7 or 8 times to obtain
better performance instead of scheduling them right away
when enough capacity is available. This is a very important
and useful observation and forms the key basis of Delayed-
LOS. Figure 5 is for the case when 𝑃𝑆 = 0.5 and 𝑛̄ = 139.35
processors. Figure 6 shows similar plots for utilization and
waiting time with 𝑃𝑆 = 0.8 and 𝑛̄ = 89.72 processors.
Here, it is seen that when proportion of small sized jobs
increases and there are fewer large sized jobs, performance
improvement with Delayed-LOS is insensitive to values of
𝐶𝑠 greater than 3. This indicates dependence of 𝐶𝑠 on the
packing properties (proportion of small and large sized jobs)
of workload. This observation is intuitive and strengthens our
claims made earlier. Recall again our claim made in third
paragraph of Section III that changing job sizes can have a
significant impact on the performance of LOS scheduler. The
above discussion validates this claim. Moreover, starting a job
at the head of queue right away as is done in LOS is not the
most efficient strategy.
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Fig. 5. Batch Workload: Variation of metrics with Maximum Skip Count Parameter (𝐶𝑠) for Load=0.9, 𝑃𝑆 = 0.5
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Fig. 6. Batch Workload: Variation of metrics with Maximum Skip Count Parameter (𝐶𝑠) for Load=0.9, 𝑃𝑆 = 0.8
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Fig. 7. Batch Workload: Variation of metrics with Load for 𝑃𝑆 = 0.2
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Fig. 8. Batch Workload: Variation of waiting time with Load for two cases: 𝑃𝑆 = 0.5 and 𝑃𝑆 = 0.8
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Fig. 9. Heterogeneous Workload: Variation of metrics with Load for 𝑃𝐷 = 0.5 and 𝑃𝑆 = 0.2
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Fig. 10. Heterogeneous Workload: Variation of metrics with Load for 𝑃𝐷 = 0.9 and 𝑃𝑆 = 0.5
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Fig. 11. Elastic Workload: Elastic Control Commands with Batch (𝑃𝑆 = 0.5) and Heterogeneous (𝑃𝑆 = 0.5 & 𝑃𝐷 = 0.5)

In all the following experiments with variation in Load, we
first empirically obtain the optimal value of 𝐶𝑠 for a given
value of 𝑃𝑆 which is then used for Delayed-LOS and hence
Hybrid-LOS in those experiments.

Figure 7 shows variation trends in performance metrics with
increasing Load in the interval [0.5, 1] for 𝑃𝑆 = 0.2 and 𝑛̄ =
180.84 processors. It can be observed that for a low value of
𝑃𝑆 = 0.2, i.e., lesser small sized jobs and more large sized
jobs, Delayed-LOS outperforms LOS and EASY. Moreover,
LOS performs worse than EASY and this further validates
our claim made in third paragraph of Section III. Clearly when
there are a lot of large sized jobs and very few small jobs, the
large sized jobs will not be tightly packed and very few small
jobs will be available to fill in the holes between the large
sized jobs. This will result in reduced utilization of all the
processors and higher waiting time for the jobs in queue.

The maximum percentage improvement of Delayed-LOS
over LOS and EASY in terms of different metrics is sum-
marized in Table IV. It is remarkable to note here the im-
provement in utilization of 4.1% and waiting time of 31.88%,
which is very significant for an HPC environment in terms of
the potential energy savings that can be achieved. Note that the
variation in improvements of our new policies is not stationary
in nature for varying values of load in all the plots discussed

here. In simpler words, the improvements are not uniform over
the entire variation in load. Therefore, though the figures plot
mean values of various performance metrics for a given load (a
single point in the plots), we have listed maximum percentage
improvements in the various tables. Listing mean percentage
improvements across varying loads will not make sense.

Figure 8 shows variation in waiting time with Load for
𝑃𝑆 = 0.5 and 𝑃𝑆 = 0.8. With increasing value of 𝑃𝑆 from
0.2 in Figure 7 to 0.5 and 0.8 in this figure, we see that per-
formance of Delayed-LOS comes closer to EASY, but it still
outperforms LOS. Thus, for large number of small sized jobs
and few large sized jobs, performance of Delayed-LOS is close
to EASY and they both outperform LOS. This observation
can lead to design of a dynamic, algorithm selection policy
that selects the best performing algorithm among Delayed-
LOS and EASY, for different proportions of small and large
sized jobs in a parallel processing system.

