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Abstract—Modern computer systems are becoming increas-
ingly heterogeneous by comprising multi-core CPUs, GPUs,
and other accelerators. Current programming approaches for
such systems usually require the application developer to use
a combination of several programming models (e. g., MPI
with OpenCL or CUDA) in order to exploit the full compute
capability of a system.

In this paper, we present dOpenCL (Distributed OpenCL) –
a uniform approach to programming distributed heterogeneous
systems with accelerators. dOpenCL extends the OpenCL
standard, such that arbitrary computing devices installed on
any node of a distributed system can be used together within a
single application. dOpenCL allows moving data and program
code to these devices in a transparent, portable manner. Since
dOpenCL is designed as a fully-fledged implementation of the
OpenCL API, it allows running existing OpenCL applications
in a heterogeneous distributed environment without any modifi-
cations. We describe in detail the mechanisms that are required
to implement OpenCL for distributed systems, including a de-
vice management mechanism for running multiple applications
concurrently. Using three application studies, we compare the
performance of dOpenCL with MPI+OpenCL and a standard
OpenCL implementation.

Keywords-OpenCL, Heterogeneous Systems, Distributed Sys-
tems, GPU Computing, dOpenCL

I. INTRODUCTION

Modern distributed computer systems increasingly com-
prise heterogeneous processing units, e. g., multi-core CPU,
GPU, FPGA, and other accelerators. A common approach
to exploit the full compute capability of such systems is
to employ several programming models simultaneously. For
example, consider programming a cluster whose nodes are
equipped with a multi-core CPU and a GPU: The pro-
grammer has to distribute the data to all compute nodes,
e. g., using MPI [1] or even explicit, low-level network
programming. To exploit the GPU on each node, another
appropriate programming model, like CUDA [2], is needed,
which requires the programmer to explicitly transfer data
between the node’s main memory and GPU. Moreover, in
order to use all cores of the CPU, a thread programming
model, e. g. Pthreads [3], is usually employed.

The downside of combining several programming models
is the complicated task of switching between the models in

different phases of an application. Not only the programmer
has to master the employed programming models, but he
also has to take into account their possible interference
when used within a single program. In particular, these
programming models do not have a common memory model,
such that the programmer has to take care about memory
consistency when switching from one model to another, e. g.,
finish data receipt using MPI before passing the data to
a GPU. The programmer needs to have a comprehensive
knowledge of all programming models to recognize such
problems; moreover, he is often forced to use low-level
synchronization mechanisms for ensuring the completion
of data transfer in order to allow interaction of different
programming models, because higher-level constructs (e. g.,
collective operations in MPI) are only applicable within a
single programming model. While some alleviations have
been suggested in the literature, e. g., creating one MPI
process per core to avoid multi-threaded programming, pro-
gramming a heterogeneous distributed system still remains a
cumbersome task: the programmer has to deal with multiple
programming models that mostly interact at low levels of
abstraction and possibly in unexpected ways when used
simultaneously.

We propose a uniform approach for programming het-
erogeneous, distributed computer systems. It is based on
OpenCL [4], which recently has emerged as an open, widely
accepted standard for heterogeneous systems. We thus rely
on OpenCL’s uniform programming model that provides
access to multiple, possibly heterogeneous processing units,
referred to as devices, for example multi-core CPU, GPU, or
the Cell BE. Unfortunately, OpenCL is limited to stand-alone
systems and has to be mixed with other programming models
to create applications for distributed systems. Our approach
extends the OpenCL programming model to distributed
systems, such that the programmer is freed from using other
programming models and implementing explicit network
communication in a distributed system. While our proposed
extension can be used in a transparent manner using standard
OpenCL, we also provide an extension of the OpenCL API
to explicitly use the additional features of our approach.
Moreover, we provide a mechanism to efficiently execute
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multiple OpenCL-based applications in a distributed system
concurrently.

The paper is organized as follows. We start with a dis-
cussion of related work in Section II. Section III introduces
dOpenCL – an implementation of the OpenCL API based
on a distributed runtime system. In Section IV, an extension
of dOpenCL is presented which allows for multiple OpenCL
applications to run concurrently in a distributed system. In
Section V, we present three application studies to compare
the performance dOpenCL with MPI and a default OpenCL
implementation. We conclude our work in Section VI.

II. RELATED WORK

Several distributed implementations of OpenCL have been
proposed recently.

SnuCL [5] implements the OpenCL API based on MPI
and provides a number of additional API functions which
resemble collective operations in MPI. Unlike our approach,
SnuCL only supports a limited set of devices, as it does not
use existing OpenCL implementations.

Hybrid OpenCL [6] is based on a modified version of the
FOXC OpenCL runtime [7], such that it not only provides
access to the devices of the system it is running on (the host
system), but also to the devices on remote systems.

The MOSIX Many GPUs Package (MGP) [8] is a library
and runtime system which aim at simplifying the program-
ming of clusters with GPUs. MGP provides an API layer
called MOSIX Virtual OpenCL which enables unmodified
OpenCL applications to be executed on clusters.

