
A Case Study into Predictable and Composable
MPSoC Reconfiguration

Pranav Tendulkar
Verimag, University of Grenoble,

Centre Équation - 2, avenue de Vignate,
38610 Gières

France
Email: pranav.tendulkar@imag.fr

Sander Stuijk
Eindhoven University of Technology

Den Dolech 2,
5612 AZ Eindhoven

The Netherlands
Email: s.stuijk@tue.nl

Abstract—The number of applications running concurrently
on a MPSoC is ever increasing. Moreover, the set of running
applications is often unknown at design-time. Part of the resource
allocation decisions must therefore be deferred to run-time. This
requires a run-time manager to optimize the resource usage of
the system to preserve energy and allow as many applications as
possible to use the resources simultaneously. An effective resource
manager should therefore be able to reconfigure the resource
assignment of running applications. To this end, a run-time task
migration mechanism is needed. A user should however not notice
the reconfiguration, as this would impact the perceived quality of
the system. Hence, the reconfiguration mechanism should provide
timing guarantees on its operation and it should not interfere with
other applications running on the same system (i.e., it should
be predictable and composable). In this paper, we present a
practical implementation of such a predictable and composable
MPSoC reconfiguration mechanism. We demonstrate the use of
this mechanism on a JPEG decoder whose tasks are migrated at
run-time while running on a state-of-the-art MPSoC platform.

Index Terms—Task migration, real time systems, timing guar-
antees

I. INTRODUCTION

The number of applications which a user is running con-
currently on a modern MPSoC is increasing rapidly. A user
may, for example, use a mobile phone to watch a video
that is being decoded using an MPEG-4 decoder while an
MP3 decoder is used to decode the accompanying audio. At
the same time, other background processes may be running
on the same MPSoC to update the agenda or e-mail of the
user. In many systems, the set of applications that may be
active simultaneously is no longer known at design-time.
Resources need to be assigned to applications at run-time.
This task is handled by a run-time resource manager that
is running on the MPSoC platform. Whenever an application
is started or stopped, the resource manager should adapt the
resource assignment of all running applications accordingly
while considering multi-objective, potentially conflicting, op-
timization criteria (e.g., improve QoS and/or reduce energy
consumption of the set of running applications). Many of these
applications will have real-time constraints that need to be
met even when the resource manager decides to reconfigure
the resource assignment. To meet this requirement, both the
decision process (i.e., which resource assignment to use) as

well as the process to implement this decision (i.e., the actual
resource reconfiguration) need to be done within a predictable
and bounded amount of time. In other words, the run-time
resource manager should implement a resource management
and reconfiguration strategy that provides a predictable timing
behavior. This paper presents such a predictable run-time
resource manager on the CompSOC MPSoC platform [1].

At design-time, the design-flow presented in [2] can be
used to map individual applications to the CompSOC platform.
When possible and useful, the design-flow will compute for
an application multiple possible configurations representing
the available trade-offs between resource usage and quality.
Configurations could for example provide a trade-off be-
tween the use of different resources, such as different pro-
cessors, or trade-offs between processing and memory usage
or through DVFS between energy consumption and resource
utilization. The configurations determined at design-time are
Pareto optimal trade-offs between the various quantities con-
sidered at run-time (i.e., resource usage, energy usage and
quality). The configurations are determined at design-time
on a per-application basis. The run-time resource manager
must combine these configurations at run-time to investi-
gate system-wide trade-offs. After combining the trade-off
spaces of the individual applications, the resource manager
can decide on the optimal system-wide configuration of all
running applications and subsequently it can implement this
decision by reconfiguring the individual running applications.
As mentioned before, all of these steps need to be performed
by the run-time resource manager while providing timing
guarantees to the running applications. A resource manager
which fulfills these constraints is introduced in this paper. The
resource manager uses the predictable and composable MMKP
heuristic presented in [3] to select an optimal configuration
for all applications running on the platform. The configuration
selected by this heuristic may trigger a reconfiguration of these
applications. Our proposed run-time mechanism ensures that
this reconfiguration process is completed within a bounded
amount of time (i.e, the reconfiguration is predictable). More-
over, the timing behavior of applications of which the resource
assignment is not changed will not be affected (i.e., the
reconfiguration is composable). We demonstrate our run-time

Tile 2Tile 1

Æthereal NoC

MB

DMA

imem
dme

m

cme

m_in

cme

m_ou

t

MB

DMA

imem
dme

m

cme

m_in

cme

m_ou

t

CompOSe CompOSe

Fig. 1: CompSOC platform.

reconfiguration mechanism with a JPEG decoder whose tasks
are migrated while the platform is active.

