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Abstract— Algorithms are described for the resolution of 

shared vertices and higher-dimensional interfaces on 

domain-decomposed parallel mesh, and for ghost exchange 

between neighboring processors.  Performance data is given 

for large (up to 64M tet and 32M hex element) meshes on up 

to 16k processors.  Shared interface resolution for 

structured mesh is also described.  Small modifications are 

required to enable the algorithm to match vertices based on 

geometric location, useful for joining multi-piece meshes; 

this capability is also demonstrated. 

Keywords—parallel I/O; unstructured mesh; structured 

mesh 

I. INTRODUCTION 

Most parallel simulation codes solving systems of 
PDEs use a domain decomposition approach, where the 
spatial domain (i.e. the mesh) is split into P “parts”, one 
part solved on each processor.  The initialization of mesh-
based models on parallel computers requires more than 
simply reading the elements in a given part.  For element-
based unstructured mesh partitions, the vertices required 
on a part are indirectly indicated by the connectivity of the 
elements in a part.  Most unstructured meshes also contain 
mesh edges and/or faces that are also part of the model 
definition, e.g. for boundary condition or geometric model 
definitions.  Other metadata may be represented by 
collections of entities, with the initialization of a given 
collection on a processor required only if the collection 
contains entities also resident on the processor.  After 
initialization of the mesh entities and collections, most 
codes also require information about vertices and other 
entities shared between processors, in order to properly 
formulate the equations being solved.  Such codes may 
also require one or more layers of ghost or halo elements 
around the part.  For adaptive codes, this information must 
be preserved or restored after mesh migration that usually 
accompanies mesh refinement. 

There has been much work published on the subject of 
parallel output of solution and checkpoint data; however, 

less has been reported on parallel read and initialization of 
mesh-based data, probably because read times are 
amortized over the (usually longer) solution phase of a 
computation.  However, read times are not so small as to 
be negligible, and for applications like post-processing can 
dominate.  For adaptive codes, some parts of the 
initialization process must be repeated after each adaptive 
step. 

In this paper, we describe the reading and initialization 
of mesh data.  We describe the various parts of the read 
process for unstructured mesh, and several optimizations 
that have been done to improve read times.  We also 
describe algorithms for resolving shared mesh interfaces 
between processors, and for exchanging ghost or halo 
layers between processors.  An extension of the shared 
interface resolution algorithm that matches mesh vertices 
based on geometric proximity is described, that enables the 
assembly of multi-part meshes into contiguous mesh.  For 
structured mesh, we also describe techniques for resolving 
shared interfaces that are mostly communication-free. 

A. Background 

The algorithms in this paper are implemented in 
MOAB.  MOAB is a library for query and modification of 
structured and unstructured mesh, and field data associated 
with the mesh [1].  MOAB can represent all entities 
typically found in the finite element zoo, as well as 
polygons and polyhedra.  Structured mesh is supported as 
well, with a special interface providing parametric block 
information [2].  The data model implemented by MOAB 
references four distinct data types: 

• Entity: vertices, triangles, quads, etc. 

• Entity Set: arbitrary collection of entities and 
other sets 

• Interface: object through which all other 
functions are called, i.e. the database 

• Tag: information stored on Entity, Entity Set, 
and Interface objects 

This data model has proven remarkably versatile, able 
to represent most semantic information associated with 



typical meshes, including boundary conditions, solution 
fields, geometric associativity, and parallel partitions.  
Internally, MOAB uses an array-based storage model.  The 
entity handle data type used to reference mesh entities is 
an integral type, with the four high-order bits representing 
the entity type (MBVERTEX, MBEDGE, …, MBMAX), 
and the remaining bits representing an integer id.  Entities 
created in sequence are given contiguous entity handles, 
which can be stored as range pairs (begin_handle, 
end_handle).  The TYPE(handle) and ID(handle) 
functions return the type and id embedded in a handle, 
respectively. 

On parallel machines, mesh is represented and queried 
in MOAB the same way a serial mesh is; information 
about the parallel nature of the model is stored in the form 
of sets and tags, and can be queried as such.  For 
convenience, MOAB’s ParallelComm class also provides 
functions for providing this data, and for performing 
commonly needed parallel functions.  For any entity 
shared with other processor(s), MOAB stores both the 
remote processor rank(s) and the handle(s) of the entity on 
those processor(s), on all processors sharing the entity.  
MOAB uses the HDF5 library for its native save/restore 
format [3].  Mesh models are initialized in parallel by 
reading mesh from a single file in parallel, using a 
partition stored as entity sets in the file.  A partitioning tool 
has been implemented by interfacing with the Zoltan 
partitioning library [4]. 

