
Mesh Interface Resolution and Ghost Exchange in a

Parallel Mesh Representation

Timothy J. Tautges

Mathematics and Computer Science Division

Argonne National Laboratory

Chicago, IL

tautges@mcs.anl.gov

Jason A. Kraftcheck, Nathan Bertram

University of Wisconsin-Madison

Madison, WI

[kraftcheck@gmail.com, nbertram@wisc.edu]

Vipin Sachdeva, John Magerlein

International Business Machines

[vsache, mager]@us.ibm.com

Abstract— Algorithms are described for the resolution of

shared vertices and higher-dimensional interfaces on

domain-decomposed parallel mesh, and for ghost exchange

between neighboring processors. Performance data is given

for large (up to 64M tet and 32M hex element) meshes on up

to 16k processors. Shared interface resolution for

structured mesh is also described. Small modifications are

required to enable the algorithm to match vertices based on

geometric location, useful for joining multi-piece meshes;

this capability is also demonstrated.

Keywords—parallel I/O; unstructured mesh; structured

mesh

I. INTRODUCTION

Most parallel simulation codes solving systems of
PDEs use a domain decomposition approach, where the
spatial domain (i.e. the mesh) is split into P “parts”, one
part solved on each processor. The initialization of mesh-
based models on parallel computers requires more than
simply reading the elements in a given part. For element-
based unstructured mesh partitions, the vertices required
on a part are indirectly indicated by the connectivity of the
elements in a part. Most unstructured meshes also contain
mesh edges and/or faces that are also part of the model
definition, e.g. for boundary condition or geometric model
definitions. Other metadata may be represented by
collections of entities, with the initialization of a given
collection on a processor required only if the collection
contains entities also resident on the processor. After
initialization of the mesh entities and collections, most
codes also require information about vertices and other
entities shared between processors, in order to properly
formulate the equations being solved. Such codes may
also require one or more layers of ghost or halo elements
around the part. For adaptive codes, this information must
be preserved or restored after mesh migration that usually
accompanies mesh refinement.

There has been much work published on the subject of
parallel output of solution and checkpoint data; however,

less has been reported on parallel read and initialization of
mesh-based data, probably because read times are
amortized over the (usually longer) solution phase of a
computation. However, read times are not so small as to
be negligible, and for applications like post-processing can
dominate. For adaptive codes, some parts of the
initialization process must be repeated after each adaptive
step.

In this paper, we describe the reading and initialization
of mesh data. We describe the various parts of the read
process for unstructured mesh, and several optimizations
that have been done to improve read times. We also
describe algorithms for resolving shared mesh interfaces
between processors, and for exchanging ghost or halo
layers between processors. An extension of the shared
interface resolution algorithm that matches mesh vertices
based on geometric proximity is described, that enables the
assembly of multi-part meshes into contiguous mesh. For
structured mesh, we also describe techniques for resolving
shared interfaces that are mostly communication-free.

A. Background

The algorithms in this paper are implemented in
MOAB. MOAB is a library for query and modification of
structured and unstructured mesh, and field data associated
with the mesh [1]. MOAB can represent all entities
typically found in the finite element zoo, as well as
polygons and polyhedra. Structured mesh is supported as
well, with a special interface providing parametric block
information [2]. The data model implemented by MOAB
references four distinct data types:

• Entity: vertices, triangles, quads, etc.

• Entity Set: arbitrary collection of entities and
other sets

• Interface: object through which all other
functions are called, i.e. the database

• Tag: information stored on Entity, Entity Set,
and Interface objects

This data model has proven remarkably versatile, able
to represent most semantic information associated with

typical meshes, including boundary conditions, solution
fields, geometric associativity, and parallel partitions.
Internally, MOAB uses an array-based storage model. The
entity handle data type used to reference mesh entities is
an integral type, with the four high-order bits representing
the entity type (MBVERTEX, MBEDGE, …, MBMAX),
and the remaining bits representing an integer id. Entities
created in sequence are given contiguous entity handles,
which can be stored as range pairs (begin_handle,
end_handle). The TYPE(handle) and ID(handle)
functions return the type and id embedded in a handle,
respectively.

On parallel machines, mesh is represented and queried
in MOAB the same way a serial mesh is; information
about the parallel nature of the model is stored in the form
of sets and tags, and can be queried as such. For
convenience, MOAB’s ParallelComm class also provides
functions for providing this data, and for performing
commonly needed parallel functions. For any entity
shared with other processor(s), MOAB stores both the
remote processor rank(s) and the handle(s) of the entity on
those processor(s), on all processors sharing the entity.
MOAB uses the HDF5 library for its native save/restore
format [3]. Mesh models are initialized in parallel by
reading mesh from a single file in parallel, using a
partition stored as entity sets in the file. A partitioning tool
has been implemented by interfacing with the Zoltan
partitioning library [4].

