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Abstract—Parallel file systems are widely used for providing
a high degree of I/0O parallelism to mask the gap between 1/0
and memory speed. However, peak I/O performance is rarely
attained due to complex data access patterns of applications.
Based on the observation that the I/O performance of small
requests is often limited by the request service rate, and the
performance of large requests is limited by I/O bandwidth, we
take into consideration both factors and propose a server-level
adaptive data layout strategy. The proposed strategy adopts
different stripe sizes for different file servers according to the
data access characteristics on each individual server. We let
the file servers that can fully utilize bandwidth hold more data,
and the file servers that are limited with request service rate
hold less data. As a result, heavy-load servers can offload some
data accesses to light-load servers for potential improvement
of I/O performance. We present a method to measure access
cost for each data block and then utilize an equal-depth
histogram approach to distributed data blocks across multiple
servers adaptively, so as to balance data accesses on all file
servers. Analytical and experimental results demonstrate that
the proposed server-level adaptive layout strategy can improve
I/0 performance by as much as 80.3% and is more appropriate
for applications with complex data access patterns.

Keywords-Server-level adaptive data layout, variable stripe
size, equal-depth histogram, data layout optimization, parallel
file system

I. INTRODUCTION

High-performance computing applications, such as scien-
tific computation and engineering simulations, often involve
large data sets. However, performance improvements in
computing technology have vastly out-paced the improve-
ments in storage technology. Parallel file systems, such as
Lustre [1], GPFS [2], pNFS [3], PVFS2 [4], and PanFS [5],
are designed to mask the ever-increasing gap between com-
puting and I/O performance by combining large numbers of
storage devices and providing high degree of I/O parallelism.

In parallel file systems, one data file is usually striped
across multiple file servers with a fixed stripe size. This
design benefits simple, well-formed, and generic data ac-
cess patterns for two reasons: parallel data accessing and
balanced data size on multiple servers. Nevertheless, per-
formance varies from application to application due to their
complex I/O workloads, meaning that data access pattern
may vary from time to time. The request size can be large
or small, and some data blocks may be accessed many
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Figure 1. I/O performance for different request sizes. Labels ‘BW-W’ and
‘BW-R’ refer to bandwidth for data writing and reading. Labels ‘OPS-W’
and ‘OPS-R’ refer to request service rate.

times, while others seldom accessed. Due to the non-uniform
access characteristics, equal data size on multiple file servers
cannot guarantee unified data access on them. For example,
some file servers may involve lots of small data accesses,
which leads to low I/O bandwidth; while others may have
large data accesses, achieving a full utilization of bandwidth.
In addition, the number of involved I/O requests is different
for different file servers. As a result, peak I/O performance
is rarely attained in parallel file systems due to application’s
non-uniform data access.

Generally, I/O performance in each file server has two
components, request service rate and I/O bandwidth, which
are usually measured by the metrics ‘IOPS’ and ‘MB/s’.
If one file server receives a burst of small I/O requests,
although the bandwidth is far from saturated, the request
service rate will be the bottleneck. On the other hand, if
one file server only serves large requests, the bandwidth
will get the peak value although the request service rate
is not high. Figure 1 shows the I/O performance of the IOR
benchmark under different request sizes; these experiments
were conducted in an eight-node PVFS2 system. From the
results it can be seen that, when the request size is very
small (less than 1 KB), the I/O bandwidth is small, but the
request service rate reaches the peak value; when the request
size increases (larger than 256 KB), the request service rate
goes down, but the bandwidth gets saturated. The results
indicate that both request service rate and bandwidth can



limit I/O performance. Existing parallel file systems treat
all file servers equally, without the awareness of different
access characteristics on them. This overlooking of access
characteristics on each individual file server may be the loss
of a potential optimization opportunity that could benefit the
overall performance of parallel file systems.

In this paper, we take into consideration both service rate
and bandwidth on all file servers and propose a server-level
adaptive data layout strategy for parallel file systems. The
basic idea is that we let those file servers that can fully
utilize bandwidth hold more data, and those file servers
limited with service rate hold less data. Thus heavy-load
servers can offload some data accesses to light-load servers
by an optimized data block allocation strategy in order
to balance their I/O workloads. The proposed data layout
strategy better utilizes the potential of all file servers and
is thus able to improve the overall I/O performance. We
propose a methodology for distributing data blocks across
multiple file servers adaptively.