The remainder of this paper is organized as follows. Sec. II
introduces the CompSOC MPSoC platform on which our run-
time reconfiguration mechanism is implemented. The appli-
cation programming model for this platform is described in
Sec. III. The proposed reconfiguration mechanism is presented
in Sec. IV. A case study in which our reconfiguration mecha-
nism is used is described in Sec. V. Related work is discussed
in Sec. VI and Sec. VII concludes this paper.

II. COMPSOC PLATFORM

The CompSOC platform (see Fig. 1) has a tiled-based
architecture in which a set of processing and memory tiles
are connected to each other through the Æthereal network-
on-chip [4]. Each processor tile contains a microblaze pro-
cessor running the CompOSe real-time operating system [5].
CompOSe provides composable and predictable application
scheduling. A processor tile contains also a non-shared local
memory for instructions and data, as well as communication
memories which are used by a DMA for communication with
remote tiles. Memory tiles contain a memory sub-system that
can be accessed from the processing tiles. In the scope of this
work, memory tiles do not play an important role since they
do not have to be considered in the reconfiguration process.
Therefore, we will not discuss memory tiles in this paper.

The CompSOC platform provides a predictable and com-
posable timing behavior to applications running on the plat-
form [6]. In order to provide composability, it uses a compos-
able scheduling strategy such as time-division multiplexing
(TDM), where the presence or absence of requests from
one application cannot affect when other applications are
scheduled. In addition, it uses preemption after a fixed time
to prevent one application from starving other applications.
Furthermore, it delays scheduling requests till the end of a
time slice to avoid that the early completion of one request
will cause subsequent requests to be scheduled earlier. In
order to provide predictability, it requires that all data needed
for a request must be locally available and that there should
be enough local storage space to store the response of this
request. In combination with the use of predictable resources
with bounded worst-case execution times and the use of a
predictable TDM scheduler, it is possible to compute per task
running on a resource a worst-case response time for this task.
Complete details about this platform can be found in [1], [6].

V LD
IQ/

IDCT
CC

36

36
36

Fig. 2: SDFG of a JPEG decoder.

III. APPLICATION PROGRAMMING MODEL

Programming MPSoCs such as the CompSOC platform is
a challenging task. To address this challenge, a model-based
design approach has been developed to program the CompSOC
platform [1]. This approach uses the dataflow Model-of-
Computation (MoC) to describe the behavior of applications
that must be implemented on the platform. Several variants
of this dataflow MoC, which differ in their expressiveness,
are supported by the design approach and platform. In this
work, we assume that applications are implemented as a
synchronous dataflow graph (SDFG) [7]. Fig. 2 shows an
example SDFG. The nodes in this graph are called actors
and they represent the functionality of the application. The
actors communicate with each other by sending tokens (data-
items) in FIFO order over the edges in a SDFG. An actor
can be executed (fired) if sufficient tokens are available on all
its input edges. An important property of a SDFG is that on
each firing it consumes a fixed amount of tokens from all input
edges and it produces a fixed amount of tokens on all its output
edges. These amounts are called the rates and are annotated
at the start and end of each edge (rates 1 are omitted for
clarity). Some channels may contain initial tokens (indicated
with a black dot). These initial tokens represent data-items in
the application which have an initial value that is required for
the computation performed by the actors.

IV. RUN-TIME RESOURCE MANAGER

As explained in Sec. I, the run-time resource manager
consists of two main components (see also Fig. 3). The
first component, the system-level resource manager, decides
in which configuration each application must be running.
Whenever a new application is started on the platform or a
running application is stopped, this component may decide to
reconfigure the running applications. The second component,
the application-level resource manager, must implement this
decision (i.e., it must migrate actors and edges between
processors). As explained below, to build a composable run-
time manager it is required that each application has its own
application-level resource manager.