B. Previous Work 

Parallel I/O has been discussed extensively in the 
literature, e.g. see [5][6][7].  Overall, the vast majority of 
applications seem to have implemented application-side 2-
phase I/O, where only a subset of processors interact 
directly with the file system and communication is used to 
read/write data.  Fu et. al report read/write times of 1-7 
GB/s and .25-2.4GB/s, respectively, on 16k processors.  
For these cases, the data being written consists of one or 
more solution fields defined at each grid point or cell 
across all processors.  Typically, the best performance is 
obtained when writing 64-1024 different files and when 
interacting directly with MPI-IO rather than a high-level 
I/O library like parallel-netcdf[8] or HDF5[3].  Kimpe et. 
al [9] report I/O read/write bandwidths of no more than 0.4 
MB/sec when using parallel netcdf or HDF5 on up to 8 
processors of a computer cluser with a PVFS-based 
filesystem. 

For the overall process of initializing large, 
unstructured meshes, Fournier et. al report the execution 
time to initialize 107M element unstructured meshes on an 
IBM BG/P machine [10].  Mesh initialization accounts for 
approximately 8% of the execution time of a 50-timestep 
problem, or approximately the cost of 5 timesteps. 

On the subject of post-input mesh initialization, 
relatively few details have been reported in the literature.  
The most detailed description of this subject for 
unstructured meshes is reported by Seol et al [11].  In their 
work, mesh is migrated between processors in the context 
of a partition model, which is maintained before and after 

the migration.  The method described in [11] requires at 
least four message exchanges between each sending and 
receiving processor pair: synchronizing the partition model 
before migration, sending entities, receiving back entity 
references, and forwarding references to other sharing 
processors.  The described method packs entities of each 
topological dimension in separate messages; to avoid the 
high latency cost of sending many separate messages, a 
message aggregator is used.  However, this aggregator 
may inhibit the use of asynchronous messages, and the 
latency hiding enabled by such messages. 

For structured meshes, Falgout describes an algorithm 
to find matching interface mesh based on physical position 
[12].  Although this method works for cases with 
structured Cartesian mesh, a proximity-based criterion 
may fail in cases where the distance tolerance is not well-
matched to the mesh spacing, and, as we show later in this 
paper, is not necessary. 

C. Test Cases 

Throughout the paper, performance measurements are 
quoted for two meshes: one with 32M hexahedral 
elements, and the other with 64M tetrahedral elements.  
Both meshes were generated from a 64-volume geometric 
model, and contain entity sets for materials, Neumann 
boundary conditions, and geometric model entity 
groupings.  Material and Neumann sets would typically be 
needed by any simulation application, while geometric 
model grouping sets would be necessary for applications 
performing adaptive mesh refinement.  Performance 
measurements were made on two parallel computing 
platforms.  The first, Intrepid, is an IBM BG/P at Argonne 
National Labortory; tests described in this paper use up to 
16k processors on this machine, in “virtual node” mode, 
with each core having access to 512MB of memory.  The 
second platform, Fusion, is a cluster of 320 nodes, each 
containing two 4-core Xeon processors, communicating 
over an Infiniband network.  Each node has either 36 or 96 
GB of memory. 

D. Organization 

This paper begins by describing optimizations of the 
parallel mesh read process implemented in MOAB in 
Section II.  Section III describes two data structures 
important in the implementation of the algorithms in this 
paper.  The resolution of inter-processor interface mesh, 
and exchange of ghost layers between processors, is 
described in Section IV.  In Section V we describe 
modifications necessary to change the inter-processor 
interface resolution algorithm into one finding matching 
vertices based on geometric proximity instead of global id.  
Shared interface resolution for structured meshes is 
discussed in Section VI.  Conclusions and items for future 
work are described in Section VII. 

II. UNSTRUCTURED MESH PARALLEL I/O 

We implement parallel I/O using the parallel HDF5 
library[3], using a one-phase approach where all 
processors interact in parallel with a single file.  The 



specific layout of data in MOAB’s HDF5 file is outside 
the scope of this paper, but is described in detail elsewhere 
[13]. 