Specifically, this paper makes the following contributions.

(1) We argue that considering both request service rate
and I/O bandwidth restrictions would be greatly ben-
eficial for performance improvement of data-intensive
applications with non-uniform data access patterns.

(2) A server-level adaptive layout strategy is proposed,
which adopts different stripe sizes on different file
servers, to improve the overall I/O performance of
parallel file systems.

(3) An equal-depth histogram approach is presented to re-
distribute data across file servers adaptively, to balance
I/O workload on them.

(4) Extensive analytical and experimental testing were
conducted to verify the proposed server-level adaptive
layout strategy. Experimental results demonstrate that
the proposed adaptive data layout is promising in
performance improvement and has a real potential for
applications with complex I/O workloads.

The rest of the paper is organized as follows. Section II
reviews the related work on data access cost analysis and
data layout optimization. Section III makes an analysis of
access costs of data blocks, and presents how to distribute
data blocks to balance I/O workloads across multiple file
servers. Section IV proposes the server-level adaptive data
layout scheme. Experimental and analytical results are pre-
sented in Section V. Finally, Section VI concludes this study
and discusses future work.

II. RELATED WORK

I/O performance is a recognized system bottleneck for
many large-scale and data-intensive applications. Existing
parallel file systems improved I/O performance by providing
high degree of 1/O parallelism. However, due to the non-
uniform data access patterns, peak I/O performance is rarely
achieved for most data-intensive applications. Numerous

research efforts have been devoted to improving I/O perfor-
mance by data access analysis and data layout optimization.

A. Data Access Analysis

It is well known that I/O performance highly depends
on application data access patterns in large-scale and data-
intensive systems. In order to explore potential performance
improvement, a collection of data access analysis tech-
niques [6][7][8][9][10][11] have been developed for parallel
I/0O systems. Research on data access analysis has mostly
focused on access pattern discovery [8][12][13] and data
access cost analysis [10][11][14]. The analytical results can
be used for data access optimization (e.g., caching and
prefetching [8][15]), or data layout optimization on file
servers [11][16][17].

Smirni et al. [12] and Madhyastha et al. [13] studied I/O
characteristics of scalable parallel applications and provided
a classification of I/O patterns based on three access features:
I/0 operation type, sequentiality, and request size. I/O work-
loads studies conducted by Kotz et al. [18] show that in many
data-intensive applications a large number of I/O requests
are small and have irregular patterns. Several I/O trace tools
[8][9] were developed to collect and analyze data access
behaviors of data-intensive and parallel applications. Also
there are some studies [6][7] focusing on the methodologies
of parallel I/O trace analyzing. Our previous work [11]
proposed a cost model to estimate data access time for
various I/O patterns in different data layouts in parallel file
systems. Chen et al. [14] and Song et al. [17] proposed
to use a combination of request frequency (or number of
requests) and request size to measure the access cost of data
blocks, and then make a better allocation of these blocks.
In this paper, we measure the access cost of all data blocks
based on the same considerations as in other work [14][17].
We propose to employ an equal-depth histogram approach
to redistribute data blocks based on their costs, to make a
full potential of I/O performance improvement.

B. Layout Optimization

Research efforts on data layout optimization mainly focus
on data reorganization across multiple file servers according
to the I/O workloads of applications. Since I/O requests
usually fall into several patterns in parallel file systems,
it is possible to reorganize the data layout to reduce the
number of disk seeks [19][20][21]. These data reorganization
techniques improve the overall I/O performance due to a
prior knowledge of application I/O behaviors. Besides, data
partition [22][23] and replication [11][16] techniques are
also widely used either to reduce disk head movements
or to increase the degree of I/O parallelism. For example,
Zhang et al [16] proposed a data replication scheme to
amortize /O workloads with multiple replicas to improve
the performance, so that each file server only serves requests
from one or a limited number of processes. Weil et al
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Data access cost analysis of LANL Anonymous Appl [26]. In subfigure (a), Appl consists of a large loop of sequential data writes, and

in each loop there are 3 I/O requests: 1 small request and 2 large requests. In subfigure (b), data blocks involving small requests have higher access
cost-per-byte(calculated as Cost(5; )/ BLOCK_SIZE for each data block) than others.