A. System-level resource manager

The system-level and application-level resource managers
will be running on top of CompOSe. The system-level resource
manager is implemented as a separate application running
on the platform. Because of the composability offered by
CompSOC, it is guaranteed that this part of the run-time

R
u

n
-t

im
e

re
s
o

u
rc

e
 m

a
n

a
g

e
r

System RM

Application

RM

Application

RM
...

Application start/stop request

Fig. 3: Run-time resource manager (conceptual view).

reconfiguration mechanism will not interfere with the timing
behavior of other applications.

The system-level resource manager can be implemented
using an algorithm such as the MMKP heuristic presented
in [3]. This algorithm decides on the optimal configuration
of all applications in a bounded amount of time (i.e., it is
predictable) while considering multiple optimization criteria.
In this work, we use this MMKP heuristic in our system-level
resource manager. An interested reader is referred to [3] for a
detailed discussion on this algorithm. The main contribution
of this work is the application-level resource manager, which
implements the resource allocation decisions taken by the
system-level resource manager within a bounded period of
time.

B. Application-level resource manager

The implementation of a reconfiguration decision, which
is handled by the application-level resource manager, may
require that tasks from an application are migrated from one
processing tile to another. This process is realized in our run-
time reconfiguration mechanism as part of the application
which is being reconfigured. From the perspective of the
CompOSe operating system, our application-level resource
manager is part of the application.

Our application-level resource manager uses a master-slave
configuration (see Fig. 4). The master stores the active re-
source configuration of the application. Whenever the MMKP
algorithm decides to reconfigure the application, the master
will send a set of reconfiguration commands to the slaves. For
this purpose, a pair of dedicated FIFOs is used between the
master processor and each slave in the platform.

Since the whole reconfiguration process takes place dur-
ing the TDM time slices allocated to the application, it is
guaranteed that other applications will not be affected by the
reconfiguration (i.e., the run-time resource manager is compos-
able). In order to arrive at a predictable run-time mechanism
it is however also important that the reconfiguration process
itself can be completed within a bounded amount of time.
Otherwise, the application which is being reconfigured may
miss its own timing deadlines.

C. Migration Point

To reduce the task migration overhead, a reconfiguration can
only be performed at specific moments during the execution

of the application. In the SDF MoC, actors have no state that
needs to be preserved across firings. Any state (data) that needs
to be stored between firings should be stored explicitly as a
token on a self-edge of an actor. Allowing task migrations
only when an actor is not executing (firing) ensures that no
state (other than the initial token on the self-edge) needs
to be transferred. This implies, no processor context needs
to be migrated, which reduces the task migration overhead
considerably.

Whenever an actor is migrated to a different processor,
the edges connected to this actor must also be reconfigured.
Tokens that are present in these edges must then be migrated
from the old edges to the newly created edges. Throughout
the execution of the SDFG, the number of tokens in the
edges may vary. Hence, the amount of tokens that needs
to be transferred may vary depending on the moment when
an actor would be migrated. As a result, the time needed
to migrate a task and its connected edges might depend
strongly on the number of tokens in these edges. In order
to provide timing guarantees, design-time analysis techniques
must take the worst-case situation into account when analyzing
whether a particular reconfiguration would be feasible given
the timing constraints of the application. When task migrations
are allowed to occur at any moment when an actor is inactive,
this could lead to very pessimistic estimates on the number of
tokens that needs to be transferred. As a result, design-time
analysis techniques would most probably indicate that many
reconfiguration options cannot be performed within the given
timing constraints. To address this issue, we use a special
property of SDFGs. Since the production and consumption
rates of the actors on the edges are constant in a SDFG it
holds that after each actor has been fired for a certain number
of times (called an iteration of the SDFG [7]), the token
distribution in a SDFG returns to its original state. At this
moment, the number of tokens in all edges connected to an
actor are equal to the number of initial tokens. Since this is
a well defined amount, it can be easily taken into account
in the timing analysis performed at design-time. Therefore,
our application-level resource manager will only migrate a
task and its connected edges when the actor and all actors
connected to the edges of this actor have completed an
iteration. Note that it is insufficient if only the actor which
will be migrated has completed an iteration. The actors that
communicate with this actor should also be halted at the start
of an iteration. Otherwise, tokens may be added or removed
from these edges and the number of tokens in these edges
would then be unequal to the number of initial tokens.