While the objectives of the aforementioned approaches are
similar to ours, none of these approaches provides a central
mechanism for assigning devices to multiple applications
that are executed on a distributed system concurrently. The
authors also do not explain whether and how they imple-
ment the OpenCL mechanisms for memory consistency or
synchronization in a distributed setting.

CLuMPI (OpenCL under MPI) is an OpenCL implemen-
tation based on MPI [9]. CLuMPI completely hides the
distributed systems from the programmer, and, unlike other
approaches, presents the system as a single OpenCL device.
However, CLuMPI is limited to CPUs and does not give
access to GPU or other accelerators.

Several other projects, e. g. DistributedCL [10] (formerly
named OpenCLGrid), CLara [11], or SocketCL [12], have
been started to create distributed OpenCL implementations.
Most of these projects are in a rather preliminary state and
often lack proper documentation.

Besides OpenCL-based approaches for programming dis-
tributed systems, solutions based on CUDA have been
proposed. CUDASA [13] is an extension of CUDA to multi-
GPU systems and clusters thereof. POSIX threads and MPI
are used to manage the necessary communication between
GPUs. rCUDA [14] is a distributed implementation of the

CUDA API. With rCUDA, multiple CUDA-based applica-
tions can access and share GPUs in a network. The CUDA-
based approaches are limited to devices that support CUDA,
namely NVIDIA GPUs, such that they cannot be used to
program multi-core CPUs or GPUs of other vendors.

III. DISTRIBUTED OPENCL (DOPENCL)

The objective of distributed OpenCL (dOpenCL1) is
twofold: 1) to provide access to arbitrary processing units
in distributed systems, and 2) to free the application pro-
grammer from the complexity of mixing multiple models
for programming such systems. dOpenCL is a fully-fledged
implementation of the OpenCL programming model which
has been extended to distributed systems. With dOpenCL,
all devices of a distributed system – (multi-core) CPU, GPU,
or other accelerators – are presented to the programmer
as if they where installed in a single stand-alone system.
dOpenCL completely hides the underlying distributed sys-
tem from the programmer, such that he can use its devices
uniformly by means of the standard OpenCL API. All data
transfers between the nodes of the distributed system are
performed implicitly. In particular, the programmer can rely
on the uniform memory model and synchronization mecha-
nisms which dOpenCL inherits from OpenCL. Thus, when
using dOpenCL, the programmer does not have to worry
about the possible interference of multiple programming
models.

The key idea of the dOpenCL implementation is to
forward the OpenCL API calls of an application to the
OpenCL implementations that are installed on the nodes
of the distributed system. Thus, it can be viewed as a
meta-implementation of OpenCL, as it uses other OpenCL
implementations to implement the OpenCL API. Whenever
data has to be transferred between OpenCL implementations
on different nodes, the data is transferred between these
nodes over the system’s network automatically.

To address the major problems that arise when enhancing
the OpenCL programming model to work on distributed sys-
tems, we developed the following mechanisms in dOpenCL:

• A runtime system on each node of a distributed
system supports the necessary communication between
the nodes, e. g., forwarding OpenCL API calls.

• A mechanism to automatically connect nodes of
a distributed system, as the OpenCL API does not
provide any means for that.

• A mechanism to preserve consistency of OpenCL
management objects (e. g., contexts, events, and mem-
ory objects, see Section III-A) on all nodes of a
distributed system, to provide a virtual shared memory
as required by the OpenCL programming model.

1dOpenCL is not related to DOpenCL which is an OpenCL binding for
the D programming language



• A platform – an OpenCL management object – to en-
able existing OpenCL applications to use the dOpenCL
implementation.

A. Programming model

As dOpenCL implements the OpenCL API, it inherits
the main principles from the OpenCL programming model.
A program is executed on a host system and offloads
computations to OpenCL devices. In dOpenCL, the host
system is represented by a single node, while the devices
refer to processing units on other nodes of a distributed
system. Special functions, called kernels, are executed on
devices in a parallel manner. The host program specifies
how many instances of a kernel – so-called work-items –
are executed in parallel. All work-items execute the same
code in a SPMD (Single Program, Multiple Data) fashion,
i. e. the execution can diverge due to branching based on a
global identifier, assigned to every work-item.

To address a wide range of different hardware platforms,
kernels are compiled during the runtime of the host program.
Similar to the standard OpenCL, the kernel’s source code is
passed to the dOpenCL implementation as a plain string to
create an executable binary for a certain device. The binary
can then be executed on that device.

In dOpenCL, the host system and the devices have differ-
ent memory regions. Explicit data transfers are required to
exchange data between these regions. API functions allow
for allocating memory on the devices and for copying data
from the host system to the devices (upload) or vice versa
(download). Devices can share data, such that data is trans-
parently moved between them. dOpenCL inherits OpenCL’s
so-called relaxed consistency memory model: sequential
consistency is only guaranteed for read/write operations of
a single work-item; to ensure memory consistency between
different work-items or devices that share data, explicit
synchronization measures are required from the programmer.
Note, that dOpenCL does not define the memory consistency
model on the host system.