[24] employed a pseudo-random data distribution strategy,
which can adaptively balance I/O workloads when adding or
removing storage devices. PLFS[25] rearranged application
data so that N-1 write pattern is better suited in the underly-
ing file system, which is especially suitable for checkpoint-
ing applications. However, all of above approaches do not
consider the differences of access cost of data blocks. Our
previous work [11] proposed a hybrid replication scheme
for applications with complex data access patterns, and
dynamically chose one replica with the lowest access cost for
each data access. For those applications that have different
access patterns in different parts of files, we also proposed
to adopt a segment-level adaptive layout[17], to achieve high
I/O performance for all I/O requests.

All these data reorganization techniques have succeeded
in their own right. However, little has been done to make an
insight of the differences of data access patterns between
different file servers in a clustered parallel file system.
Our work takes into consideration both I/O bandwidth and
request service rate limitations for each individual file server
and uses an adaptive data layout to improve the overall I/O
performance.

IITI. DATA ACCESS COST ANALYSIS

Due to the non-uniform data access of data-intensive
applications, the different data blocks cannot be regarded as
the same. Some data blocks may be accessed many times,
while others may be seldom accessed. Besides, some blocks
may be accessed by large requests, while others may be
involved in small data accesses. In order to explore the
potential performance improvement on all file servers, we
first present an approach to analyze data access cost of
all data blocks, and then introduce an adaptive method to
distribute these data blocks across all file servers based on
the cost analysis. In this paper, the access cost of a data
block refers to cost per byte, i.e. the time spent for access
each byte in the block.

A. Data Access Cost Analysis

Request size and access frequency are two key factors
that affect I/O performance for each file server in parallel
file systems. Similarly, we consider request size and access
frequency to analyze the access cost for each data block, in
order to allocate these data blocks on multiple file servers.
Generally, each data access on a storage node includes the
startup time and data read/write time [17]. The startup time,
including disk seek time and software response time, is
independent of the request size. The data read/write time
is proportional to the data size. Assume that startup time
for each data access is « on one node, and the transmission
time of a single unit of data is 5. We use K to represent
the prorated number of data accesses and S to represent the
total requested size on a data block. Thus the access cost of
one data block can be roughly calculated as

COSt(Bi) =K;-a+S;-0 @))

Here i refers the serial number of a data block, which is
between 0 and FILE_SIZE/BLOCK_SIZE. S; refers to the
total requested data size on that data block. K; is a prorated
cost determined by the number of requests that involve this
block. The data block used for analysis is a logical unit, and
different block size would introduce different number of file
segmentations, resulting in a different cost distribution.

For analyzing the access cost, we use a counter for each
data block, which indicates the prorated number of requests
issued to it. If a request falls within one data block, the
value of the counter for that block is increased by 1. If a
large request involves m data blocks, the counters of all
involved blocks are increased by 1/m. That is because all
these blocks share the request with only one startup time,
as reflected in Formula 1.

To make the analysis of access cost more clearly, we
take the 1/O trace of LANL Anonymous Appl [26] as an
example. In this application, there are three I/O requests in
each loop, one small request with 16 bytes, and followed



by two large requests with (128K-16) bytes and 128 KB,
respectively. Figure 2 shows the sequence of request size
the and the cost per byte of every data block. Subfigure (a)
shows the size of each request in the access sequence, and
subfigure (b) shows the cost per byte of all data blocks. We
set the block size as 16 KB for analysis. From the results we
can see that the data blocks that involve small data requests
have much higher access cost than those involving large
requests. Therefore, it is beneficial to distribute data blocks
across multiple file servers with the awareness of individual
differences of the access costs of all data blocks.

