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Abstract— In this paper, an architecture based on a scalable 
and flexible set of Evolvable Processing arrays is presented. 
FPGA-native Dynamic Partial Reconfiguration (DPR) is used for 
evolution, which is done intrinsically, letting the system to adapt 
autonomously to variable run-time conditions, including the 
presence of transient and permanent faults. The architecture 
supports different modes of operation, namely: independent, 
parallel, cascaded or bypass mode. These modes of operation can 
be used during evolution time or during normal operation. The 
evolvability of the architecture is combined with fault-tolerance 
techniques, to enhance the platform with self-healing features, 
making it suitable for applications which require both high 
adaptability and reliability. Experimental results show that such 
a system may benefit from accelerated evolution times, increased 
performance and improved dependability, mainly by increasing 
fault tolerance for transient and permanent faults, as well as 
providing some fault identification possibilities. The evolvable 
HW array shown is tailored for window-based image processing 
applications. 

Index Terms—Reconfigurability, adaptability; scalability; 
evolvable systems, evolvable hardware, fault tolerance, self-
healing. 

I. INTRODUCTION 

SRAM-based FPGA's can be reconfigured as many times 
as required, which is especially attractive if it is done 
autonomously and at run-time. Indeed, enhancing a system 
with Dynamic and Partial Reconfiguration (DPR) features may 
be a complex task, but it gives unrivalled flexibility and 
adaptability and, if used appropriately, it may contribute to 
improve system fault tolerance. DPR is based on replacing a 
portion of a working circuit by a different one, by writing a 
partial bitstream (PBS) into the corresponding positions of the 
device configuration memory. In the case of autonomous 
systems, PBSs can be taken from a library of presynthesized 
PBSs or generated in the device itself. However, autonomous 
embedded bitstream generation is complex, and only some 
basic transformations such as module reallocation or small 
functional and parametric modifications are affordable at run­
time. 

In this work, an evolvable HW (EHW) system is presented, 
which uses DPR for evolution. It is based on designing or 
transforming a circuit by using evolutionary techniques [1], i.e. 
an evolvable algorithm (EA) controls the generation of new 
circuits. The evolutionary loop is in charge of generating 

candidate circuits, evaluating their quality (fitness evaluation) 
and selecting the most appropriate candidate(s) as the parent(s) 
for the next generation. This technique opens the possibility of 
reaching solutions which cannot be conceived by conventional 
model-based design methodologies. If native FPGA 
reconfiguration is carried out at a fast enough rate, it can be 
used as the method to evolve one circuit to another one. This 
way, candidate's evaluation is performed on the programmable 
device itself, so that this evolution is noted as intrinsic. 
Intrinsic evolution has additional properties with respect to 
extrinsic or offline evolution. These include higher evolution 
speeds, but it should be mainly stressed the autonomy and self-
adaptation features offered by this technique. 

Besides adapting the circuit functionality to deal with run­
time changing specifications, intrinsic evolution may be used 
to circumvent and recover from faults appearing in the 
reconfigurable fabric, due to aging or to high-energy particles 
reaching the device [2]. This way, if a permanent fault is 
produced, a new evolution process may generate candidates 
that avoid using such a portion of the circuit, recovering its 
functionality as much as possible. If this is done autonomously, 
the system gets self-healing properties. 

When building intrinsic EHW systems on dynamically 
reconfigurable FPGAs, there exists different strategies, which 
range from direct bitstream manipulation, considered 
unfeasible due to the extremely large design space to explore, 
to coarse grain approaches [3], where complete functional 
blocks are reconfigured. As a trade off solution, authors 
presented in [4] an architecture, which is a 2-D mesh-type 
array of fine-grain Processing Elements (PEs), working in a 
systolic way. Each PE has a specific connectivity and 
functionality, and it can be selected from a library of 
presynthesized PBs stored in an external memory. Evolution is 
in charge of deciding which PE is reconfigured in each position 
of the array, until obtaining the desired functionality. Basic 
self-healing properties of this system were reported in [5]. 

In order to increase both the adaptability and the self-
healing features of the basic EHW system presented in [4], 
authors propose in this work the replication of the evolvable 
array, building an evolutionary structure with a variable 
number of parallel processing structures arranged in a flexible 
manner, which includes independent, cascaded, parallel and 
bypass operation modes. In addition, novel evolutionary 



strategies and self-healing mechanisms are provided in this 
work, suited to the proposed architecture. Main benefits 
derived from the use of a variable number of arrays, as it will 
be reported throughout this paper, are: 

- System evolution is accelerated due to the evaluation of 
candidates in parallel. In addition, a novel evolution 
strategy, called evolution by imitation, is proposed, that 
permits to evolve with no reference data sets, reducing the 
criticality of such component. 