All the functions that the dOpenCL API provides to the
programmer, operate on the following set of management
objects which represent the system and the application state:
platforms, servers, devices, contexts, memory objects, pro-
grams, kernels, command queues, and events. The dOpenCL
implementation itself is represented by a single dOpenCL
platform object from which a list of available servers and
devices can be queried. A context comprises a number of
devices and management objects that are associated with any
of these devices. Memory objects, i. e. buffers and images,
contain data that is transferred between host and device.
Programs represent OpenCL source code from which kernel
objects are created. To execute kernels on devices, they are
enqueued into a command queue that is associated with the
device. As commands are usually executed asynchronously
by a command queue, events are provided to synchronize
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Figure 1. Architecture overview of dOpenCL.

command execution or to query its status if required. Most
management objects are shared by all devices of a context:
these objects and changes to them become visible to all
devices at certain synchronization points.

B. Runtime system

The dOpenCL implementation is designed as a distributed
application itself, as shown in Figure 1: it comprises one
dOpenCL client driver and multiple dOpenCL daemons
which are installed on the nodes of a distributed system.
A node with the client driver is called client, while nodes
that run a daemon are referred to as servers. The client (the
host system) runs an OpenCL application, while the servers
provide access to their devices over a network.

The client driver is a library which provides a fully-
fledged implementation of the OpenCL API to an appli-
cation. It is used as a drop-in replacement for an existing
OpenCL implementation, such that an original OpenCL ap-
plication does not have to be modified in any way (i. e., com-
piled or linked anew) in order to use dOpenCL. Note that the
client driver does not allow an application to access OpenCL
devices on the client. However, dOpenCL is compatible with
the ICD loader (ICD – Installable Client Driver), which
has been included in the OpenCL standard in order to use
multiple OpenCL implementations simultaneously. Thus, an
OpenCL application can use dOpenCL in combination with
other OpenCL implementations which give access to the
client’s devices. Besides, a daemon can also be installed on
a client for the same purpose. The main task of the client
driver is to intercept calls to OpenCL API functions and
redirect them to daemons that own the management objects
which the functions refer to. The daemons continuously
accept incoming function calls from the client driver and



forward them to their server’s OpenCL implementation.
The client driver and the daemons are linked by a commu-

nication library which allows the client to control the devices
on the servers. Two communication patterns are employed in
dOpenCL: message-based communication and stream-based
communication.

Message-based communication is used to execute
OpenCL functions on a server and to exchange asynchronous
notifications (e. g., object status updates) between client and
servers. For executing an OpenCL function on a server, a
specific request message is sent to the server. The server
indicates the completion of the function call by sending a
response message to the client.

Stream-based communication is used to exchange bulk
data between client and servers. Unlike message-based
communication which introduces a certain overhead due
to the communication protocol, in stream-based commu-
nication only raw data is transferred. Bulk data trans-
fers (up to several gigabytes in some applications) are
used between nodes of a distributed system; they are per-
formed asynchronously, i. e. the client does not wait for
a data transfer to complete, as it does for most message-
based operations. Moreover, the implementation of some
OpenCL functions, e. g., for uploading a program to a
device (clCreateProgramWithSource), includes bulk
data transfers. These functions start by a request-response
message exchange to initialize the data transfer before
data is actually sent from the client to a server or back
synchronously.

In dOpenCL, messages and application data have to be
transferred over a network, before an OpenCL implemen-
tation on a server actually transfers that data to a device
using the server’s system bus. Network connections are
usually considerably slower than a system bus, such that
data transfers in dOpenCL can be up to an order of magni-
tude slower as compared to other OpenCL implementations
which are designed for stand-alone systems. For example,
Gigabit Ethernet, a widely used network type, provides a
data transfer rate of up to 125 MB/s, whereas a PCIe bus
provides data rates of 250 MB/s up to 16 GB/s. Only high-
performance network types like Infiniband provide data rates
which are similar to that of a system bus (from 250 MB/s up
to 12 GB/s). Therefore, using a high-performance network
and communication library is crucial for dOpenCL. In our
implementation of dOpenCL, we use the Generic Communi-
cation Framework (GCF) to implement network communica-
tion. GCF is a part of the Real-Time Framework which was
originally developed for high-performance communication
in distributed real-time applications like massively multi-
player online computer games [15], [16]. In GCF, client
and servers are represented by process objects; processes ex-
change messages which we use to implement message-based
communication in dOpenCL. Additionally, we implemented
bidirectional data streams for GCF in order to exchange large

quantities of binary data as required by dOpenCL for stream-
based communication. All communication is performed by
GCF asynchronously, i. e. the client never waits for a com-
munication operation to complete before it proceeds with
other communications and computations in its program.

Some API functions do not require communication with
servers and thus are directly implemented by the client
driver. For example, platform information can be queried
without any network communication. Also, most informa-
tion on other OpenCL management objects is immutable and
provided to the client driver during object creation, such that
this information can be queried from the client driver at later
phases of the execution without network communication. All
other API functions depend on client-server communication.