B. Previous Work

Parallel I/O has been discussed extensively in the
literature, e.g. see [5][6][7]. Overall, the vast majority of
applications seem to have implemented application-side 2-
phase I/O, where only a subset of processors interact
directly with the file system and communication is used to
read/write data. Fu et. al report read/write times of 1-7
GB/s and .25-2.4GB/s, respectively, on 16k processors.
For these cases, the data being written consists of one or
more solution fields defined at each grid point or cell
across all processors. Typically, the best performance is
obtained when writing 64-1024 different files and when
interacting directly with MPI-IO rather than a high-level
I/O library like parallel-netcdf[8] or HDF5[3]. Kimpe et.
al [9] report I/O read/write bandwidths of no more than 0.4
MB/sec when using parallel netcdf or HDF5 on up to 8
processors of a computer cluser with a PVFS-based
filesystem.

For the overall process of initializing large,
unstructured meshes, Fournier et. al report the execution
time to initialize 107M element unstructured meshes on an
IBM BG/P machine [10]. Mesh initialization accounts for
approximately 8% of the execution time of a 50-timestep
problem, or approximately the cost of 5 timesteps.

On the subject of post-input mesh initialization,
relatively few details have been reported in the literature.
The most detailed description of this subject for
unstructured meshes is reported by Seol et al [11]. In their
work, mesh is migrated between processors in the context
of a partition model, which is maintained before and after

the migration. The method described in [11] requires at
least four message exchanges between each sending and
receiving processor pair: synchronizing the partition model
before migration, sending entities, receiving back entity
references, and forwarding references to other sharing
processors. The described method packs entities of each
topological dimension in separate messages; to avoid the
high latency cost of sending many separate messages, a
message aggregator is used. However, this aggregator
may inhibit the use of asynchronous messages, and the
latency hiding enabled by such messages.

For structured meshes, Falgout describes an algorithm
to find matching interface mesh based on physical position
[12]. Although this method works for cases with
structured Cartesian mesh, a proximity-based criterion
may fail in cases where the distance tolerance is not well-
matched to the mesh spacing, and, as we show later in this
paper, is not necessary.

C. Test Cases

Throughout the paper, performance measurements are
quoted for two meshes: one with 32M hexahedral
elements, and the other with 64M tetrahedral elements.
Both meshes were generated from a 64-volume geometric
model, and contain entity sets for materials, Neumann
boundary conditions, and geometric model entity
groupings. Material and Neumann sets would typically be
needed by any simulation application, while geometric
model grouping sets would be necessary for applications
performing adaptive mesh refinement. Performance
measurements were made on two parallel computing
platforms. The first, Intrepid, is an IBM BG/P at Argonne
National Labortory; tests described in this paper use up to
16k processors on this machine, in “virtual node” mode,
with each core having access to 512MB of memory. The
second platform, Fusion, is a cluster of 320 nodes, each
containing two 4-core Xeon processors, communicating
over an Infiniband network. Each node has either 36 or 96
GB of memory.

D. Organization

This paper begins by describing optimizations of the
parallel mesh read process implemented in MOAB in
Section II. Section III describes two data structures
important in the implementation of the algorithms in this
paper. The resolution of inter-processor interface mesh,
and exchange of ghost layers between processors, is
described in Section IV. In Section V we describe
modifications necessary to change the inter-processor
interface resolution algorithm into one finding matching
vertices based on geometric proximity instead of global id.
Shared interface resolution for structured meshes is
discussed in Section VI. Conclusions and items for future
work are described in Section VII.

II. UNSTRUCTURED MESH PARALLEL I/O

We implement parallel I/O using the parallel HDF5
library[3], using a one-phase approach where all
processors interact in parallel with a single file. The

specific layout of data in MOAB’s HDF5 file is outside
the scope of this paper, but is described in detail elsewhere
[13].

Parallel input and output of unstructured mesh models
requires more than simply reading and writing mesh nodes
and element connectivity lists. Complicating factors
include:

Identifying processor-resident entities: domain-
decomposed codes typically assign highest-dimensional
entities to processors, and store the partition as either an
element-based field or as sets of those entities. In either
case, the connectivity lists of those entities must be read to
identify the vertices to be read on a processor.

Fragmentation and ordering: If a partitioning of
elements over processors is stored as an annotation of the
original mesh, with no mesh reordering, there is usually
significant fragmentation of the element numbering space
over processors; that is, a given processor will have in its
partition many small groups of contiguously-numbered
elements. Even if the elements and vertices are reordered
to follow the partition, for unstructured meshes, the vertex
numbering will still be somewhat fragmented. Specifying
many small selections of HDF5 datasets to read and write
has been identified as a problem by Kimpe et. al [9], and
our experience bears that out as well. This would not be
the case if mesh parts were stored one per file (though that
approach would complicate the workflow of handling such
models).