The access cost formula makes an comprehensive con-
sideration of both requests size and access frequency. If a
data block has a lot of small data accesses, then it can be
regarded as a high cost block. Likewise; if a data block is
always involved in large data accesses, the cost per byte is
usually not too high. For simplicity, we call a data block has
high cost per byte the ‘high cost block’, and a file server has
many high cost blocks the ‘high cost server’. As a result,
file servers that have too many high cost blocks will lead
to low I/O bandwidth. The purpose of the proposed server-
level adaptive layout is to make a full utilization of all file
servers, by moving some data from high cost servers to low
cost servers.

B. 1/0 Workload Redistribution

The server-level adaptive layout adopts different stripe
sizes for different file servers. Assume the number of file
servers is n, and their individual stripe sizes are: si, So,
S3, ... Sp. The proposed data layout does not change the
overall stripe size of each round. If we use the block size
b to calculate block access costs, and the number of data
blocks for each round is IV, we can calculate the round size
as

Zsi:N~b:n~s. 2)
i=1

Here s s the fixed stripe size of existing parallel file
systems. The proposed adaptive data layout employs the
same round-robin way to distribute data blocks, with each
file server hold different numbers of blocks, and all file
servers keep a fixed number of data blocks for each round.
Therefore, it is not difficult to understand that for two blocks
id; and id;, if id; = id;j(modN), they will be placed in the
same file server. As a result, we can sum up data access cost
of all blocks with the same remainder when dividing their
block id by N. Thus we can get N values of the accumulated
data access costs, namely cg, c1, c2, ... cy—1. Therefore,
the data block redistribution can be converted to dividing
the access costs series into n (the number of file servers)
subsets, to balance the data access costs of all file servers.

We then adopt an equal-depth histogram [27] method to
divide the costs of data blocks (indexed from 0 to N — 1)
into following n parts by n — 1 breakpoints x1, 2, ... Tn—1

Accumulated Cost

Server 2

Server 0 Server 3

Server 1

Block #%N

(a) Equal-width data block distribution

Accumulated Cost

Server 2

Server 0 Server 3

Server 1

Block #%N

(b) Equal-cost data block distribution

Figure 3. Two data distribution manners. The height of each bar refers to
the accumulated cost of data blocks, and the area of each rectangle refers
to the access cost of one file server, which is the sum of all accumulated
costs in that server.
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These n parts have the same or very close subtotal access
cost. One file server holds one subset of all the data blocks.
The access cost of each file server is calculated as follows
(to make the equation true for the first file server and the

last one, we let o = —1 and x,, = N — 1).
Ty
Cost(FS;) = Z ¢ (i=1~n)
j=zi—1+1

The equal-depth histogram approach is applied to guar-
antee all the file servers get the same or very close data
access cost. Figure 3 shows an example of the equal-depth
histogram approach of block redistribution. In this figure,
there are 4 file servers, and each round consists of 12 data
blocks. In subfigure (a), all file servers get the same number
of data blocks (meaning the same stripe size), similar to the
simple striping manner in existing parallel file systems. In
subfigure (b), data block allocation is based on their access
costs, although different file servers have different number
of data blocks, the workload is more balanced.



After the data block re-distribution, file servers have large
requests hold more data than those have small data accesses.
As a result, all file servers could remain the same or very
close busyness during runtime. The equal-depth histogram
approach make all I/O workloads are more evenly distributed
among the file servers, and it can exploit the potential I/O
performance of all nodes.

IV. SERVER-LEVEL ADAPTIVE LAYOUT

As described in aforementioned section, the proposed
server-level adaptive layout moves some data from heavy
load servers to light load servers. Figure 4 is a diagram of
the server-level adaptive layout. In this figure, the data file
is distributed on four file servers with different stripe sizes.
In this section, we present two approaches to achieve the
adaptive data layout: offline approach and online approach.
The offline approach optimize data layout according to a
prior knowledge of applications, while the online approach
dynamically adjust the stripe size on multiple file servers
based on runtime information.

S$eS1 S: S SeS
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File
Servers
Figure 4. A diagram of server-level adaptive layout. In this figure there

are 4 file servers with stripe size: Sy, S1, S2, and S3. It shows how data
is distributed across file servers.