The current implementation of dOpenCL is limited to
a set of frequently used OpenCL API functions, which
cover many OpenCL applications like the ones we present
in Section V. API functions, for mapping memory objects
(an alternative method for up- and downloading data), for
images, samplers, or profiling have not been implemented
yet. Moreover, OpenCL API extensions for sharing with
OpenGL or Direct3D cannot be implemented for distributed
systems, as these render graphical output on the local GPU
(i.e. a server’s GPU) for output rather than the client’s GPU.

C. Connecting client and servers

OpenCL natively does not provide any means to con-
nect or disconnect remote systems in order to access their
devices. Rather, an OpenCL application can query a fixed
set of devices which are installed in the host system. In
dOpenCL, we introduce new functions to the OpenCL API
(see Listing 1) which allow the programmer to increase
or decrease the number of available devices during the
application’s runtime.

/* Connect to a server, adding its devices to the
application’s device list */

cl_server_WWU clConnectServerWWU(
const char *url, cl_int *errcode);

/* Disconnect a server; its devices’ states become
’unavailable’ */

cl_int clDisconnectServerWWU(
cl_server_WWU server);

/* Query information about a server */
cl_int clGetServerInfoWWU(cl_server_WWU server,

cl_server_info param_name, size_t param_size,
void *param_value, size_t *param_size_ret);

Listing 1. OpenCL API extension for dynamic server allocation

The additional functions introduce a new management
object called server to the OpenCL API. Servers can be
connected or disconnected in dOpenCL at runtime, such
that their devices become available or unavailable to the
application, respectively. Moreover, the programmer can
obtain a list of devices which are provided by each server.



The described API extension is optional, and it is not
used by existing OpenCL applications. To enable these
applications to use dOpenCL, we have implemented an
automatic connection mechanism. The user can specify a
list of available servers by a configuration file, like the one
shown in Listing 2. The configuration file is placed into the

# connect to server ’gpuserver.example.com’
gpuserver.example.com
# connect to server in local network
128.129.1.1:7079

Listing 2. Example server configuration file. Servers can be specified
using either their IP address or host name and an optional port number.

application’s execution directory. During the application’s
initialization phase, when it obtains the list of available
devices from the client driver, the client driver automatically
connects to the servers specified in the configuration file.
From each daemon, it obtains the list of available devices
and merges them into a single list which is returned to
the application. Therefore, existing OpenCL applications
augmented with a simple configuration file can be executed
on a heterogeneous distributed system.

D. Management and consistency of distributed objects

When using OpenCL, applications operate on manage-
ment objects, e. g., contexts, command queues, or mem-
ory objects, provided by an OpenCL implementation. The
daemons of dOpenCL use these objects of their server’s
standard OpenCL implementation to execute the commands
from the client driver. For the client these objects are
remote objects. Since remote objects are tied to the server’s
OpenCL implementation, two problems arise when using
these objects in a distributed system: 1) objects cannot be
transferred between client and servers (not even if the same
OpenCL implementation is used on all servers), and 2)
objects cannot be shared by devices on different servers.

To solve the first problem, we implement object stubs
which the client driver provides to the OpenCL application
as a replacement for the remote objects. Stubs are created by
the client driver and assigned a unique ID which corresponds
to a remote object. To interact with its remote object, a stub
uses message-based communication. When an application
calls an API function that refers to a stub, the client driver
sends a specific request message with the function’s input
parameters to the server which holds the stub’s remote
object. Input parameters that refer to management objects,
i. e. other stubs, are replaced by the stubs’ IDs. On the
server, the daemon replaces these IDs by the associated
remote objects and calls the corresponding function of its
standard OpenCL implementation. A response message with
the function’s return code and output parameters is returned
to the client driver to confirm the call completion or to
report an error. Thus, stubs enable an OpenCL application
to control remote objects such that these do not have to be

transferred to the client. For the programmer, this solution
is transparent, as stubs can be used like management objects
from any other OpenCL implementation.

Stubs are sufficient to replace remote devices and com-
mand queues, as these remote objects are only used by a
single server. However, all other management objects (except
for the dOpenCL platform object explained in Section III-E)
are shared objects and require an enhanced solution. In
dOpenCL, these objects have to be shared between servers,
because devices that share such an object can reside on
different servers. More precisely, a context in dOpenCL as
well as every shared object associated with that context is
associated with the set of servers that host the devices of
that context. Stubs cannot replace shared objects, as they are
only associated with a single remote object. Therefore, we
introduce compound stubs. Unlike the previously described
simple stubs, compound stubs are associated with multiple
remote objects. Compound stubs assert consistency of their
associated remote objects on multiple servers such that their
state is shared by these servers. With compound stubs, the
programmer still uses a single object rather than a set of
simple stubs to control multiple remote objects. For example,
when the programmer creates a context in dOpenCL us-
ing the function clCreateContext, appropriate request
messages are sent to each server that hosts a device of
the distributed context in order to create remote context
objects on these servers. On the client, a compound stub
along with an ID is created and associated with the remote
contexts. Note that the contexts on a particular server are
only associated with the devices that are hosted by that
server, while the context represented by the compound stub
is associated with all devices that have been specified by the
programmer.