Boundary conditions and other groupings: Besides
the vertices and elements, codes also need various lower-
dimensional entities (i.e. edges and faces) and sets
containing them for the purpose of defining boundary
conditions, geometric model groupings, and other
purposes.

These factors degrade the raw performance of mesh
input when measured in terms of bandwidth, either
because they involve work that is not I/O, or because they
imply multiple read calls, some of which are smaller in
size and therefore don’t perform as well as large, single-
call reads.

The parallel HDF5-based read process implemented in
MOAB is broken down into the following steps:

1. Read header information
2. Read partition sets
3. Read element connectivity
4. Read vertex coordinates
5. Read/process lower-dimensional elements
6. Read/process sets and tags

In our efforts to optimize the parallel HDF5-based read
operation, we first focused on ensuring that concurrent
I/O, rather than independent I/O, was used at all times.
This required ensuring that the various conditions which
would cause HDF5 to fall back to independent I/O did not
happen. These conditions, described in more detail in
Ref.[14], include requiring data type conversion or
transformation, existence of point selections for the read,
and non-contiguous and non-chunked reads. After
satisfying these conditions, the measured read times shown
in Figure 1. (orig-hex and orig-tet) were obtained on

Intrepid, for processor counts ranging between 16 and 16k.
Next, two optimizations were implemented. First, the
HDF5 library was modified to detect appending selections
and avoid searching the selection list in those cases. This
removed N

2
 behavior in the selection code in HDF5.

Second, the partitioner implemented with MOAB was
modified to reorder elements and vertices according to
their order in the partition using a simple greedy method.
The times after these optimizations are indicated by the
“select” and “reord” curves, respectively, in Figure 1.

The selection optimization had much greater influence
at low processor counts, and was qualitatively of greater
benefit for tetrahedral meshes than for hexahedral meshes.
Both these factors can be explained by the degree of
fragmentation in the selection list, which is greater at
lower processor counts (due to the greater number of
elements per processor in those cases) and for tetrahedral
meshes in general (which typically have a factor of 4-6
greater number of elements than hexahedral meshes, for a
given number of vertices).

Figure 1. Read performance for 32M hex and 64M tet

meshes. Original (no optimizations), select (improved

selection mechanism), reord (after reordering).

The reordering optimization significantly improved
read time for tet meshes, especially on larger numbers of
processors, while for hex meshes resulted in relatively
small improvements. We believe this difference is due
mostly to the difference in number of elements sharing
each vertex in tet versus hex meshes.

Overall, read times tend to flatten out above 128 and
2048 processors for hex and tet meshes, respectively, both
to approximately 100 seconds. To assess further
opportunities for optimization, it is useful to look at the
distribution of time over the various read steps, shown in
Figure 2. For datasets with the full complement of
geometric topology sets (32m tet case), we observe that
over 40% of the execution time is spent on reading and
processing lower-dimensional entities, i.e. edges and
triangles. These entities are the ones resolving various
edges and faces in the original geometric model from

which the mesh was generated. If these entities and the
corresponding sets are removed, we observe a dramatic
reduction across all phases of the read operation (64m tet
case). It is not clear why all phases of the read are
improved, though it may have to do with synchronization
required at the start of each dataset read, with fewer
datasets in the file containing no geometric information.
We are still investigating the reasons for this behavior.

Figure 2. Distribution of read times, with (32m tet) and

without (64m tet) geometry sets.

Both the 32M hex and 64M tet mesh files measure
approximately 3GB in size, therefore the I/O throughput
for reading and writing these meshes peaks at about
30MB/s on Intrepid. Removing the face and edge
elements from the mesh results in a 2.7GB mesh file; the
throughput for reading this mesh on Fusion is about
250MB/s. Again, we stress that these figures include work
not normally included with I/O times (e.g. ghost
exchange).

III. TUPLE LISTS AND CRYSTAL ROUTER

The algorithms described in this paper make frequent
use of the two classes TupleList and CrystalRouter.
TupleList stores n tuples, each tuple consisting of zero or
more integer, long integer, unsigned long integer, and
double datums, numbered zero to (n-1). TupleList
provides a function which sorts the tuples based on a
specified datum index, using radix and quick sort
algorithms for integer and double precision fields,
respectively. The collective tuple_transfer() function
communicates a TupleList to destination processors stored
in a specified index of each tuple. When this function
returns on the destination processor, that field holds the
source processor for the tuple. This function greatly
simplifies the routing of messages between processors.