A. Offline Approach

The idea of offline approach is that data cost analysis and
block allocation are conducted offline, and the analyzed re-
sult is then used for data layout optimization of future runs of
applications. Since the cost analysis is conducted offline, this
approach needs a prior knowledge of data access patterns
of applications. There are a large body of studies on data
access pattern analysis using parallel I/O traces [6][7][8][9].
Usually, the data access pattern can be described in I/O trace
files, I/O signature [8], profiles [28][29], and hints [30], etc.
The offline approach can utilize all of them to analyze access
cost and distribute data blocks across file servers.

Basically, the offline optimization includes two phases:
cost analysis and block distribution. In the cost analysis
phase, the analyzing module takes access pattern as input,

calculates all cost of all logical data blocks as described in
Section III, and then outputs the accumulated cost series:
co, €1, C2, ... cN—1. In the block distribution phase, the
distribution module takes the cost series as input, and outputs
the optimized block distribution through the equal-depth
histogram method. Both phases need the parallel file system
parameters for calculation. The optimized data layout then
can be used for file distribution of the application, either by
create new files for later runs, or adjust file layout in existing
file system.

B. Online Approach

The idea of online approach is that, data block cost anal-
ysis and data block distribution are conducted dynamically
at runtime. We designed a local array for each file server
to keep access costs of all data blocks on that file server
(integer values calculated by Formula 1). The array index is
the block id. Since the data block is a logical concept and
the size could be configurable, the space taken by the cost
array is negligible. For example, if the block size is 4 KB,
and the cost is a 4-byte integer, the array size is 0.1% of the
file size on each file server. Therefore, the whole cost array
can reside in memory at runtime. The array size could be
even smaller if we choose a large block size.

With the online approach, when a file server receives
a data access, it will update the cost array according to
Formula 1 for involved blocks. Periodically, the data cost
array is analyzed on each file server, and then the accumu-
lated block costs are calculated. A global analysis module
figures out the optimal strip size of each file server. After
the calculation of optimal data layout, data need to be
migrated between file servers to balance the I/O workload.
We design an online data migration module to move data
between file servers. Usually, data moving happens between
adjacent file servers, so the volume of network transmission
is not supposed to be too large. In order to reduce the
overhead introduced by extra data read/write on file servers,
we recommend moving data when the system resource usage
is in low level.

C. Implementation

We have implemented a prototype of the server-level
adaptive layout scheme in PVFS2[4]. We designed a module
to estimate system parameters. We choose one file server in
the parallel file system to test « and (3, by measuring the
parameters with different request sizes and repeating each
case with multiple runs(the number is configurable), and
then calculating their average values. We utilize the variable
stripe size feature of PVFS2, by which stripe size can be
configured to be different on different file servers. We use
the ‘setfattr’ command to set data distribution of direc-
tories using the POSIX interface (or the ‘pvfs2-xattr’
command with the direct PVFS2 interface).



Table I
NODE INFORMATION OF EXPERIMENT PLATFORM

CPU Quad-Core AMD Opteron(tm) Processor 2376 * 2

Memory | 4 * 2GB, DDR2 333MHz
Storage SATA 1I 250GB, 7200RPM
Network | 1 gbps Ethernet, and 16 nodes with 4X InfiniBand (8 gbps)

oS Ubuntu 4.3.3-5, Linux kernel 2.6.28.10

PVFS2 PVFS2 version 2.8.1

For the offline optimization approach, we directly use
variable stripe sizes to distribute data files for future runs
after the data block cost analysis. For the online optimiza-
tion, it is more complicated. In our prototype, we simply
recreate files by making a copy at runtime when the system
resource is idle. However, this is not the optimal method,
as it involves large amount of data shipping between file
servers. An optimal way should keep the amount of data
shipping minimal. We will further investigate the optimal
data migration strategy for the online approach in our future
work.