For samplers, programs, and kernels, compound stubs
assert consistency by replicating API functions calls that
refer to the compound stub to all associated remote objects.
However, other shared objects, namely memory objects and
events, require special measures for consistency, because
they are not only modified by an application (using the
compound stub) but their state can also be changed by a
server’s OpenCL implementation during kernel execution.

Consistency of memory objects: In order to assert
consistency of remote memory objects on multiple servers in
dOpenCL, we use a directory-based implementation of the
MSI (Modified, Shared, Invalid) coherence protocol [17].
The remote memory objects are viewed as cached versions
(copies) of the client’s memory object stub and are assigned
a status (initially “invalid”). For each memory object stub,
the client maintains a status (initially “shared”) and a list of
servers (the directory) which own a valid remote memory
object for this stub. When a remote memory object has
been modified on a server, the object is marked “modified”
on that server, while all other copies including the client’s
memory object stub become “invalid”. When a server is



about to execute a command, it requires a valid copy of
each memory object that will be read during execution of
the command. Hence, it verifies the status of its local copies
of these memory objects. For each copy whose status is
“invalid”, the server requests the client to upload a valid
copy of this object, such that its status becomes “shared”
(as memory objects cannot be copied between servers, here
“copying” means to upload data for updating the invalid
memory object). If the client also has no valid copy of this
memory object (the stub’s status is “invalid”), it downloads
a valid copy from one of the servers in the memory object’s
shared list before uploading the object to the server that
initially requested the update. The status of the client’s
memory object thus also becomes “shared” again.

Consistency of events: Unlike other management ob-
jects which are created explicitly by an application, events
are created implicitly when a command is submitted to
a device (using a command queue). Therefore, a remote
event can only be created on the server owning that device;
copies of this event cannot be created on other servers.
In dOpenCL, we overcome this limitation by employing
OpenCL user events and the following consistency protocol.
When a command is submitted to a device in dOpenCL, the
command is forwarded to the server that hosts the device,
such that a remote event (the original event) is created on
that server. The event is configured to send a notification
to the client when its status changes to “completed” using
the function clSetEventCallback. On all other servers,
a user event is created as a replacement for the original
event. Note that while user events can be created without
submitting a command to a device, they can otherwise be
used like normal events. When the command is completed,
the status of the original event is changed to “completed” by
the server’s OpenCL implementation and a corresponding
notification is sent to the client. The client then sets the
status of the corresponding user event on all other servers
to “completed”. Thus, the status of the original event is
available on all servers in a consistent manner.

E. The dOpenCL platform

Like other management objects, platforms cannot be
transferred between client and servers in original OpenCL.
This particularly means that each server provides its own
platform object, even if the same OpenCL implementation is
used on all servers. This has two disadvantages: 1) devices
from different servers cannot be associated with the same
context in order to share management objects, and 2) the
number of platforms increases with each server, which
increases the complexity of using devices from multiple
servers.

To compensate for these disadvantages, the client driver
introduces a platform called dOpenCL. This uniform plat-
form is associated with all devices from all servers, such that
they can be mixed in one context. Unlike a compound stub

(see Section III-D), the uniform platform is not associated
with any platform on a server, but is rather a self-contained
entity. For example, all platform information is provided by
the client driver and does not require communication with a
server.

F. Server-to-server communication

In the current implementation of dOpenCL, all message
exchange and data transfer is managed by the client, i. e.
servers do not communicate directly, but rather use the
client as a communication agent. This may considerably
reduce communication performance when multiple servers
are used, as communication links between servers are not
used. To use the available communication bandwidth more
efficiently, dOpenCL functions that employ multiple servers
will be implemented using server-to-server communication.
For example, memory objects on different servers can be
synchronized by exchanging their data directly. This would
also allow to use a more efficient coherency protocol like
MOSI (Modified, Owner, Shared, Invalid) which takes ad-
vantage of sharing data between servers. Likewise, event
status can be broadcasted directly by the server that owns the
original event (see Section III-D). Server-to-server commu-
nication is particularly useful for applications which require
many servers and high network throughput.

IV. RUNNING MULTIPLE APPLICATIONS CONCURRENTLY

Running multiple applications in a distributed system
simultaneously is desirable for two reasons: 1) the system
can be shared by multiple users, and 2) the system can
be used to its full capacity even if a single application
is only able to use a fraction of the system’s capacity.
However, without managing the allocation of devices to
applications, the system may possibly be used inefficiently.
For example, consider 4 applications each requiring 1 GPU
that are executed on a distributed system comprising 4
servers with 1 GPU each. Each application can freely choose
its required device from any of the 4 servers. In particular, all
applications might decide to use the GPU of the first server,
while the three other servers would stay idle. Specifying
different servers for each application is not an option,
because the applications are independent from each other
(e. g., started by different users), such that they do not know
which servers are already used.