CrystalRouter is a class for parallel communication
first described by Fox [15]. At its core, CrystalRouter
implements an optimized all-to-all, where message packets
sent from src to dest are combined and routed across
progressively smaller planes of processors, analogous to
Gray code-based communication in hypercubes.

CrystalRouter also provides the gs_init() function,

which implements the capability to find shared elements of
an integer space. On each processor, the CrystalRouter is
given a collection of tuples T, and the index of the tuple

datum representing the sort key. After gs_init() is
called, a list of nonlocal compounds nl(ind, np, T[np]) is
returned, one compound per integer occurring on one or
more other processors. For each compound, ind stores the
index of the shared integer value in the original tuple list

input to gs_init, np the number of other processors the

integer is shared with, and T[np] the tuples from the

sharing processors. gs_init() works by partitioning

the range of integers over processors such that each
processor is responsible for a portion of the range. One
tuple transfer is done to send the input tuples to the
responsible processors; the sort is done for a processor’s
range; then information on the shared tuples is sent back to
the originating processors. Because the original tuples are
returned in the nonlocal compound, the application can
retrieve information about the remote copies of entities.

IV. SHARED INTERFACE RESOLUTION AND GHOST

EXCHANGE

The starting point for shared interface resolution is
after each processor has read and initialized its portion of
the mesh (see Figure 7.) 1 . The overall strategy for
initializing sharing data is to first identify vertices shared
with other processors based on matching their global ids,
then identifying shared non-vertex entities by matching
their connectivity lists. Ghost entities are exchanged only
after shared vertices and other entities have been
identified. Although this algorithm is described with a 2D
example mesh, we emphasize that it is implemented for
3D meshes, and 3D meshes are used to generate timing
data reported below.

 The algorithm for finding shared vertices is shown in
Figure 4. When this algorithm completes, all vertices
shared with all other processors are known, along with the
handles of those vertices on those other processors. Also,
based on the vertex sharing information, the processors
communicating with the local processor are known. This
list is kept in a data structure that also holds send and
receive buffers for each of the communicating processors.
Subsequent communication, for identifying shared non-
vertex entities and exchanging ghost entities, consists only
of point-to-point messages.

Sharing information is stored on entities in two tag
types. If an entity is shared with only one other processor,
the remote processor and handle are each stored in single-
valued tags on the entity. For entities shared with more
than one other processor, the remote and local
processors/handles are stored on tags on the entity, with
the owning processor/handle in the first position of these

1 The tools for partitioning a mesh and reading it in

parallel are not described here, but are available (see

the MOAB wiki [13] for further information).

lists. Each entity is also marked with a single-byte tag,
which stores its parallel status (e.g. if an entity is shared by
one or multiple processors, if the entity is owned by the
local processor, etc.)

The algorithm for finding shared non-vertex entities is
shown in Error! Reference source not found. For each
entity on the skin of the local mesh (step 1), the processors
which might share the entity can be found by intersecting
the sharing list for all the entity’s vertices (step 2) After
packing the connectivity for an entity into a message (step
4bi), those (local) vertex handles are replaced with their
handles on the remote processor (using the sharing
information resolved in the previous algorithm, step 4bii).
Messages are exchanged asynchronously with the
communicating processors.

An entity’s vertices shared with another processor does
not guarantee that entity is shared too. Also, we require the
remote handles for entities actually shared by other
processors. One way to resolve this issue would be to
send potentially-shared non-vertex entities to the neithbor
processor, and have that processor send back remote
handles for the entities actually shared. However, that
would require a sequence of two messages, which could
not be passed concurrently. Instead, each processor sends
the possible shared entities to the other. Those messages
are received, and entity sharing information determined
based on them. Since by definition each shared entity will
be sent from each processor sharing that entity, every such
processor is guaranteed to receive the shared entity from
all other sharing processors. Furthermore, these messages
can all be sent concurrently. In many cases these
messages will be relatively small, and as stated earlier,
they are point-to-point and involve a relatively small set of
processors. We believe this to be the reason this algorithm
shows good scaling behavior.

Figure 3. Execution time for parallel read and shared vertex

resolution for sturctured mesh, using unstructured (ucd) and

structured (scd) algorithms.

For brevity, we describe the algorithm in Error!
Reference source not found.as sending each message
using a single MPI function. However, this form of
messaging may result in deadlock, if the receiving

processor(s) have not allocated enough space for incoming
messages. The algorithm as implemented in MOAB sends
a first message of a known length, with the length of the
total message as the first item in that message, then posts
an asynchronous receive. The remote processor, after
receiving that message and reading the overall length of
the message, allocates the required buffer size, posts an
asynchronous read for the remaining part of the message,
then sends an acknowledgement to the sending processor.
The sending processor, after receiving that
acknowledgement, sends the remainder of the message,
again using an asynchronous message. Currently, the
length of the first fixed-size message is set to 1024 bytes.
The result of resolving shared vertices and non-vertices is
shown in Figure 9, with sharing lists indicated there.