V. EXPERIMENTS
A. Experimental Setup

Experimental tests were conducted for the proposed
server-level adaptive data layout with several benchmarks.
The experiments were conducted on a 65-node SUN Fire
Linux cluster, in which there are 64 computing nodes and
one head node. The head node is Sun Fire X4240, with dual
2.7 GHz Opteron quad-core processors and 8 GB memory.
The hardware and software configuration of computing
nodes are shown in Table I.

We evaluated the proposed server-level adaptive layout
with the widely-used parallel file system benchmark IOR
and MPI-TILE-IO. IOR is a benchmark program used to
test random and sequential I/O performance of parallel
file systems. MPI-TILE-IO is a benchmark that tests the
performance of MPI-10 for non-contiguous access workload.
We also evaluated the layout with the I/O trace of a real
application, ‘Anonymous LANL App 1’ [26].

B. Results Analysis

First we conducted experiments to get the approximations
of system parameters « and 3. In order to get disk startup
time for each request and data read/write rate, we used
one of the file server to measure them. We performed
experiments with different request sizes and repeated these
tests thousands of times. We got the parameter values by
calculating the average values. The approximate value of «
was around 0.2 millisecond, and the 3 was around WIB/S-
We then adopted these parameters to verify the effectiveness
of the server-level adaptive layout strategy.

Next, we compared the I/O performance of the proposed
data layout with existing fixed stripe size layout strategy. We
conducted experiments with IOR benchmark, and we used
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Figure 5. Relative bandwidth of the IOR with different data layouts.
Layout (68*3, 52) means the stripe sizes were 68 KB, 68 KB, 68 KB,
and 52 KB for the four file servers respectively, and (64*4) means the
stripe size was 64 KB for all file servers. Other layouts have the similar
meanings. We regarded the performance of the existing layout with fixed
stripe size(64KB) as baseline (100%), and compared the performance of
all data layouts for both read and write.

4 nodes for PVFS2 file servers. During each run of the IOR
benchmark, it first generates I/O request array before data
access according to the input parameters, and then performs
the requests in the array one by one. In our testing, we mod-
ified the codes of request generation. We preset the request
sequence as a loop of data accesses: {192%¥1KB, 1¥64KB}
* LOOP_COUNT. This means in each loop, there are 192
requests of 1 KB size, and 1 request of 64 KB. The number
of I/O clients was 16, which were deployed on 8 computing
nodes. Figure 5 shows the experimental results. We used
the block size 4 KB for data access analysis, and compared
the I/O performance of all data layout manners with the
fixed stripe size manner. From the results, we can see that
the server-level adaptive layout can achieve I/O performance
improvement for both data read and write. As shown in
the figure, the optimal data layout is {48 KB, 48 KB, 48
KB, 112 KB}. The performance improvement is 26% for
read and 19% for write in Ethernet environment, and 32%
for read and 27% for write in InfiniBand environment. The
performance improvement in Ethernet environment is not as
high as that in InfiniBand environment, which is because



Table 1T
COMPARISON OF DIFFERENT ROUND SIZES AND BLOCK SIZES

Round Size | Block Size Optimal Layout Performance
(KB) (KB) (KB) Improvement

1 (49,49 .,49,109) 32.5%

256 2 (50,50,50,106) 32.3%

4 (48,48,48,112) 32.0%

8 (48,4848,112) 32.0%

1 (98,158,98,158) 182%

512 2 (98,158,98,158) 182%

4 (100,156,100,156) 18.1%

8 (96,160,96,160) 17.9%

the Ethernet performance may limit the full potential of file
servers in some cases.

We then evaluated the effectiveness of different block
sizes for the proposed server-level adaptive layout. Table II
shows the experimental results in InfiniBand environment.
We used the same data access pattern as in Figure 5.
We changed the block sizes for cost analysis, and we
measured the performance under two round sizes (round size
is calculated using Equation 2), 256 KB and 512 KB. We
compared the performance with fixed stripe size data layout,
ie., 64 KB * 4 for the first case and 128 KB * 4 for the
second case. From the results, we can see that the block
size slightly affects data block distribution in these cases.
In addition, the smaller the size of data block used for cost
analysis, the higher the I/O performance improvement that
can be achieved. Generally, small data block size involves
more calculation of cost analysis, and 4 KB block size is an
ideal choice for lots of applications.