D. Task and FIFO Migration on CompOSe

When migrating an actor, the schedule on the processor on
which this actor was originally running as well as the schedule
on the processor to which the actor is moved must be changed.
In CompOSe, actors from the same SDFG are scheduled
using a static-order schedule. To modify these schedules,
CompOSe requires that the complete schedule of all actors
that belong to the same SDFG are removed from a processor

Tile 1

Æthereal NoC

Tile 2 Tile 3

System RM

Application

RM (master)
Application

RM (slave)

Application

RM (slave)

Application

RM (master)
Application

RM (slave)

Application

RM (slave)

Fig. 4: Run-time resource manager (deployment view).

and subsequently a new schedule can be assigned to the actors.
This implies that the application (SDFG) should be stopped
on the processor from which the actor is migrated away as
well as the processor to which the actor is moved. When
migrating an actor, the edges (FIFOs) connected to the actor
must also be migrated. This can be done through CompOSe
by removing the old FIFOs and adding the FIFOs to the new
migrated actor. If initial tokens are present in the old FIFO,
they are retained and copied to the new FIFO. CompOSe
requires that the application whose set of FIFOs is modified on
a processor is not running during this reconfiguration. Hence,
the application must be stopped on the processor which is left
by the migrated actor, the processor receiving the migrated
actor and all processors that run actors which have at least
one FIFO edge to these two processors. From many practical
situations, this will often imply that the application must be
halted on all processors on which it is running. Considering
this aspect and in order to reduce the number of messages
exchanged between the master and slave components of our
application-level resource manager, the resource manager will
halt the application on all processors. Next, it will perform
the reconfiguration. When this process is completed, the
application will be resumed on all processors. Note that during
this whole process, the other applications running on these
processors are not interrupted which ensures that our run-time
reconfiguration is composable.

The next section presents in detail the messages that are
exchanged between the master and slave components in our
application-level resource manager when reconfiguring an
application. As explained in that section, each individual
operation during the reconfiguration process (e.g., reconfig-
uration decision, actor migration, FIFO creation, etc.) can be
performed in a bounded amount of time. Since the complete
set of operations that needs to be performed in order to
migrate an actor is known at design-time, it is possible to
provide a timing guarantee on the completion of the complete
reconfiguration. Hence, the run-time resource manager offers
a predictable reconfiguration mechanism.

V. CASE STUDY

A. JPEG Decoder Application

We demonstrate our resource manager with a case study
in which some actors of a JPEG decoder are migrated from
one processor to another. Fig. 2 shows the SDFG of our
JPEG decoder. It consists of three actors, namely Variable
Length Decoder (VLD), Inverse Quantizer combined with
Inverse Discrete Cosine Transform (IQ/ICDT) and Color Con-
version (CC). The VLD actor has state that needs to be
preserved across firings. In between firings, this state is stored
as an initial token on the self-edge connected to this actor.
One pair of edges from the VLD to IQ/IDCT respectively CC
actor is used to communicate JPEG header parameters (e.g.,
image size) between the actors. The remaining edge from the
VLD to the IQ/IDCT actor and the edge from the IQ/IDCT to
the CC actor are used to communicate the actual image data.