The ghost exchange process is depicted in Figure 10.
The algorithm for exchanging ghost elements is shown in
Figure 5. . A key part of the algorithm, reading incoming
ghost entities from another processor, is shown in Figure
6.

Several complications can be noted from Figure 6.
First, for triangle t2 sent from P1 to P0 and P2, some of
the vertices supporting that entity must also be sent, while
some are already present on the destination processor. For
vertices already on the destination, the remote handle is
substituted in the connectivity list in the message. New
vertices from that message are referenced by entities later
in the message using a handle consisting of the type
MBMAXTYPE, and the id corresponding to the index of
that new vertex in the entities contained in the message.
This is depicted in step 4dii of Figure 5. and 3bi of Figure
6. Second, since we require every processor to know
remote handles on all sharing processors, in the case of
ghosting, the receiving processors must send the remote
handles of entities to not only the sending processor, but to
all other processors to which those same entities are sent.
For example (see Figure 10), P2 must send the local
handles for v6 and t2 to both P1 (the sending processor)
and P0. Furthermore, in some cases the sending processor
does not know the handle by which a new entity can be
referenced on the receiving processor (e.g. t2 in the P2 to
P0 remote handle message). Instead, the handle on the
owning processor is used (which is sent in the sharing list
in the original message), with a negative processor number
indicating this. Entities received as part of ghost
exchange, and for which remote handles must be returned,
are kept in the lists L1[p] (step 6).

The third complication in the ghost exchange process
is that in some cases, ghost exchange results in some
processors sharing entities (and therefore communicating
together) that formerly did not. For example, in Figure 10,
P2 sends triangle t1 to P3, and P0 and P1 must be
informed of the remote handles for t1 and its vertices on
P3. This is accomplished as follows. The processor
sending entities knows the other processors to which it
sends a given entity, and includes all those processors in
the sharing list as part of the message, with a zero handle
for remote handles that are not yet known (step 4bi). By
definition, these entities will be shared on more than two

processors, therefore the sharing list contains all remote
processors/handles, the first of which is the owner. The
receiving processor keeps a list of such entities (L2 in
steps 3-4), to resolve the fourth complication (described
next). The fourth complication is that a given processor
may receive new entities from multiple processors, and
should use the same (local) entity for them. Before
creating a new entity, for entities whose eventual sharing
list is longer than two processors, the owner handle is first
checked against those in L2 (step 3c).

V. MESH JOINING

Large mesh models are often generated in pieces which
are subsequently merged to form the overall model. The
mesh merging step requires matching mesh vertices in the
assembled model based on geometric proximity. A serial
merge process requires that the whole assembled mesh be
represented in a single process, which limits the overall
size of the assembled mesh to what can be held in memory
on a given machine. Parallel mesh merging removes this
constraint, and in our implementation also significantly
reduces the wall clock time for assembling the mesh.

Parallel mesh merging is easily supported by making a
small modification to the vertex matching algorithm in
Figure 4. First, instead of partitioning the global id space
over processors, instead the geometric bounding box of all
vertices is partitioned over processors, with each processor
responsible for a distinct geometric region (plus a small
epsilon layer whose thickness is twice the distance
tolerance of the merge). The spatial extent covered by
each processor can be computed deterministically based
on the bounding box extent, the number of processors, and
the merge tolerance. Each processor retrieves vertices on
the skin of the local mesh, and performs a local merge on
those vertices. Next, for the remaining skin vertices, each
processor assembles a tuple list similar to that described in
Error! Reference source not found., except that instead
of global ids, the tuples hold the (x, y, z) position of the
vertex, and the destination processor is assigned according
to the processor(s) responsible for that position in space2.

The remaining parts of the algorithm in Figure 4. are
the same, save for the matching process, which here works
on spatial proximity rather than matched global ids. Note
also that in contrast to the serial merge, merging a vertex
with another on another processor does not result in one of
those vertices being deleted; rather, the parallel sharing
information is modified to indicate that they are the same
logical vertex. The actual merging is done as part of the
parallel write process described in Section II.

TABLE I. CPU TIMES (IN MINUTES) FOR MESH JOINING,
COMPARED TO MESH COPY/MOVE TIMES, FOR TWO PROBLEMS.

 #procs 11M hex VHTR 58M hex VHTR

Copy/move 1 10.4 141.8

2 Note that more than one processor may be responsible

for a given point, if the point is located in the

2*epsilon-wide region on the box boundary.