Parallel input and output of unstructured mesh models 
requires more than simply reading and writing mesh nodes 
and element connectivity lists.  Complicating factors 
include: 

Identifying processor-resident entities: domain-
decomposed codes typically assign highest-dimensional 
entities to processors, and store the partition as either an 
element-based field or as sets of those entities.  In either 
case, the connectivity lists of those entities must be read to 
identify the vertices to be read on a processor. 

Fragmentation and ordering: If a partitioning of 
elements over processors is stored as an annotation of the 
original mesh, with no mesh reordering, there is usually 
significant fragmentation of the element numbering space 
over processors; that is, a given processor will have in its 
partition many small groups of contiguously-numbered 
elements.  Even if the elements and vertices are reordered 
to follow the partition, for unstructured meshes, the vertex 
numbering will still be somewhat fragmented.  Specifying 
many small selections of HDF5 datasets to read and write 
has been identified as a problem by Kimpe et. al [9], and 
our experience bears that out as well.  This would not be 
the case if mesh parts were stored one per file (though that 
approach would complicate the workflow of handling such 
models). 

Boundary conditions and other groupings: Besides 
the vertices and elements, codes also need various lower-
dimensional entities (i.e. edges and faces) and sets 
containing them for the purpose of defining boundary 
conditions, geometric model groupings, and other 
purposes. 

These factors degrade the raw performance of mesh 
input when measured in terms of bandwidth, either 
because they involve work that is not I/O, or because they 
imply multiple read calls, some of which are smaller in 
size and therefore don’t perform as well as large, single-
call reads. 

The parallel HDF5-based read process implemented in 
MOAB is broken down into the following steps: 

1. Read header information 
2. Read partition sets 
3. Read element connectivity 
4. Read vertex coordinates 
5. Read/process lower-dimensional elements 
6. Read/process sets and tags 

In our efforts to optimize the parallel HDF5-based read 
operation, we first focused on ensuring that concurrent 
I/O, rather than independent I/O, was used at all times.  
This required ensuring that the various conditions which 
would cause HDF5 to fall back to independent I/O did not 
happen.  These conditions, described in more detail in 
Ref.[14], include requiring data type conversion or 
transformation, existence of point selections for the read, 
and non-contiguous and non-chunked reads.  After 
satisfying these conditions, the measured read times shown 
in Figure 1. (orig-hex and orig-tet) were obtained on 

Intrepid, for processor counts ranging between 16 and 16k.  
Next, two optimizations were implemented.  First, the 
HDF5 library was modified to detect appending selections 
and avoid searching the selection list in those cases.  This 
removed N

2
 behavior in the selection code in HDF5.  

Second, the partitioner implemented with MOAB was 
modified to reorder elements and vertices according to 
their order in the partition using a simple greedy method.  
The times after these optimizations are indicated by the 
“select” and “reord” curves, respectively, in Figure 1.  

The selection optimization had much greater influence 
at low processor counts, and was qualitatively of greater 
benefit for tetrahedral meshes than for hexahedral meshes.  
Both these factors can be explained by the degree of 
fragmentation in the selection list, which is greater at 
lower processor counts (due to the greater number of 
elements per processor in those cases) and for tetrahedral 
meshes in general (which typically have a factor of 4-6 
greater number of elements than hexahedral meshes, for a 
given number of vertices). 

 
Figure 1.  Read performance for 32M hex and 64M tet 

meshes.  Original (no optimizations), select (improved 

selection mechanism), reord (after reordering). 

The reordering optimization significantly improved 
read time for tet meshes, especially on larger numbers of 
processors, while for hex meshes resulted in relatively 
small improvements.  We believe this difference is due 
mostly to the difference in number of elements sharing 
each vertex in tet versus hex meshes. 

Overall, read times tend to flatten out above 128 and 
2048 processors for hex and tet meshes, respectively, both 
to approximately 100 seconds.   To assess further 
opportunities for optimization, it is useful to look at the 
distribution of time over the various read steps, shown in 
Figure 2. For datasets with the full complement of 
geometric topology sets (32m tet case), we observe that 
over 40% of the execution time is spent on reading and 
processing lower-dimensional entities, i.e. edges and 
triangles.  These entities are the ones resolving various 
edges and faces in the original geometric model from 



which the mesh was generated.  If these entities and the 
corresponding sets are removed, we observe a dramatic 
reduction across all phases of the read operation (64m tet 
case).  It is not clear why all phases of the read are 
improved, though it may have to do with synchronization 
required at the start of each dataset read, with fewer 
datasets in the file containing no geometric information.  
We are still investigating the reasons for this behavior. 