B. Run-Time Task and FIFO Migration

Fig. 5 illustrates the actor migration process. Initially the
VLD and IQ/ICDT actors are running on the second tile
and the CC actor is running on the first tile. Next to these
actors, the second tile is also running the system-level resource
manager as well as the master application-level resource
manager for this application. The other two tiles are running a
slave application-level resource manager for our JPEG decoder
application. In this example, no other applications are active on
the platform. At some point in time, the system-level resource
manager decides to migrate the CC actor from tile 1 to
tile 3. (This decision would normally be triggered when a new
application is started on the platform, but for simplicity we
assume in this example that the system-level resource manager
takes this decision without any new application entering the
system). Once the system-level resource manager has taken the
decision to reconfigure the application, it informs the master
application-level resource manager about this decision (step
1 in Fig. 5). Since this application-level resource manager
is part of the JPEG application running on tile 2, it will
be periodically scheduled on this tile. The first time it gets
scheduled after the system-level resource manager took the
decision to reconfigure, it will start the actual reconfiguration
process. This process starts with sending a command to all
tiles to halt the application (step 2 in Fig. 5). This is done
by sending a message through the dedicated FIFOs between
the master and slave application-level resource managers.
Whenever an application-level resource manager is scheduled
on a processor, it will check this FIFO to verify whether new
commands are available in this FIFO. If so, these commands
will be processed. Once the command to halt the application
on the tile has been completed, the slave application-level
resource manager will inform the master application-level
resource manager by sending an acknowledgment (step 3 in
Fig. 5). When all slaves has confirmed that the application
has been halted and the application has also been halted on
the tile running the master application-level resource manager,
the resource manager continues with the next step of the

Tile 1: CC

Tile 2: VLD, IQ/ICDT

Tile 3: empty

time

Tile 1

Tile 2

Tile 3

(1)

(2
)

(5,6)

(2)

(3) (4
)

(3
) (4)

(7)

(7)

(8)

Tile 1: empty

Tile 2: VLD, IQ/ICDT

Tile 3: CC

Fig. 5: Task migration (steps performed by resource manager).

TABLE I: Task migration overhead (in clock cycles).

Step Description Master Slave
1 Instruct application RM to reconfigure 50 n/a

2 Request removal of application from TDM 140 760

3 Remove application from TDM and ack. App. dependent

4 Resize TDM allocation 300 850

5/6 Add/remove FIFO Tab. II Tab. II

7 Add application to TDM 570 900

8 Inform system RM about completion 50 n/a

reconfiguration process. Since after reconfiguration there will
be no actors of this application running on tile 1, the number
of time slices allocated to the application can be reduced on
tile 1 to just one (which is needed to periodically execute the
slave resource manager). Furthermore, the number of TDM
slices allocated on tile 3 may have to be increased. This is
illustrated as step 4 in Fig. 5. In this step, the master resource
manager instructs the slave resource managers to make this
change in the TDM allocation. Step 5 involves the removal of
the old FIFOs from tile 2 to tile 1 and in step 6 new FIFOs
are created between tile 2 and 3. These FIFOs are immediately
connected to the VLD actor on tile 2 and a new instance of the
CC actor on tile 3. (Note that we assume that the instruction
code of all actors is available on all tiles. Hence, no code
migration is required). Next, the static-order schedule on tile 3
is updated (i.e., the CC actor is added to it). Subsequently (step
7), a message is sent to all tiles to resume the execution of the
application. At this moment, the reconfiguration process of the
application has ended and the master application-level resource
manager confirms this to the system-level resource manager
(step 8). This completes the complete reconfiguration process
of the application.

As mentioned before, in order to ensure a predictable
reconfiguration process, it is important that each of the steps
described above can be completed within a bounded amount
of time. Our implementation ensures that this constraint is
met. Tab. I lists the number of clock cycles needed to perform
the various steps in the reconfiguration process. These times
depend on the tile which ultimately needs to perform the

operation. When the operation (e.g., removal of application
from TDM) needs to be performed on a slave tile, then we
need to consider the overhead of sending a message from the
resource manager running on the master tile to the resource
manager on a slave tile. The time required to remove an
application from the TDM schedule (step 3) depends on the
application. As explained before, an application may only be
stopped on a tile when the application has completed a full
iteration of the SDFG. In the worst-case, the application may
have just started a new iteration on all tiles when a request to
remove the application from the TDM schedule is received. In
that case, a complete iteration of the SDFG must be finished
before the request can be executed. Hence, the worst-case time
needed to complete step 3 is bounded by the worst-case time
needed to complete one iteration of the SDFG on the platform.
Since all resources in the platform are predictable and since we
assume that the worst-case execution time of all actors (tasks)
are known, we can compute the worst-case time needed to
complete step 3 at design-time. Tab. II shows the time required
to reconfigure a FIFO. Depending on the tiles to which a FIFO
is connected the time required to add or remove a FIFO varies.
If the source and destination of a FIFO are both on the master
tile, then there is minimal overhead to remove or add the FIFO.
In this case, the overhead is limited to the allocating/freeing
the data structure associated with the FIFO. When a FIFO
is used to communicate between different tiles, for example
between a tile running the master resource manager and a
tile running a slave resource manager, the overhead will also
include communication overhead to send a message to add or
remove a FIFO and to send an acknowledgment after adding
or removing the FIFO. The highest overhead occurs when a
FIFO is connected between two different slave cores. In this
scenario, the master application-level resource manager has to
communicate messages between two different slaves and wait
for their acknowledgments.