- Processing quality may be improved in several ways: 
during cascaded operation, better fitness values may be 
obtained by splitting up the task into several stages, with 
circuits adapted to each one. Also, in parallel mode, higher 
processing throughputs are achieved. Therefore, more 
complex tasks can be addressed. 

- New fault-tolerance and fault-recovery strategies based on 
array processing redundancy are proposed. In particular, 
new TMR schemes can be implemented, so that the fitness 
function can be used as a fault diagnosis technique, useful 
for surviving with accumulated permanent faults. 

- Bypass mode allows keeping operation while a single array 
is being re-evolved due to a new permanent fault. 
A wide range of window-based digital image filters has 

been used for demonstration of these proposals. 
The paper is structured as follows. An analysis of the state 

of the art is shown in section 2. The single array architecture 
and the transformations to make it scalable are shown in 
section 3. The modes of operation are presented in section 4, 
while self-healing mechanisms are tackled in section 5. Results 
on the benefits of their use and the impact on resource 
utilization are shown in section 6. Conclusions are drawn in 
section 7. 

II. ANALYSIS OF THE STATE OF THE ART 

SRAM-based FPGA's are prone to faults due to many 
factors, especially those that work in space, where devices are 
affected by aging and high-energy radiation. Both produce two 
kinds of faults: transient faults or Single Event Upsets (SEU), 
and permanent faults or Local Permanent Damage (LPD) [6]. 
SEUs occur more frequently than LPDs, but LPDs should not 
be ignored, mainly in long-life missions, such as deep space 
exploration. This paper shows techniques to deal with both of 
them. 

Self-healing is the capability of autonomous recovering 
from a fault, or a series of faults, trying to minimize system 
degradation effects. This property is one of the major processes 
of an autonomic computing system [7] [8], and it has a vital 
role to play in system's reliability. In order to achieve a self-
healing architecture, a fault recovery mechanism or a 
combination of several elements must be implemented. 

Fault recovery mechanisms in FPGAs can be classified in 
offline and online methods [9]. The former imply stopping the 
data processing while the healing process is active, while the 
latter involve being able to keep processing data while the 
system is faulty or being repaired, with the advantage of 
keeping the system running and therefore increasing the 
system's availability. 

On the one hand, within the offline mechanisms, an 
interesting approach is the use of the inherent self-healing 
properties provided by the use of EAs. This has been analyzed 
in [5], [10] and [11], in combination with EHW. Apart from 
using the EA as a method for finding an optimized solution to 
solve a problem, this technique works as a self-healing 
technique because faulty designs are treated as sub-optimal 
solutions in the evolution, and therefore they are discarded in 
favor of a better solution, so the fault is avoided, or healed. 
Some authors also explore the approach of evolving not only 
the logic blocks, but also the routing blocks [12]. This may 
benefit if the fault is placed in a routing element, but it is done 
at a lower granularity level and a specific EA is needed in order 
to achieve admissible results. 

On the other hand, examples of online mechanisms are 
redundant systems, such as triple module redundancy (TMR), 
which is widely used and allows mitigating faults by 
implementing the same logic three times and a voting system 
that compares the results obtained. Different approaches of 
TMR and variations are TMR/Simplex, TMR+Scrubbing, and 
the TMR + Lazy Scrubbing + Jiggling architecture proposed 
by Garvie et al. [13], which extend the avoidance of a fault 
(provided by TMR), and the recovery of a transient fault (using 
a scrubbing process, i.e. reading the configuration memory to 
check for faults, and re-writing it in case that any fault is 
found), allowing the system to be able to recover from an LPD 
by imitation of the others behavior. This is achieved by using 
an EA, which in this work is the same that is used to generate 
an adapted filter. Thus, an online fault recovery is achieved, 
because the system keeps running, but with an offline method, 
since the faulty element stops its processing task. 

III. ARCHITECTURE OF THE EVOLVABLE ARRAY 

The single array evolvable system used as the starting point 
for this work was presented by the authors in [4].The first part 
of this section is therefore included to make this paper self-
contained. Transformations performed to make it scalable, 
being capable to increase or decrease the number of arrays,are 
shown later. 