 
Figure 2.  Distribution of read times, with (32m tet) and 

without (64m tet) geometry sets. 

Both the 32M hex and 64M tet mesh files measure 
approximately 3GB in size, therefore the I/O throughput 
for reading and writing these meshes peaks at about 
30MB/s on Intrepid.  Removing the face and edge 
elements from the mesh results in a 2.7GB mesh file; the 
throughput for reading this mesh on Fusion is about 
250MB/s.  Again, we stress that these figures include work 
not normally included with I/O times (e.g. ghost 
exchange). 

III. TUPLE LISTS AND CRYSTAL ROUTER 

The algorithms described in this paper make frequent 
use of the two classes TupleList and CrystalRouter.  
TupleList stores n tuples, each tuple consisting of zero or 
more integer, long integer, unsigned long integer, and 
double datums, numbered zero to (n-1).  TupleList 
provides a function which sorts the tuples based on a 
specified datum index, using radix and quick sort 
algorithms for integer and double precision fields, 
respectively.  The collective tuple_transfer() function 
communicates a TupleList to destination processors stored 
in a specified index of each tuple.  When this function 
returns on the destination processor, that field holds the 
source processor for the tuple.  This function greatly 
simplifies the routing of messages between processors.   

CrystalRouter is a class for parallel communication 
first described by Fox [15].  At its core, CrystalRouter 
implements an optimized all-to-all, where message packets 
sent from src to dest are combined and routed across 
progressively smaller planes of processors, analogous to 
Gray code-based communication in hypercubes.  

CrystalRouter also provides the gs_init() function, 

which implements the capability to find shared elements of 
an integer space.  On each processor, the CrystalRouter is 
given a collection of tuples T, and the index of the tuple 

datum representing the sort key.  After gs_init() is 
called, a list of nonlocal compounds nl(ind, np, T[np]) is 
returned, one compound per integer occurring on one or 
more other processors. For each compound, ind stores the 
index of the shared integer value in the original tuple list 

input to gs_init, np the number of other processors the 

integer is shared with, and T[np] the tuples from the 

sharing processors.  gs_init() works by partitioning 

the range of integers over processors such that each 
processor is responsible for a portion of the range.  One 
tuple transfer is done to send the input tuples to the 
responsible processors; the sort is done for a processor’s 
range; then information on the shared tuples is sent back to 
the originating processors. Because the original tuples are 
returned in the nonlocal compound, the application can 
retrieve information about the remote copies of entities. 

 

IV. SHARED INTERFACE RESOLUTION AND GHOST 

EXCHANGE 

The starting point for shared interface resolution is 
after each processor has read and initialized its portion of 
the mesh (see Figure 7. ) 1 .  The overall strategy for 
initializing sharing data is to first identify vertices shared 
with other processors based on matching their global ids, 
then identifying shared non-vertex entities by matching 
their connectivity lists.  Ghost entities are exchanged only 
after shared vertices and other entities have been 
identified.  Although this algorithm is described with a 2D 
example mesh, we emphasize that it is implemented for 
3D meshes, and 3D meshes are used to generate timing 
data reported below. 

 The algorithm for finding shared vertices is shown in 
Figure 4. When this algorithm completes, all vertices 
shared with all other processors are known, along with the 
handles of those vertices on those other processors.  Also, 
based on the vertex sharing information, the processors 
communicating with the local processor are known. This 
list is kept in a data structure that also holds send and 
receive buffers for each of the communicating processors. 
Subsequent communication, for identifying shared non-
vertex entities and exchanging ghost entities, consists only 
of point-to-point messages. 

Sharing information is stored on entities in two tag 
types.  If an entity is shared with only one other processor, 
the remote processor and handle are each stored in single-
valued tags on the entity.  For entities shared with more 
than one other processor, the remote and local 
processors/handles are stored on tags on the entity, with 
the owning processor/handle in the first position of these 

                                                           
1  The tools for partitioning a mesh and reading it in 

parallel are not described here, but are available (see 

the MOAB wiki [13] for further information). 



lists.  Each entity is also marked with a single-byte tag, 
which stores its parallel status (e.g. if an entity is shared by 
one or multiple processors, if the entity is owned by the 
local processor, etc.) 