C. Results

It follows from Tab. I and Tab. II that the amount of
time taken to complete a task migration depends on the old
and new configuration of the application on the system. We

2,1,2 2,1,3 2,2,3 2,2,2 2,3,2 2,3,3 3,3,3 2,3,3 2,2,3 2,2,2 2,1,2 2,3,2

tile mapping (VLD, IQ/IDCT, CC)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cl
oc

k
cy

cl
es

1e7

Step 1
Step 2
Step 3
Step 4
Step 5+6
Step 7
Step 8
predicted

(a) Measurements with step 3 included

2,1,2 2,1,3 2,2,3 2,2,2 2,3,2 2,3,3 3,3,3 2,3,3 2,2,3 2,2,2 2,1,2 2,3,2

tile mapping (VLD, IQ/IDCT, CC)

0

5000

10000

15000

20000

25000

cl
oc

k
cy

cl
es

Step 1
Step 2
Step 3
Step 4
Step 5+6
Step 7
Step 8
predicted

(b) Measurements without step 3 included

Fig. 6: Measured and predicted reconfiguration times.

TABLE II: FIFO add/remove overhead (in clock cycles).

Src Master Master Slave Slave-1 Slave-1
Destination Master Slave Master Slave-2 Slave-1
Time to remove FIFO 570 1235 1235 1735 975

Time to add FIFO 1280 4925 5050 8000 4400

have performed an experiment in which the JPEG decoder is
reconfigured several times. Initially all three actors are mapped
to tile 2 i.e., configuration 2,2,2 in Fig. 6 which indicates that
the three tasks VLD, IQ/IDCT and CC are running on tile 2.
As a first reconfiguration, the IQ/IDCT actor is migrated to tile
1. The left-most bar in Fig. 6 shows the run-time (in clock-
cycles) needed to perform this reconfiguration. This run-time
is measured using an actual implementation of our run-time
reconfiguration mechanism on the CompSOC platform. The
squared box above the bar indicates the worst-case reconfigu-
ration time as computed using the run-times listed in Tab. I and
Tab. II. The next bar in Fig. 6 shows the time needed to migrate
the CC actor to tile 3 (configuration 2,1,2 to configuration
2,1,3). The other bars indicate other reconfiguration options
that have been tested. Each time the label left to the bar
indicates the configuration prior to the reconfiguration. The

top part of Fig. 6 shows that the reconfiguration time is
dominated by step 3. The bottom part of Fig. 6 shows the
run-time of the reconfiguration process when excluding step
3. Comparing these two parts it is clear that the actual run-
time of the reconfiguration process as well as the worst-case
run-time of the reconfiguration process are dominated by step
3 (i.e., the worst-case of all other steps is always very close to
the measured run-time for these steps). The fact that step 3 is
the bottleneck in the reconfiguration process is not unexpected.
As explained in Sec. IV, the run-time resource manager must
in step 3 halt the execution of the application on all resources.
In the worst-case this may require the application to execute
a complete iteration before it can be halted. Even in the
typical situation, it will require that many actors finish their
execution before this step is completed. Hence, the long worst-
case and measured run-times for this step. The only option
to reduce the time taken by step 3 would be to relax the
constraint that an application can only be reconfigured at the
end of an iteration. However, as discussed in Sec. IV, this
could in the worst-case lead to a large overhead in migrating
tokens when reconfiguring FIFOs. An experiment with a small
test application have confirmed that this overhead for most
realistic applications far exceeds the worst-case time needed

to complete an iteration of the graph. From this we concluded
that the choice to allow reconfigurations only at an iteration
boundary is still the best option.