8 5.8 59.6

16 0.27 1.4

32 0.036 0.12

56 0.004 0.001

1 3.81 70.48

8 7.54 28.29

16 6.7 17.62

32 0.92 2.34

 J o i n

56 0.25 0.8

The parallel mesh merge described above has been
implemented in the Reactor Geometry Generator (RGG).
A reactor core is constructed from fuel and other
assemblies arranged in a rectangular or hexagonal lattice;
typical cores use 10-20 different assembly types, with total
assembly counts in the 100-1000 range. RGG generates
mesh models for each assembly type, then uses a
copy/move/merge process to assemble the overall core
mesh. Meshes of over 50M hexahedral and tetrahedral
elements have been produced by RGG. Clearly, the
copy/move/merge process is a good candidate for parallel
solution.

Timings for RGG are shown in TABLE I. for a Very
High Temperature Reactor problem of two sizes, 11M and
58M hexahedral elements. Times for assembly mesh
copy/move are given along with mesh join times, for
comparison purposes. We note first that both the
copy/move and join operations see super-linear speedups
in some cases; memory usage data (not reported here)
indicates that these steps are where the application goes
from swapping to a state where the job fits in available
memory. This indicates one important reason for
parallelizing RGG, i.e. so the application can fit in
memory without swapping. Next, mesh joining is
observed to actually slow down going from one to eight
processors; this is probably due to the communication
overhead required in the parallel algorithm. However, at
larger numbers of processors, the joining time is reduced
far below the serial time.

VI. SHARED VERTEX RESOLUTION FOR STRUCTURED

MESH

The algorithm in Figure 4. for finding vertices shared
between processors applies equally well to structured
meshes; however, a more efficient means for matching
vertices is available that takes advantage of the structured
mesh parameterization and requires far less
communication.

First, if the vertices in a structured mesh block were
created all at the same time for that block, the vertices on
the skin of the block can be computed directly, given the
block parameterization and the starting vertex handle for
the block (these data are provided by MOAB’s structured
mesh interface [2]). Furthermore, if the parallel
decomposition of the structured mesh is known on all
processors, then the remote processors with whom a given
processor shares mesh can be inferred from the
parameterization. A processor need only find out the
starting vertex handle on each communicating processor,

after which it can compute the remote vertex handles
directly, without further communication. Since handle
computations are integer operations, they are quite fast,
and the required communication (starting handles on each
of the sharing processors) are short and point-to-point. In
practice, directly computing sharing data is substantially
faster than obtaining those data using the unstructured
mesh-based methods described earlier.

MOAB reads parallel structured mesh using the
pnetcdf library [8]. Four different decomposition
strategies are supported, one of them 1D, and the
remaining ones 2D. Execution times for shared vertex
resolution using the unstructured and structured algorithms
are shown in Figure 3. compared to read times. The
structured algorithm improves resolve times by at least an
order of magnitude in most cases.

VII. CONCLUSIONS

Input/output operations for structured and unstructured
mesh models requires not only I/O for mesh vertices and
elements, but also for intermediate edges, faces, and other
metadata information. Initialization of a mesh model into
its parallel domain-decomposed representation also
typically requires identifying vertex and non-vertex
entities on inter-processor interfaces, along with the other
processors sharing those entities and their “handles” on
remote processors. Exchanging one or more layers of
ghost elements is also often required for simulation on a
mesh. We describe the various algorithms used by the
MOAB mesh library for performing parallel mesh I/O.
Strong scaling results are given for shared interface
resolution and ghost exchange which show good
scalability out to 16k processors of an IBM BG/P. I/O
times for large mesh models (32M hex and 64M tet mesh
models are used) are around 100 seconds at 128 processors
and above. We give timing data which show that these
times may be drastically reduced by removing unused
intermediate faces and edges, and unused sets containing
them, from the data. We also describe how the shared
vertex resolution algorithm can be modified to produce a
mesh merging function, and show how this function
supports the assembly of large lattice-based reactor core
meshes.

Based on an informal survey of parallel application
developers, we can say that the reported I/O times for
these mesh models is adequately small, in an absolute
sense. However, when measured in terms of bandwidth,
we obtain I/O rates far lower than peak rates for this
machine. Some of this is due to the non-I/O work required
to initialize a parallel mesh. Still, we believe these I/O
times could be further reduced. Two specific
optimizations seem promising. First, as we have shown,
simply removing unused intermediate faces and edges, and
sets which contain them, will likely reduce I/O times
substantially. We are in the process of testing this
hypothesis for larger numbers of processors. Furthermore,
we also conjecture that explicitly identifying these edges,
faces, and sets, in the partition sets (which currently only
store 3D elements in each part) will eliminate much of the

non-I/O work currently performed in this process. We
plan to implement this option into the partitioning tool
currently used with MOAB.