The algorithm for finding shared non-vertex entities is 
shown in Error! Reference source not found. For each 
entity on the skin of the local mesh (step 1), the processors 
which might share the entity can be found by intersecting 
the sharing list for all the entity’s vertices (step 2)  After 
packing the connectivity for an entity into a message (step 
4bi), those (local) vertex handles are replaced with their 
handles on the remote processor (using the sharing 
information resolved in the previous algorithm, step 4bii). 
Messages are exchanged asynchronously with the 
communicating processors.   

An entity’s vertices shared with another processor does 
not guarantee that entity is shared too. Also, we require the 
remote handles for entities actually shared by other 
processors.  One way to resolve this issue would be to 
send potentially-shared non-vertex entities to the neithbor 
processor, and have that processor send back remote 
handles for the entities actually shared.  However, that 
would require a sequence of two messages, which could 
not be passed concurrently.  Instead, each processor sends 
the possible shared entities to the other.  Those messages 
are received, and entity sharing information determined 
based on them.  Since by definition each shared entity will 
be sent from each processor sharing that entity, every such 
processor is guaranteed to receive the shared entity from 
all other sharing processors.  Furthermore, these messages 
can all be sent concurrently.  In many cases these 
messages will be relatively small, and as stated earlier, 
they are point-to-point and involve a relatively small set of 
processors.  We believe this to be the reason this algorithm 
shows good scaling behavior.   

Figure 3.  Execution time for parallel read and shared vertex 

resolution for sturctured mesh, using unstructured (ucd) and 

structured (scd) algorithms. 

For brevity, we describe the algorithm in Error! 
Reference source not found.as sending each message 
using a single MPI function.  However, this form of 
messaging may result in deadlock, if the receiving 

processor(s) have not allocated enough space for incoming 
messages.  The algorithm as implemented in MOAB sends 
a first message of a known length, with the length of the 
total message as the first item in that message, then posts 
an asynchronous receive.  The remote processor, after 
receiving that message and reading the overall length of 
the message, allocates the required buffer size, posts an 
asynchronous read for the remaining part of the message, 
then sends an acknowledgement to the sending processor.  
The sending processor, after receiving that 
acknowledgement, sends the remainder of the message, 
again using an asynchronous message.  Currently, the 
length of the first fixed-size message is set to 1024 bytes.  
The result of resolving shared vertices and non-vertices is 
shown in Figure 9, with sharing lists indicated there. 

The ghost exchange process is depicted in Figure 10. 
The algorithm for exchanging ghost elements is shown in 
Figure 5. .  A key part of the algorithm, reading incoming 
ghost entities from another processor, is shown in Figure 
6.  

Several complications can be noted from Figure 6.  
First, for triangle t2 sent from P1 to P0 and P2, some of 
the vertices supporting that entity must also be sent, while 
some are already present on the destination processor.  For 
vertices already on the destination, the remote handle is 
substituted in the connectivity list in the message.  New 
vertices from that message are referenced by entities later 
in the message using a handle consisting of the type 
MBMAXTYPE, and the id corresponding to the index of 
that new vertex in the entities contained in the message.  
This is depicted in step 4dii of Figure 5. and 3bi of Figure 
6. Second, since we require every processor to know 
remote handles on all sharing processors, in the case of 
ghosting, the receiving processors must send the remote 
handles of entities to not only the sending processor, but to 
all other processors to which those same entities are sent.  
For example (see Figure 10), P2 must send the local 
handles for v6 and t2 to both P1 (the sending processor) 
and P0.  Furthermore, in some cases the sending processor 
does not know the handle by which a new entity can be 
referenced on the receiving processor (e.g. t2 in the P2 to 
P0 remote handle message).  Instead, the handle on the 
owning processor is used (which is sent in the sharing list 
in the original message), with a negative processor number 
indicating this.  Entities received as part of ghost 
exchange, and for which remote handles must be returned, 
are kept in the lists L1[p] (step 6). 