VI. RELATED WORK

Task migration in a multi-processor system is performed for
various reasons like thermal [8], [9], load-balancing [10], fault-
tolerance [11] etc. We can classify the task migration work
briefly in two types depending on the underlying architecture
which is shared memory or distributed memory. We consider
a scalable approach for multiprocessor with private memory
for each processor, where the migration is done only at pre-
decided checkpoints [12]. Taking the advantage of MoC, in
our case the programmer need not explicitly store the context
for migration.

[13] provides a comprehensive survey of the run-time
resource managers. It divides the run-time resource manager
into two parts; one which deals with decision making while
the second is responsible for implementation of this decision.
Casavant et. al. in [14] provides with the classification of
different algorithms that can be used for resource manager.
We use MMKP [3], which guarantees us predictability and
flexibility. Owing to the private shared memory for each core,
we implement the master-slave configuration of the resource
manager, where the master is responsible for the decision mak-
ing process, while the implementing the decision is performed
collectively by all the responsible cores. This gives us an
advantage of managing the data-structures simplistically [13].
We belong to the (type 3) adaptive applications classified
in [13], where applications are allocated certain resources, as
per the configuration of the application. The latter in turn is
responsible to manage them efficiently.

[15] is also a master-slave configuration for task migration
which has a copy of task in all the processor cores. They re-
quire sufficiently large queue size between the communicating
actors to avoid the deadline misses in the application during
the task migration. We migrate the application only the end of
iteration, in a predictable one time slot in order to avoid any
deadline misses and disturbances to other applications.

Almeida et. al in [10] propose tasks migration to provide
work-load balance in multiprocessor system to optimize the
throughput. There is no indication of amount of time required
to migrate the task and its related resources. Further, their task
migration is not capable of migrating stateful actors.

In [16], the author proposes locking of caches for hard-
real time tasks which can provide predictable task migration.
Their work focuses on cache based techniques, which become
unscalable with increasing amount of processors on chip.
Whereas we focus on private memory for each core, which
has own instances of tasks running.

Hardware mechanisms [17]–[19] are proposed in order to
offload the task of scheduling and migration to the hardware in
order to save from the run-time overhead. However it is essen-
tially a trade-off between the speed, flexibility and scalability
of the system. Definitely, we do not outperform the hardware

mechanisms, but our methodology gives a predictability and
composability without requiring specialized hardware.

In AsyMOS [20], a different approach is taken, where
the system management functions are handled by dedicated
cores. Instead, we dedicate time-slots in our framework for
management.

VII. CONCLUSION

This paper introduces a run-time reconfiguration mechanism
that is able to provide timing guarantees on the time needed to
migrate tasks and their communication channels in a MPSoC.
The mechanism guarantees that the reconfiguration of one
application will not affect the timing behavior of other applica-
tions running on the same resources. This enable predictable
and composable MPSoC reconfiguration. The proposed run-
time mechanism is demonstrated on a realistic MPSoC which
is running a JPEG decoder.

REFERENCES

[1] B. Akesson, S. Stuijk, A. Molnos, M. Koedam, R. Stefan, A. Nelson,
A. Nedad, and K. Goossens, “Virtual platforms for mixed time-criticality
applications: The CoMPSoC architecture and SDF3 design flow,” in
Proceedings of workshop on Quo Vadis, Virtual Platforms? Challenges
and Solutions for Today and Tomorrow, 2012.

[2] S. Stuijk, M. Geilen, and T. Basten, “A predictable multiprocessor design
flow for streaming applications with dynamic behaviour,” in Conf. on
Digital System Design, DSD 10, Proc. IEEE, 2010, pp. 548–555.

[3] H. Shojaei, A. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and
R. Hoes, “A parameterized compositional multi-dimensional multiple-
choice knapsack heuristic for cmp run-time management,” in Proceed-
ings of the 46th Annual Design Automation Conference, ser. DAC ’09.
ACM, 2009, pp. 917–922.