We also conducted a set of experiments to evaluate the
proposed data layout with a synthetic workload with IOR
and MPI-TILE-TILE instances. Figure 6 shows the results.
For each benchmark, we ran multiple instances one by one
with different runtime parameters to simulate non-uniform
access patterns on different file servers. We compared the
aggregate I/O bandwidth with different data layouts. This
set of experiments were conducted in all 64 nodes, with
each node configured as both file server and I/O client. For
IOR tests, we measured I/O performance with sequential
and random workloads respectively, while we measured
aggregate bandwidth with collective I/O and non-collective
I/O workloads in MPI-TILE-IO tests. We used 2 KB block
size for cost analysis for the server-level adaptive layout.
From the results we can see that the server-level adaptive
data layout can achieve up to 81.5% performance improve-
ment with IOR benchmark and 54.6% with MPI-TILE-IO
benchmark.

Finally, we evaluated the proposed layout with a real
application I/O trace, namely ‘Anonymous LANL App 1’
[26]. The data access patterns and cost analysis results are
shown in Figure 2. We replayed the data accesses of this
application according to the I/O trace, by simulating the
same application scenario: 64 MPI-IO clients, and same 1/O
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Figure 6. Performance of a synthetic workload with IOR and MPI-TILE-
10 benchmarks. Label ‘ADP’ refers to the proposed adaptive data layout.
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requests for each I/O client. We conducted the experiments
with 16-node InfiniBand environment, in which all 16 nodes
were served as both file servers and I/O clients. We adopted
different stripe sizes for different file servers, and then
measured the overall I/O bandwidth and request service
rate. In this set of experiments, we used 2 KB block size
for cost analysis for the server-level adaptive layout. We
compared the results of server-level adaptive data layout
with existing uniform stripe size strategies. Figure 7 shows
the experimental results. In this figure, we measured I/O



performance of 5 fix stripe size layout manners: 32 KB, 64
KB, 128 KB, 256 KB, and 512 KB. We also measured the
I/O performance of the proposed data layout. From the result
we can observe that the server-level adaptive data layout can
achieve around 80.3% performance improvement compared
to the data layouts with fix stripe size. The results indicate
that it is beneficial to move some data from file servers with
high costs to those with low access cost, to balance the data
access workload. The proposed server-level adaptive data
layout is an effective performance optimization strategy for
applications with complicated data access patterns.

VI. CONCLUSIONS AND FUTURE WORK

Request service rate and bandwidth are usually two I/O
performance metrics in parallel I/O systems. Existing paral-
lel file systems are designed for generic I/O access charac-
teristics that treat all I/O requests being equally distributed
in all file servers, ignoring the difference of I/O workloads
on individual servers. Therefore, the peak I/O performance
can rarely be achieved, especially for applications with non-
uniform access patterns.

In this paper, we propose a server-level adaptive data
layout, which adopts different stripe sizes for different file
servers according to data access costs on them. We present
how to calculate the access costs for data blocks, and how to
distribute these blocks across multiple file servers according
to the access costs by using an equal-depth histogram
method. We also propose two approaches, offline approach
and online approach, to put this server-level adaptive layout
into use for data-intensive applications. Experimental results
with the IOR and MPI-TILE-IO benchmarks demonstrate
a significant improvement of I/O performance. The perfor-
mance improvement was up to 81.5% for IOR workload and
54.6% for MPI-TILE-IO workload. We also evaluated the
proposed data layout with a real application I/O trace, and
the improvement of I/O performance was up to 80.3%. The
server-level adaptive layout can achieve higher performance
by exploiting the potential capability of all file servers. The
essence of the proposed adaptive data layout is to let heavy-
load servers offload some data accesses to light-load servers,
in order to achieve balanced data access in all file servers.
Therefore, it is suitable for large-scale and data-intensive
applications with complex access patterns.

In future, we plan to extend the proposed data layout to
distributed file systems and cloud environment, where the
individual differences of data access patterns and file servers’
capabilities may be even larger than parallel file systems.
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