A. The Single-Array Evolvable HW System 

Figure 1 shows the SoPC architecture of a single-array 
evolvable system. Main elements are the reconfigurable circuit, 
the evolutionary algorithm and the reconfiguration engine. The 
array is the reconfigurable circuit, where the functionality of 
each Processing Element (PE) can be changed by DPR, taking 
the PBSs from an external DDR memory. Candidate circuits to 
be configured in the array are generated in the EA that runs on 
the embedded microprocessor (a MicroBlaze) where, after 
selecting a candidate, either randomly for the first generation or 
choosing the best candidate of the previous generation, makes a 
mutation in the genotype (the set of coded values that defines 
exactly one solution and allows to create the phenotype, i.e. the 
implementation of the circuit described by the genotype), and 
calls the reconfiguration engine to create a new circuit. 
Afterwards, the array takes either a reference image during 
evolution, or a real image taken, for instance, from a camera, in 
normal operation. A fitness function, the so-called Mean 
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Fig. 1. Internal architecture of a single array evolvable hardware system 

Absolute Error (MAE), compares the quality of the resulting 
image with the expected result, and from here, a new candidate 
is selected. 

The input training image and the reference image are stored 
in the flash memory, and they specify what filtering application 
is required. For instance, if a noisy image is set as training 
image, and the noise-free image is set as a reference, the EA 
will generate a noise reduction circuit. However, if the training 
image is the noise-free one, and the reference is set to the edge 
detected image, the circuit will converge to an edge-detection 
filter. This way, during system life-time new functionalities can 
be obtained, only by providing the system with the 
corresponding training and reference images. 

Regarding the reconfigurable module, every PE within the 
array matrix can perform one operation with one or two inputs. 
Inputs are either the west (W) or the north (N) sides, or both, 
and data is always propagated, after a register that allows 
pipelined execution (improving speed), to both the south (S) 
and east (E) outputs. By eliminating redundancies and 
symmetries, the library of available PEs was reduced to 16 
different elements, which allows the corresponding gene 
coding in 4 bits. For a 4x4 array, there are eight inputs, four in 
the north side and four in the west side. Every input has a 9-to-
1 mux, letting the EA to select one out of the nine pixels of a 
sliding window which performs the computation of the central 
pixel in the output. The output of the array is one of the four 
outputs on the east side, and this selection is controlled also by 
the EA, which selects with a mux one of them. 

The reconfiguration engine used in this system was 
presented by the authors in [14]. This module is capable of 
reading PBSs from an external memory or from the 
configuration memory itself, providing fast reconfiguration and 
relocation capabilities. Therefore, it may be used to insert, copy 
or move HW blocks within the reconfigurable fabric. 

Regarding the evolutionary framework, getting inspiration 
from Cartesian Genetic Programming (CGP), a simple (1+k) 
Evolution Strategy with 1 parent and X offspring has been 
implemented. More details can be found in [4]. 

B. Scalable Array Architecture Modifications 

In order to make the system scalable, some modifications 
are required, as shown in Figure 2, where the multiple array 
architecture is presented. The modified architecture pretends to 
be effective for having a variable number of arrays. Enhanced. 
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Fig. 2. Internal architecture of a 3-stage evolvable hardware system 

system dependability and functional adaptability to a wider 
number of applications, or with a better performance, are the 
main motivations for this architecture. 

When designing an architecture for scalability, there exist 
different approaches. For instance, scalability can be static or 
dynamic, depending on whether the number of arrays is 
defined at design time or at run-time. In this work, scalability 
for a variable number of arrays was implemented using the 
same design principles as in [15], where generic dynamically 
scalable processing cores are presented. Main proposal of this 
work is that a change of dimensions of the architecture is 
tackled with a proportional change of the footprint of the core, 
leading to scalable footprints depending on performance or 
functional requirements. Thus, in this case, the more 
demanding are the system requirements in terms of self-
adaptation and self-healing, the larger is the area occupied by 
the EHW system on the device. In addition, to reduce the cost 
of changing the dimensions of the architecture, processing 
cores are designed in a highly modular way, where each 
possible size is obtained by combining a different number of 
basic modules. In this case, each processing array with its 
corresponding controller, the structures to compute and to deal 
with the variable latency of the arrays, some FIFOs to align 
data and the fitness unit are envisaged as a unique module, so 
that the EHW architecture can grow by changing the number of 
those modules instantiated in the design. This basic module is 
referred as Array Control Block (ACB), and its internal 
architecture is shown in Figure 3. 

The first ACB is connected to the static part through a 
vertical connector at the top, and it has a congruent connection 
in the bottom side to stack vertically with the next ACB. The 
connections between ACB and array are horizontal, so arrays 
also stack vertically. A self-addressing scheme was designed so 
that every control register in any ACB can be easily addressed 
by the EA in the MicroBlaze. The control registers allow 
different modes of operation of every individual array, as well 
as reading fitness and latency values. 