B. Performance of Hybrid-LOS

For a heterogeneous workload, Figure 9 shows performance
variation of different metrics with increasing Load for 𝑃𝐷 =
0.5, 𝑃𝑆 = 0.2 and 𝑛̄ = 177.7 processors. Again, for a low
value of 𝑃𝑆 = 0.2, i.e., lesser small sized jobs and more large
sized jobs, Hybrid-LOS outperforms LOS-D and EASY-D.
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Performance Metric LOS (%) EASY (%)
Utilization 4.1 1.52

Job waiting time 31.88 21.65
Slowdown 30.3 20.41

TABLE IV
MAXIMUM % IMPROVEMENT OF DELAYED-LOS OVER LOS AND EASY

FOR FIGURE 7

Performance Metric LOS-D (%) EASY-D (%)
Utilization 4.55 2.33

Job waiting time 25.31 18.24
Slowdown 24.29 17.43

TABLE V
MAXIMUM % IMPROVEMENT OF HYBRID-LOS OVER LOS-D AND

EASY-D FOR FIGURE 9

Maximum percentage improvement of Hybrid-LOS over LOS-
D and EASY-D in terms of the various metrics is summarized
in Table V. Improvements by 4.55% and 25.31% in utilization
and job waiting time, respectively, are highly significant for an
HPC environment in terms of potential energy savings. These
improvements are again attributed to the same reasons as for
Delayed-LOS.

Figure 10 shows mean utilization and mean job waiting time
variations with Load for 𝑃𝐷 = 0.9 and 𝑃𝑆 = 0.5. Again, we
see that performance of Hybrid-LOS outperforms LOS-D and
EASY-D. Thus, for large number of dedicated jobs and few
batch jobs, performance of Hybrid-LOS still outperforms both
LOS-D and EASY-D. Since Hybrid-LOS is an extension of
Delayed-LOS for heterogeneous workloads, it is expected that
Hybrid-LOS outperforms the counterparts of LOS and EASY
for heterogeneous workloads.

C. Performance Improvement with Runtime Elasticity

Finally, in presence of Elastic Control Commands (ECCs),
Figure 11 shows performance improvements of Delayed-LOS-
E over LOS-E and EASY-E, and Hybrid-LOS-E over LOS-
DE and EASY-DE for batch and heterogeneous workloads,
respectively. Tables VI and VII show these performance im-
provements in terms of various metrics. As compared to Tables
IV and V, these figures are lower. This is because presence
of elasticity at runtime can impact the packing properties of
jobs which render the schedulers to be less efficient. However,
Delayed-LOS-E and Hybrid-LOS-E still outperform their LOS
and EASY counterparts by significant amounts for an HPC
environment.

VI. CONCLUSION AND FUTURE WORK

This paper examines job scheduling in a parallel processing
environment and proposes efficient algorithms to handle batch
jobs and heterogeneous workloads. We argue that runtime
elasticity must support two key primitives: (1) mixing and
blending of batch and dedicated (reservation-based) jobs, and
(2) extensions and reductions in the time dimension. We intro-
duced Delayed-LOS and Hybrid-LOS, two novel scheduling
algorithms that focus on these primitives. While Delayed-LOS

Performance Metric LOS-E (%) EASY-E (%)
Utilization 4.93 1.78

Job waiting time 18.94 12.19
Slowdown 18.39 11.79

TABLE VI
MAXIMUM % IMPROVEMENT OF DELAYED-LOS-E OVER LOS-E AND

EASY-E FOR FIGURE 11

Performance Metric LOS-DE (%) EASY-DE (%)
Utilization 1.88 3.02

Job waiting time 20.76 10.18
Slowdown 19.81 14.6

TABLE VII
MAXIMUM % IMPROVEMENT OF HYBRID-LOS-E OVER LOS-DE AND

EASY-DE FOR FIGURE 11

improves significantly on LOS for batch workloads, Hybrid-
LOS is optimized for heterogeneous HPC workloads. We
have further proposed elastic versions of these algorithms that
incorporate runtime elasticity.

In this paper we have focused on runtime elasticity only in
the execution time of jobs. In future work we want to extend
the same notion of runtime elasticity in the resource dimension
i.e., size of jobs or number of processors required. Supporting
resource extensions while maintaining high system utilization
will require an innovative approach to the scheduling problem.
To allow a running job to shrink or expand in size while
maintaining space continuity—a common requirement in su-
percomputers like BlueGene/P—we need to incorporate the
probability with which each given job can shrink or expand
in size at any point in time. We are actively looking into new
techniques for supporting runtime elasticity in the resource
dimension.
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