To overcome this problem, we extended the dOpenCL
runtime system presented in Section III by a central network-
accessible device manager. The device manager is either
installed on one of the servers or on a dedicated node of
the distributed system, such that it can be used by multiple
clients simultaneously. The device manager employs sophis-
ticated scheduling strategies to share devices among multiple
applications that use dOpenCL. In particular, it ensures that
each device is only used by one application at a time when
multiple applications are executed concurrently. The key
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concept of our device manager is to limit the number of
devices a client has access to. Internally, the device manager
maintains two sets of devices: devices that are not assigned
to a client (free) and assigned devices. The device manager
does not replace the connection mechanism described in
Section III-C, but rather complements it. Thus, a client can
obtain devices from a given list of servers and additionally
request devices from a device manager. The device manager
is fully transparent to the application.

In order to integrate the device manager with the client
driver and daemon, the following mechanisms are required:

• The device manager must be able to connect to the
servers, such that it can create a list of all available
devices.

• An application (i. e. the client driver) must be able to
request devices from the device manager.

• A server must only give a client access to devices
that the device manager has assigned to the application
running on that client.

In the following subsections, we briefly describe how these
mechanisms are implemented.

A. Connecting device manager and servers

To combine a daemon with the device manager, the
daemon is started in the so-called managed mode. In this
mode, the daemon automatically connects to the device
manager. The address of the device manager is specified by
a command line parameter provided by the user. The device
manager receives the list of devices from the daemon’s
server, and adds it to its list of free devices. Thus, the device
manager obtains information about all available servers and
devices. Moreover, when in managed mode, the daemon only
returns those devices to a client that the device manager has
assigned to that client.

B. Requesting devices

To request devices from the device manager, an appli-
cation specifies the number and properties of the devices

it requires. This so-called assignment request contains the
number and type of devices to be allocated and a set of
properties that the requested devices should have. Eligible
device properties are all properties which can be requested
using the OpenCL API function clGetDeviceInfo (e. g.,
minimal memory size, number of processing elements). In
order to request devices (see Figure 2), the client driver sends
an assignment request to the device manager (1). The device
manager assigns the devices (2) and returns a list of servers
to the client driver (3a) and a list of assigned devices to the
daemons (3b). The client driver then connects to the servers
(4) from the received list to obtain the assigned devices from
the daemons (5).

As the standard OpenCL API does not provide any means
for the aforementioned requesting mechanism, we imple-
ment a new automatic device request mechanism. The user
provides an XML-based configuration file which contains
the address of a device manager and a list of properties
for each type of device that should be requested from the
device manager. An example configuration file is shown
in Listing 3. During the application’s initialization phase,

<devmngr>devmngr.example.com</devmngr>
<devices>
<device count="2">
<attribute name="TYPE">CPU</attribute>
<attribute name="VENDOR">Intel</attribute>
<attribute name="MAX_COMPUTE_UNITS">2

</attribute>
</device>
<device>
<attribute name="TYPE">GPU</attribute>

</device>
</devices>

Listing 3. Example configuration file: two Intel dual-core CPUs
and a GPU are requested from the device manager available at
devmngr.example.com.

the client driver reads the configuration file and sends a
corresponding assignment request to the device manager
specified in the file.
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C. Assigning devices to clients

In order to assign devices to a client, the device manager
has to limit the number of servers and devices the client
can access. We implement this restriction mechanism using
so-called leases. A lease comprises a unique authentication
ID, a set of devices, and a set of servers which own these
devices. When the device manager receives an assignment
request from a client, a new lease with a unique authenti-
cation ID is created. To create a device set for the lease,
the device manager searches its set of free devices for
devices which comply with the devices’ properties from the
assignment request. Appropriate devices are added to the
device set and removed from the device manager’s set of
free devices, such that they cannot be associated with other
leases. The lease’s server set is computed from the device
set, such that it comprises all servers that own at least one
of the devices from the device set.

The device manager sends the lease’s authentication ID
and a subset of the lease’s devices set to all servers from
its server set (see Figure 3). Each server is sent a different
subset, as this subset is the intersection of the server’s device
list and the lease’s device set, such that a subset contains
the devices which the server should associate with the
authentication ID. The client is also sent the authentication
ID by the device manager along with the lease’s server set.
An error code is sent to the client if the device manager
was not able to find an appropriate device for some of the
devices specified in the assignment request.

To finally obtain the devices it has been assigned, the
client requests these devices from the servers in the lease’s
server set. When connecting to the servers, the client has to
provide a valid authentication ID, otherwise the connection
is rejected by the server. As the servers are running in
managed mode (see Section IV-A), they only give the client
access to those devices that are associated with that ID. Thus,
a client can only access devices that have been assigned to
it by the device manager.

In order to re-assign devices to other clients, idle devices
are returned to the device manager’s set of free devices. Usu-
ally, a client returns a lease when its application is finished,
by sending a corresponding release message containing the
authentication ID to the device manager. The device manager
forwards this message to the servers in the lease’s server
set, such that these servers discard the authentication ID.
Besides, the device manager returns all devices from the
associated lease’s device set to its list of free devices before
deleting the lease.

When an application terminates abnormally or if the client
is disconnected from the network, it cannot send the release
message. Therefore, we implemented an additional mecha-
nism to release assigned devices. When a client disconnects
from a server, its authentication ID becomes invalid, i. e.
a client cannot access the devices that are associated with
that ID any longer. The daemon (rather than the client)
sends a release message to the device manager to report the
invalidated authentication ID, such that the device manager
will return the associated devices to its set of free devices.