More generally, we are also working with the
developers of the HDF5 library to further improve
concurrency in the HDF5 functions called by MOAB.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Dept. of
Energy Office of Nuclear Energy Nuclear Energy
Advanced Modeling & Simulation (NEAMS) Program; by
the U.S. Dept. of Energy Office of Scientific Computing
Research, Office of Science; and by the US Department of
Energy’s Scientific Discovery through Advanced
Computing program, under Contract DE-AC02-
06CH11357.

REFERENCES

[1] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson,

and C. Ernst, “MOAB: A Mesh-Oriented Database,”

Sandia National Laboratories, SAND2004-1592,

Apr. 2004.

[2] T. J. Tautges, “MOAB structured mesh interface,”

MOAB structured mesh interface. [Online].

Available:

http://svn.mcs.anl.gov/repos/ITAPS/MOAB/trunk/sr

c/moab/ScdInterface.hpp. [Accessed: 15-Sep-2011].

[3] “Hierarchical data format version 5,” The HDF

Group, 15-Sep-2011. [Online]. Available:

http://www.hdfgroup.org/HDF5. [Accessed: 15-

Sep-2011].

[4] K. Devine, E. Boman, R. Heaphy, B. Hendrickson,

and C. Vaughan, “Zoltan Data Management

Services for Parallel Dynamic Applications,”

Computing in Science and Engineering, vol. 4, no.

2, pp. 90–97, 2002.

[5] J. Fu, N. Liu, O. Sahni, K. E. Jansen, M. S.

Shephard, and C. D. Carothers, “Scalable parallel

I/O alternatives for massively parallel partitioned

solver systems,” in Parallel Distributed Processing,

Workshops and Phd Forum (IPDPSW), 2010 IEEE

International Symposium on, 2010, pp. 1 –8.

[6] W. Liao and A. Choudhary, “Dynamically adapting

file domain partitioning methods for collective I/O

based on underlying parallel file system locking

protocols,” in Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, 2008, p. 3.

[7] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms,

and W. Allcock, “I/O performance challenges at

leadership scale,” in Proceedings of the Conference

on High Performance Computing Networking,

Storage and Analysis, 2009, p. 40.

[8] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur,

W. Gropp, R. Latham, A. Siegel, B. Gallagher, and

M. Zingale, “Parallel netCDF: A High-Performance

Scientific I/O Interface,” in Proceedings of the 2003

ACM/IEEE conference on Supercomputing, New

York, NY, USA, 2003, p. 39–.

[9] D. Kimpe, A. Lani, T. Quintino, S. Vandewalle, S.

Poedts, and H. Deconinck, “A study of real world

I/O performance in parallel scientific computing,”

Applied Parallel Computing. State of the Art in

Scientific Computing, pp. 871–881, 2010.

[10] Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A.

G. Sunderland, and J. C. Uribe, “Optimizing

Code_Saturne computations on Petascale systems,”

Computers & Fluids, vol. 45, no. 1, pp. 103 – 108,

2011.

[11] E. Seegyoung Seol and M. Shephard, “Efficient

distributed mesh data structure for parallel

automated adaptive analysis,” Engineering with

Computers, vol. 22, no. 3, pp. 197–213, Dec. 2006.

[12] A. Baker, R. Falgout, and U. Yang, “An assumed

partition algorithm for determining processor inter-

communication�,” Parallel Computing, vol. 32, no.

5–6, pp. 394–414, Jun. 2006.

[13] T. J. Tautges, “MOAB Wiki.” [Online]. Available:

http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB.

[Accessed: 24-May-2009].

[14] J. Gruber, “RFC: Actual I/O Mode,” The HDF

Group, RFC THG 2011-08-04.v1, Aug. 2011.

[15] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J.

Salmon, and D. Walker, “Solving Problems on

Concurrent Computers,” Prentice-Hall, Englewood

Cliffs, New Jersey, vol. 19, p. 88.

Figure 4. Algorithm for finding shared non-vertex entities.

Figure 5. Agorithm for exchanging ghost entities.

1. Find skin entities se[d], d = 1..3

2. For each entity e in se[d]:

2a. Get connectivity of e = ce[j] and sharing

processor lists p[c[j]][]

2b. Get intersection of all lists in p, pe[]

2c. If pe[] is empty, continue to next entity

2d. For each p in pe[], add e to communication list

P[p]

3. m = 0

4. For each sharing processor p

4a. Post iRecv[p], m++

4b. For each e in P[p]

i. Add e, entity type tp(e), J, (ce[j], j=0..J-1) to p

buffer buff[p]

ii. Replace ce[j] with remote handles for those

vertices on processor p

4c. iSend message to p

5. While (m)

5a. Get message, m—

5b. Get e, tp(e), J, ce[j]

5c. Get entity e’ of type tp(e) adjacent to ce[j]