The third complication in the ghost exchange process 
is that in some cases, ghost exchange results in some 
processors sharing entities (and therefore communicating 
together) that formerly did not.  For example, in Figure 10, 
P2 sends triangle t1 to P3, and P0 and P1 must be 
informed of the remote handles for t1 and its vertices on 
P3.  This is accomplished as follows.  The processor 
sending entities knows the other processors to which it 
sends a given entity, and includes all those processors in 
the sharing list as part of the message, with a zero handle 
for remote handles that are not yet known (step 4bi).  By 
definition, these entities will be shared on more than two 



processors, therefore the sharing list contains all remote 
processors/handles, the first of which is the owner.  The 
receiving processor keeps a list of such entities (L2 in 
steps 3-4), to resolve the fourth complication (described 
next).  The fourth complication is that a given processor 
may receive new entities from multiple processors, and 
should use the same (local) entity for them.  Before 
creating a new entity, for entities whose eventual sharing 
list is longer than two processors, the owner handle is first 
checked against those in L2 (step 3c). 

V. MESH JOINING 

Large mesh models are often generated in pieces which 
are subsequently merged to form the overall model.  The 
mesh merging step requires matching mesh vertices in the 
assembled model based on geometric proximity.  A serial 
merge process requires that the whole assembled mesh be 
represented in a single process, which limits the overall 
size of the assembled mesh to what can be held in memory 
on a given machine.  Parallel mesh merging removes this 
constraint, and in our implementation also significantly 
reduces the wall clock time for assembling the mesh. 

Parallel mesh merging is easily supported by making a 
small modification to the vertex matching algorithm in 
Figure 4.  First, instead of partitioning the global id space 
over processors, instead the geometric bounding box of all 
vertices is partitioned over processors, with each processor 
responsible for a distinct geometric region (plus a small 
epsilon layer whose thickness is twice the distance 
tolerance of the merge).  The spatial extent covered by 
each processor can be computed deterministically based 
on the bounding box extent, the number of processors, and 
the merge tolerance.  Each processor retrieves vertices on 
the skin of the local mesh, and performs a local merge on 
those vertices.  Next, for the remaining skin vertices, each 
processor assembles a tuple list similar to that described in 
Error! Reference source not found., except that instead 
of global ids, the tuples hold the (x, y, z) position of the 
vertex, and the destination processor is assigned according 
to the processor(s) responsible for that position in space2.   

The remaining parts of the algorithm in Figure 4. are 
the same, save for the matching process, which here works 
on spatial proximity rather than matched global ids.  Note 
also that in contrast to the serial merge, merging a vertex 
with another on another processor does not result in one of 
those vertices being deleted; rather, the parallel sharing 
information is modified to indicate that they are the same 
logical vertex.  The actual merging is done as part of the 
parallel write process described in Section II. 

TABLE I.  CPU TIMES (IN MINUTES) FOR MESH JOINING, 
COMPARED TO MESH COPY/MOVE TIMES, FOR TWO PROBLEMS. 

 #procs 11M hex VHTR 58M hex VHTR 

Copy/move 1 10.4 141.8 

                                                           
2 Note that more than one processor may be responsible 

for a given point, if the point is located in the 

2*epsilon-wide region on the box boundary. 

8 5.8 59.6 

16 0.27 1.4 

32 0.036 0.12 

56 0.004 0.001 

1 3.81 70.48 

8 7.54 28.29 

16 6.7 17.62 

32 0.92 2.34 

     J o i n 
 

56 0.25 0.8 

The parallel mesh merge described above has been 
implemented in the Reactor Geometry Generator (RGG).  
A reactor core is constructed from fuel and other 
assemblies arranged in a rectangular or hexagonal lattice; 
typical cores use 10-20 different assembly types, with total 
assembly counts in the 100-1000 range.  RGG generates 
mesh models for each assembly type, then uses a 
copy/move/merge process to assemble the overall core 
mesh.  Meshes of over 50M hexahedral and tetrahedral 
elements have been produced by RGG.  Clearly, the 
copy/move/merge process is a good candidate for parallel 
solution. 

Timings for RGG are shown in TABLE I. for a Very 
High Temperature Reactor problem of two sizes, 11M and 
58M hexahedral elements.  Times for assembly mesh 
copy/move are given along with mesh join times, for 
comparison purposes.  We note first that both the 
copy/move and join operations see super-linear speedups 
in some cases; memory usage data (not reported here) 
indicates that these steps are where the application goes 
from swapping to a state where the job fits in available 
memory.  This indicates one important reason for 
parallelizing RGG, i.e. so the application can fit in 
memory without swapping.  Next, mesh joining is 
observed to actually slow down going from one to eight 
processors; this is probably due to the communication 
overhead required in the parallel algorithm.  However, at 
larger numbers of processors, the joining time is reduced 
far below the serial time. 