V. EXPERIMENTS

In this section, we present three series of experiments to
evaluate the performance of dOpenCL in various application
scenarios:

a) a scalability benchmark (Mandelbrot set),
b) a real-world, time-intensive application from the field

of computer tomography, and
c) a network bandwidth testing application.

While the first experiment evaluates dOpenCL as an ap-
proach for programming clusters using a single program-
ming model, the other experiments show that dOpenCL can
be used to share high-performance devices via a network.

A. Application example: Mandelbrot Set

The computation of a fractal of the Mandelbrot set is
a popular benchmark application, which we use to study
the programming effort and performance of dOpenCL. A
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Figure 4. Runtime of the Mandelbrot application using up to 16 devices.

Mandelbrot fractal is a section of the complex numbers plane
where each pixel corresponds to a complex number. The
pixel’s color indicates if the complex number is a member
of the Mandelbrot set (black) or not (any other color). An
iterative algorithm is used to determine whether a complex
number is part of the Mandelbrot set or not. A user-defined
threshold limits the number of iterations for each pixel.
The higher this threshold is, the higher is the program’s
algorithmic density.

We compare dOpenCL and a mix of MPI and OpenCL,
by adapting an existing OpenCL application for computing
a Mandelbrot fractal to both programming approaches. With
dOpenCL, we only have to provide a configuration file with
a list of servers, while the application is not changed in any
way. When using MPI+OpenCL, even this embarrassingly
parallel application required the following modifications:

• Based on the MPI process rank and communicator
size, an image tile (specified by its offset and size) is
assigned to each node.

• This tile, rather than the complete image, is passed to
the program’s algorithm for computing a Mandelbrot
fractal.

• The tiles are merged into a result image using the
MPI_Gather command.

• Initialization and finalization commands for the MPI
runtime are added.

In both application versions, each line of the fractal is
computed by another device in a round-robin fashion, such
that all devices are assigned an equal amount of work.

To evaluate the scalability and runtime of dOpenCL as
compared to the MPI+OpenCL implementation, we executed
both versions of the application on a cluster, whose compute
nodes are connected via Infiniband. Each compute node is
equipped with 2 hexa-core CPUs (Intel Westmere X5650,
running at 2.6 GHz), which are presented as a single device
by the installed OpenCL implementation (AMD Accelerated
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Parallel Processing SDK [18]). We measured the runtime
of both application versions for computing a 4800× 3200
fractal image with up to 20000 iterations per pixel on 2, 4,
8, and 16 nodes. The results shown in Figure 4 demonstrate
that both, the MPI+OpenCL (left bar) and dOpenCL (right
bar) versions scale well. As compared to the MPI+OpenCL
program, the dOpenCL program introduces only a moderate
and fixed overhead. The stacked view of the runtime for
program initialization (bottom), computation (center), and
data transfer (top) reveals, that this overhead is only intro-
duced by program initialization and data transfer. Unlike
MPI which requires the program binaries to be present on
all nodes before execution, dOpenCL transfers function calls
and OpenCL program code over the network during the
program’s runtime. Therefore, we attribute the overhead to
message-based communication.

B. Application example: List-mode OSEM

In addition to the benchmark Mandelbrot application, we
studied a real-world application from the field of computer
tomography. Positron Emission Tomography (PET) is a non-
invasive 3D imaging technology based on radioactive tracers
that are applied to a patient. When scanning the patient,
huge amounts of data are recorded and then processed by
an imaging algorithm to create 3D images of the patient.
We study the list-mode OSEM [19], [20] – an iterative,
computation-intensive imaging algorithm. In our previous
work [21], [22], we developed an OpenCL-based imple-
mentation of this algorithm for stand-alone systems with
high-end GPUs, which we use for our measurements here.
The list-mode OSEM application shows a limited scalability
when running on a large number of devices. Hence, using
dOpenCL to execute the list-mode OSEM on a cluster, as
we did with the Mandelbrot application, is of limited use.
But with dOpenCL, the application can be run on a desktop
PC, while the computation is performed on a multi-GPU
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server that is connected to the PC via a network. Without
dOpenCL, only the local low-end GPU of the desktop PC
could be used.

We executed the list-mode OSEM algorithm on a desktop
PC with a low-end GPU (NVIDIA NVS 3100M) using
dOpenCL. A GPU server equipped with a quad-core CPU
(Intel Xeon E5520, 2.27 GHz) and an NVIDIA Tesla S1070
(4 GPUs with 4 GB of memory each) is connected to
the PC via a Gigabit Ethernet network. The runtimes are
shown in Figure 5. We observe that the execution using
OpenCL on the low-end GPU is 3.75 times slower than
when using dOpenCL (15.7 sec vs. 4.2 sec). Since in real-
world applications the number of iterations reaches up to
several hundred, this improvement results in reducing the
overall runtime by hours. The trade-off for this performance
gain is given by the additional costs for data transfer to or
from the server, which is not required if the application had
been executed on the server directly using its native OpenCL
implementation.