5d. If e’, add p to sharing data for e’

1. For each communicating proc p, get vertices and

entities to be sent to that proc, E[p]

2. m = 0

3. For each communicating partner p, post iRecv[p],

m++

4. For each communicating partner p:

4a. Pack number of entities E[p].size()

4b. For e in E[p]:

i. Pack sharing procs (including new procs),

remote handles (zero for new procs), with owning

proc/handle 1
st
 entry

4c. Pack # vertices in E[p], MBVERTEX, vertex

coordinates

4d. For each entity type of entities ET[p] in E[p]:

i. Pack entity type

ii. For each entity e in E[p]:

• Get connectivity for ET[p], v[e]

• For each v in v[e]:

o If v is shared with p, substitute rh(v, p) for v

o Else substitute HANDLE(MAX, i), i = index

of v in E[p], and for procs p’ sharing v, add p

to extra procs pe[p’]

5. For each communicating partner p:

5a. Pack pe[p] onto sbuff[p]

5b. iSend sbuff[p] to p

6. While (m):

6a. Receive message from p; m—

6b. Call recv_ents(p, rbuff[p], ep[], lh[p])

7. Add extra processors ep[] to communicating

partners

8. For each communicating partner p:

8a. Pack size of lh[p] in sbuff[p]

8b. Post iRecv[p], m++

8c. For e in lh[p], pack remote handle rh(e,p), e in

sbuff[p]

8d. iSend sbuff[p] to p

9. While (m):

9a. Receive message from p; m—

9b. Get number of entities i; for each i:

i. Get local handle e, remote handle rh(e,p)

ii. Add rh, p to sharing list for e

Figure 6. Algorithm for unpacking entities from a ghost

exchange message.

Figure 7. Mesh after initial partitioned read.

P0

P1 v1
v2

v3v5

v4

e1

e2

t1

t2

t3

v6

v4 v1

v3 v2

t1

t2

v5

e2

e1

t3

t4

e3

P2

 v2 v1

v5

t1
t2

v3

e2

t3

e1 e3

v4

For each entity type, number of vertices for that type,

each entity of that type/nverts::

1. Unpack remote procs ps[], handles hs[]

2. If a vertex, unpack coordinates

3. Else

3a. Unpack connectivity vs[]

3b. For each handle vh in vs[]

i. If type(vh) = MAX, then

• idx = id(vh)

• vh[] = new_ents[idx]

3c. if hs[].size > 2 && L2[i].rh = hs[0] &&

L2[i].rp = ps[0], then

i. new_h = L2[i].lh

3d. else if there exists entity e with v[e] = vs[]

i. new_h = e

4. If !new_h

4a. Create new entity new_h

4b. If hs[].size > 2

i. L2[].rh = hs[0], L2[].ps = ps[0], L2[].lh =

new_h

5. Update hs, ps tags on new_h

6. Foreach j in ps[j]:

6a. If ps[j] = rank, continue

6b. If idx of ps[j] in buf[] = L1.size, L1.resize[idx]

6c. If new_h = L1[idx].lh[i]

i. If L1[idx].rp[i] != -1 && hs[j]

• L1[idx].rh[i] = hs[j]

• L1[idx].rp[i] = -1

6d. Else

i. If !hs[j]

• L1[idx].ps.append(ps[0]),

L1[idx].rh.append(hs[0])

P0
v1

v3

P1

v1

v3 v2

t1

t2

P2

v2 v1

v7

v6

0/v1,1/v1,2/v6
a

a 0/v1,1/v1,2/?

b
b

t2

t2

P3

t1

 v1 v2
t1

Figure 10. Ghost exchange, showing specific information for triangle t2 and its support. a) P1 sends quad t2 and vertex v1, along with
sharing information 0/v1,1/v1,2/? for v1, to P0 and P2. b) P2 sending remote handles for v6 to P0 and P1. When P0 receives remote
handles for v1, it replaces 2/? in sharing list with 2/v6 from message.

Figure 9. After shared interface resolution, with shared vertices/edges marked. Most shared entities are shared with only 1 other
processor, and are marked only with the remote processor/handle. Vertex v3 on P0 is shared by all processors, and therefore local
handle/processor appears in its sharing list.

P0
P1

P2

v1 v2

v3 v5

v4

e1

e2

t1

t2

t3

v4 v1

v3 v2

t1

t2

v5

v6

e2

e1

t3

t4

v2v1

v5

t1

t2

v3

e2

t3

e1 e3

v4

e3

1/v1

1/e3

0/v3,1/v2,2/v1

2/e1

2/v5

0/v1

0/e1

1/e2

1/v4

2/e2

1/e1

1/e2

2/e3

2/v2

2/v3

1/v6

1/v3