VI. SHARED VERTEX RESOLUTION FOR STRUCTURED 

MESH 

The algorithm in Figure 4. for finding vertices shared 
between processors applies equally well to structured 
meshes; however, a more efficient means for matching 
vertices is available that takes advantage of the structured 
mesh parameterization and requires far less 
communication. 

First, if the vertices in a structured mesh block were 
created all at the same time for that block, the vertices on 
the skin of the block can be computed directly, given the 
block parameterization and the starting vertex handle for 
the block (these data are provided by MOAB’s structured 
mesh interface [2]).  Furthermore, if the parallel 
decomposition of the structured mesh is known on all 
processors, then the remote processors with whom a given 
processor shares mesh can be inferred from the 
parameterization.  A processor need only find out the 
starting vertex handle on each communicating processor, 



after which it can compute the remote vertex handles 
directly, without further communication.  Since handle 
computations are integer operations, they are quite fast, 
and the required communication (starting handles on each 
of the sharing processors) are short and point-to-point.  In 
practice, directly computing sharing data is substantially 
faster than obtaining those data using the unstructured 
mesh-based methods described earlier. 

MOAB reads parallel structured mesh using the 
pnetcdf library [8].  Four different decomposition 
strategies are supported, one of them 1D, and the 
remaining ones 2D.  Execution times for shared vertex 
resolution using the unstructured and structured algorithms 
are shown in Figure 3. compared to read times.  The 
structured algorithm improves resolve times by at least an 
order of magnitude in most cases.  

VII. CONCLUSIONS 

Input/output operations for structured and unstructured 
mesh models requires not only I/O for mesh vertices and 
elements, but also for intermediate edges, faces, and other 
metadata information.  Initialization of a mesh model into 
its parallel domain-decomposed representation also 
typically requires identifying vertex and non-vertex 
entities on inter-processor interfaces, along with the other 
processors sharing those entities and their “handles” on 
remote processors.  Exchanging one or more layers of 
ghost elements is also often required for simulation on a 
mesh.  We describe the various algorithms used by the 
MOAB mesh library for performing parallel mesh I/O.  
Strong scaling results are given for shared interface 
resolution and ghost exchange which show good 
scalability out to 16k processors of an IBM BG/P.  I/O 
times for large mesh models (32M hex and 64M tet mesh 
models are used) are around 100 seconds at 128 processors 
and above.  We give timing data which show that these 
times may be drastically reduced by removing unused 
intermediate faces and edges, and unused sets containing 
them, from the data.  We also describe how the shared 
vertex resolution algorithm can be modified to produce a 
mesh merging function, and show how this function 
supports the assembly of large lattice-based reactor core 
meshes. 

Based on an informal survey of parallel application 
developers, we can say that the reported I/O times for 
these mesh models is adequately small, in an absolute 
sense.  However, when measured in terms of bandwidth, 
we obtain I/O rates far lower than peak rates for this 
machine.  Some of this is due to the non-I/O work required 
to initialize a parallel mesh.  Still, we believe these I/O 
times could be further reduced.  Two specific 
optimizations seem promising.  First, as we have shown, 
simply removing unused intermediate faces and edges, and 
sets which contain them, will likely reduce I/O times 
substantially.  We are in the process of testing this 
hypothesis for larger numbers of processors.  Furthermore, 
we also conjecture that explicitly identifying these edges, 
faces, and sets, in the partition sets (which currently only 
store 3D elements in each part) will eliminate much of the 

non-I/O work currently performed in this process.  We 
plan to implement this option into the partitioning tool 
currently used with MOAB. 

More generally, we are also working with the 
developers of the HDF5 library to further improve 
concurrency in the HDF5 functions called by MOAB. 
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Figure 4.  Algorithm for finding shared non-vertex entities. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Agorithm for exchanging ghost entities. 