C. Device Manager

By means of the dOpenCL device manager, multiple
applications can efficiently share the devices of a distributed
system. In particular, devices of a single node can be used
by these applications concurrently. In order to demonstrate
the efficiency of the device manager, we used it to share the
devices of our GPU server (see Section V-B) between up
to four applications. We connected four desktop PCs to the
GPU server and executed the Mandelbrot application from
our first experiment on 1 to 4 of these PCs simultaneously.
The application had been configured to request a single GPU
device from the device manager, rather than connecting to
the server directly, while the GPU server ran in managed
mode and connected to the device manager.

We measured the average runtime of a single application
instance, while 1 to 4 applications are concurrently executed
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on the server. The results are shown in Figure 6. Note that the
results are not comparable to the ones from our experiments
in Section V-A as we use GPU devices instead of CPUs
and a Gigabit Ethernet Network instead of Infiniband. The
results reveal two important features of the device manager:
First, the application runtime for computation does not in-
crease when the number of concurrent application instances
increases, because the device manager schedules the appli-
cations to different devices on the server. Second, the device
manager introduces only a small and constant initialization
overhead as compared to using the server directly, as shown
for the execution of a single application instance. When
the number of application instances increases, initialization
time of each application increases because the server has to
create more management objects. Also, the time for data
transfer increases, as the servers network bandwidth has
to be shared by all applications. When we performed the
same experiment without the device manager all applications
still worked correctly, but all dOpenCL commands were
scheduled to the same device on the server. Therefore,
the commands were arbitrarily interleaved and executed
sequentially, such that an application instance ran up to 4
times longer. The runtimes of the application instances differ
considerably in each execution, since they depend on the
execution order of dOpenCL commands on the server. This
order is determined by the order in which the server receives
the commands from the client and by the execution strategy
of the server’s native OpenCL implementation (provided by
the NVIDIA GPU driver in our case).

D. Data transfer

In order to evaluate the overhead due to the network
communication in dOpenCL, we created a simple OpenCL
application that transfers an arbitrary amount of data from
the host to a device and vice versa. We measured the transfer
time of data chunks of 1 to 1024 MB to and from the
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first device of the GPU server we used in our previous
experiments. The application has been executed on the
server directly using the NVIDIA OpenCL implementation
to measure the effective PCI Express bandwidth to and from
the device. Measurements reveal that data is written to the
device with a bandwidth of about 38.8 GB/s. We observed
a significantly slower data transfer when reading data from
the device: it took up to 15 times longer than writing the
same data to the same device.

When the same application is executed on a remote client
that is connect to the server using dOpenCL, the data is
transferred over Gigabit Ethernet to the server, then trans-
ferred to the device and afterwards sent back to the client.
Not surprisingly, the transfers over the Gigabit Ethernet took
more time than the transfers to the device: as shown in
Figure 7, it is about 4.5 times slower as compared to the
PCI Express when reading data from the device and up to
50 times slower when writing data.

To put these results into perspective, we compared the
measured transfer times with the achievable bandwidth of
Gigabit Ethernet. While the theoretical bandwidth perfor-
mance of this network is about 125 MB/s, we measured
an effective bandwidth of about 106 MB/s by means of the
widely used network measurement tool iperf [23]. Figure 8
shows the efficiency of the data transfer as the percentage
of the theoretically available bandwidth. The solid line at
86% shows the average effective bandwidth measured using
the network measurement tool iperf. The chart shows that
dOpenCL uses the available bandwidth of Gigabit Ethernet
quite well, i. e. the overhead introduced by dOpenCL itself
is quite small. Therefore, we expect that data transfer times
for the dOpenCL will become significantly lower when
using high-performance networks, like InfiniBand, since
it provides a bandwidth similar or even better than PCI
Express.

VI. CONCLUSION

We presented dOpenCL, an extended OpenCL API for
using OpenCL in distributed, heterogeneous computing sys-
tems. Using dOpenCL, applications can transparently access
OpenCL devices (CPU and GPU) located at remote systems.
Our approach, on the one hand, considerably extends the
scope of OpenCL; on the other hand, it facilitates a seamless
integration with existing OpenCL applications.

Unlike mixed-mode programming approaches such as
MPI+OpenCL, dOpenCL does not require existing OpenCL
programs to be modified for being executed on a distributed
system. For compute-intensive applications, like the pre-
sented Mandelbrot example, the overall overhead introduced
by dOpenCL is negligible. We demonstrated that our real-
world tomography application gains huge performance ben-
efits using dOpenCL by transparently offloading calculations
on a high-performance server, rather than using a low-end
desktop computer. Our experiments show that the dOpenCL
implementation makes efficient use of the available network
bandwidth, even though an expectable overhead is intro-
duced to every data transfer as compared to execution on
a stand-alone system. Even with a comparatively slow Gi-
gabit Internet, we achieved remarkable performance increase
when using devices in a distributed system.

ACKNOWLEDGMENT

We would like to thank NVIDIA for their hardware
donation, as well as Thomas Kösters and Klaus Schäfers
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