[4] K. Goossens and A. Hansson, “The aethereal network on chip after
ten years: goals, evolution, lessons, and future,” in Proceedings of the
47th Design Automation Conference, ser. DAC ’10. ACM, 2010, pp.
306–311.

[5] A. Hansson, M. Ekerhult, A. Molnos, A. Milutinovic, A. Nelson,
J. Ambrose, and K. Goossens, “Design and implementation of an
operating system for composable processor sharing,” Microprocessors
and Microsystems, vol. 35, no. 2, pp. 246–260, 2011, special issue on
Network-on-Chip Architectures and Design Methodologies.

[6] B. Akesson et al., “Composability and predictability for independent
application development, verification, and execution,” in Multiprocessor
System-on-Chip — Hardware Design and Tool Integration, M. Hübner
and J. Becker, Eds. Springer, 2010, ch. 2.

[7] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” IEEE Trans. on Computers,
vol. 36, no. 1, pp. 24–35, 1987.

[8] Y. Ge, P. Malani, and Q. Qiu, “Distributed task migration for thermal
management in many-core systems,” in Proceedings of the 47th Design
Automation Conference, ser. DAC ’10. ACM, 2010, pp. 579–584.

[9] J. Jahn, M. Faruque, and J. Henkel, “CARAT: Context-aware runtime
adaptive task migration for multi core architectures,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2011, march 2011,
pp. 1–6.

[10] G. M. Almeida, S. Varyani, R. Busseuil, G. Sassatelli, P. Benoit,
L. Torres, E. A. Carara, and F. G. Moraes, “Evaluating the impact of
task migration in multi-processor systems-on-chip,” in Proceedings of
the 23rd symposium on Integrated circuits and system design, ser. SBCCI
’10. ACM, 2010, pp. 73–78.

[11] P. K. Saraswat, P. Pop, and J. Madsen, “Task migration for fault-
tolerance in mixed-criticality embedded systems,” SIGBED Rev., vol. 6,
no. 3, pp. 6:1–6:5, Oct. 2009.

[12] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali, “Supporting
task migration in multi-processor systems-on-chip: a feasibility study,”
in Proceedings of the conference on Design, automation and test in
Europe: Proceedings, ser. DATE ’06. EDAA, 2006, pp. 15–20.

[13] V. Nollet, D. Verkest, and H. Corporaal, “A safari through the MPSoC
run-time management jungle,” J. Signal Process. Syst., vol. 60, no. 2,
pp. 251–268, Aug. 2010.

[14] T. Casavant and J. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” Software Engineering, IEEE
Transactions on, vol. 14, no. 2, pp. 141 –154, feb 1988.

[15] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau, “Assessing task
migration impact on embedded soft real-time streaming multimedia
applications,” EURASIP Journal on Embedded Systems, vol. 2008, no. 1,
p. 518904, 2008.

[16] A. Sarkar, F. Mueller, and H. Ramaprasad, “Predictable task migration
for locked caches in multi-core systems,” in Proceedings of the 2011
SIGPLAN/SIGBED conference on Languages, compilers and tools for
embedded systems, ser. LCTES ’11. ACM, 2011, pp. 131–140.

[17] B. D. Theelen, A. C. Verschueren, V. V. R. Suárez, M. P. J. Stevens,
and A. Nuñez, “A scalable single-chip multi-processor architecture with
on-chip RTOS kernel,” J. Syst. Archit., vol. 49, no. 12-15, pp. 619–639,
Dec. 2003.

[18] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and G. Nico-
lescu, “Parallel programming models for a multi-processor SoC plat-
form applied to high-speed traffic management,” in Proceedings of the
international conference on Hardware/Software Codesign and System
Synthesis: 2004, ser. CODES+ISSS ’04. IEEE Computer Society, 2004,
pp. 48–53.

[19] T. Klevin, “Get realfast RTOS with xilinx FPGAs.”
[20] S. Muir and J. Smith, “Asymos-an asymmetric multiprocessor operating

system,” in Open Architectures and Network Programming, 1998 IEEE,
apr 1998, pp. 25 –34.