 
 
 
 
 
 
 
 
 
 
 
 

1. Find skin entities se[d], d = 1..3 

2. For each entity e in se[d]: 

2a. Get connectivity of e = ce[j] and sharing 

processor lists p[c[j]][] 

2b. Get intersection of all lists in p, pe[] 

2c. If pe[] is empty, continue to next entity 

2d. For each p in pe[], add e to communication list 

P[p] 

3. m = 0 

4. For each sharing processor p 

4a. Post iRecv[p], m++ 

4b. For each e in P[p] 

i.  Add e, entity type tp(e), J, (ce[j], j=0..J-1) to p 

buffer buff[p] 

ii.  Replace ce[j] with remote handles for those 

vertices on processor p 

4c. iSend message to p 

5. While (m) 

5a. Get message, m— 

5b. Get e, tp(e), J, ce[j] 

5c. Get entity e’ of type tp(e) adjacent to ce[j] 

5d. If e’, add p to sharing data for e’ 

1. For each communicating proc p, get vertices and 

entities to be sent to that proc, E[p] 

2. m = 0 

3. For each communicating partner p, post iRecv[p], 

m++ 

4. For each communicating partner p: 

4a. Pack number of entities E[p].size() 

4b. For e in E[p]: 

i.  Pack sharing procs (including new procs),  

remote handles (zero for new procs), with owning 

proc/handle 1
st
 entry 

4c. Pack # vertices in E[p], MBVERTEX, vertex 

coordinates 

4d. For each entity type of entities ET[p] in E[p]: 

i.  Pack entity type 

ii.  For each entity e in E[p]: 

• Get connectivity for ET[p], v[e] 

• For each v in v[e]: 

o If v is shared with p, substitute rh(v, p) for v 

o Else substitute HANDLE(MAX, i), i = index 

of v in E[p], and for procs p’ sharing v, add p 

to extra procs pe[p’] 

5. For each communicating partner p: 

5a. Pack pe[p] onto sbuff[p] 

5b. iSend sbuff[p] to p 

6. While (m): 

6a. Receive message from p; m— 

6b. Call recv_ents(p, rbuff[p], ep[], lh[p]) 

7. Add extra processors ep[] to communicating 

partners 

8. For each communicating partner p: 

8a. Pack size of lh[p] in sbuff[p] 

8b. Post iRecv[p], m++ 

8c. For e in lh[p], pack remote handle rh(e,p), e in 

sbuff[p] 

8d. iSend sbuff[p] to p 

9. While (m): 

9a. Receive message from p; m— 

9b. Get number of entities i; for each i: 

i.  Get local handle e, remote handle rh(e,p) 

ii.  Add rh, p to sharing list for e 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.  Algorithm for unpacking entities from a ghost 

exchange message. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.  Mesh after initial partitioned read. 
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For each entity type, number of vertices for that type, 

each entity of that type/nverts:: 

1. Unpack remote procs ps[ ], handles hs[ ] 

2. If a vertex, unpack coordinates 

3. Else 

3a. Unpack connectivity vs[ ] 

3b. For each handle vh in vs[ ] 

i.  If type(vh) = MAX, then 

• idx = id(vh) 

• vh[ ] = new_ents[idx] 

3c. if hs[ ].size > 2 && L2[i].rh = hs[0] && 

L2[i].rp = ps[0], then 

i.  new_h = L2[i].lh 

3d. else if there exists entity e with v[e] = vs[ ] 

i.  new_h = e 

4. If !new_h 

4a. Create new entity new_h 

4b. If hs[ ].size > 2 

i.  L2[ ].rh = hs[0], L2[ ].ps = ps[0], L2[ ].lh = 

new_h 

5. Update hs, ps tags on new_h 

6. Foreach j in ps[j]: 

6a. If ps[j] = rank, continue 

6b. If idx of ps[j] in buf[ ] = L1.size, L1.resize[idx] 

6c. If new_h = L1[idx].lh[i] 

i.  If L1[idx].rp[i] != -1 && hs[j] 

• L1[idx].rh[i] = hs[j] 

• L1[idx].rp[i] = -1 

6d. Else 

i.  If !hs[j] 

• L1[idx].ps.append(ps[0]), 

L1[idx].rh.append(hs[0]) 
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Figure 10.  Ghost exchange, showing specific information for triangle t2 and its support.  a) P1 sends quad t2 and vertex v1, along with 
sharing information 0/v1,1/v1,2/? for v1, to P0 and P2.  b) P2 sending remote handles for v6 to P0 and P1.  When P0 receives remote 
handles for v1, it replaces 2/? in sharing list with 2/v6 from message. 

Figure 9.  After shared interface resolution, with shared vertices/edges marked.  Most shared entities are shared with only 1 other 
processor, and are marked only with the remote processor/handle.  Vertex v3 on P0 is shared by all processors, and therefore local 
handle/processor appears in its sharing list. 
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