The ACB structure is such that any array may be fed with a 
common input image, or an image coming from the previous 
array. The fitness computation block may compute the pixel 
aggregated MAE between the reference image and the output 
image of the array, but it may also be set to calculate MAE 
between the input and output images of the array, as well as 
MAE between the output and another output from an adjacent 



array. These settings enable different evolution modes, as it 
will be described in the next section. According to the design 
principles in [15], scalable arrays with multiple arrays can be 
directly built up by assembling the required number of these 
modules. In this version, the number of arrays is fixed during 
system lifetime, but in the future a dynamically scalable 
approach will be implemented. 

Output Output 

Fig. 3. Internal architecture of a single stage of the Evolvable Hardware 
Platform 

Compared with the single array system, more logic 
resources are required, but in contrast, new operation modes 
are allowed, which results in benefits in terms of enhanced 
quality performance, platform adaptability and self-healing, as 
described in the next sections. 

IV. EHW SYSTEM OPERATION MODES 

The strategy followed to enhance both the dependability 
and adaptability of the proposed EHW system, is based on 
providing its internal structure with such a flexibility that, 
besides the reconfiguration of the PEs within each array, is also 
possible to modify the connectivity between them, both during 
adaptation and mission times. Thus, different operation modes 
have been envisaged. Each mode offers different self-
adaptation and self-healing capabilities, and therefore, it is 
tailored to deal with different processing requirements, as well 
as to work under different hazard conditions. 

In the rest of the section, processing and evolution category 
modes are described, while drawbacks and benefits offered in 
each case are discussed in the results section. 

A. Processing Modes 

At mission time, the set of arrays can be arranged in four 
basic modes, which are a) Cascaded, b) Bypass, c) Parallel and 
d) Independent, as shown in Figure 4. 

In Cascaded mode, the output of an array is taken through a 
3 image lines FIFO to rebuild the 3x3 window, and fed to the 
next processing array. This scheme provides two types of 
functionality, which will be referred as collaborative or 
independent. They are shown below. 
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Fig. 4. Processing Modes of the architecture: (a) Cascaded, fb) Bypass and 
(c) Parallel and (d) Independent 

The Collaborative Cascaded mode is based on splitting up 
the filtering task into subsequent stages, all of them trying to 
achieve a common target (the reference, zero-noise image). In 
this case, each filtering stage is different from the others, since 
each one is specialized for processing the output of the 
previous stage. Thus, the more stages in the chain, the more 
processing elements working together to achieve the common 
goal, and therefore, more complex tasks can be addressed. 

Similarly, Independent Cascaded filters are also supported. 
In this mode, different filters are also used in each stage, but in 
this case, each one is in charge of a different task, such as noise 
removal, followed by a smoothing filters, and then edge 
detection. Therefore, instead of working together for the same 
purpose, each stage is specialized in a different task, and it will 
be obtained by evolving against different reference images. 

On the other hand, Bypass mode, shown in Figure 4-b, is a 
variant of the Cascade mode, but one or more stages are 
disconnected and replaced by a bypass connection between its 
input and output. Bypassed array still receives its input data 
stream. This mode is the key of one of the self-healing 
strategies subsequently proposed in this work. 

Parallel mode is based on arranging the processing arrays 
in such a way that all of them receive the same input, which is 
therefore filtered simultaneously. In this case, with three 
stages, different processing arrays may work as in a Triple 
Modular Redundancy (TMR) mode. 

Finally, it is possible to configure all the arrays in 
Independent mode, to carry out the same or different 
processing tasks on the same or different input sources. This 
aims just at accelerating processing by means of several 
processing units in parallel, and therefore is not further 
analyzed in this work. 

B. Evolution Modes 

Evolution during system adaptation can be also carried out 
in different modes. The choice depends on the desired 
processing mode and the fault-tolerance strategy to be applied. 
Proposed evolution modes are referred as Independent, 
Parallel, Cascaded and Imitating. 

Independent evolution is the simplest strategy. In this case, 
each array is evolved with its own reference, which allows 
adjusting them to different processing tasks. Therefore, this 
strategy may be used to obtain filters to work in the 
Independent processing mode, the parallel redundant mode, the 
independent cascade or parallel modes during mission. All 
arrays need to be evolved in a sequential manner. This situation 
has been already evaluated in [4]. 



On the other hand, Parallel evolution, shown in Figure 5-b, 
is based on the distribution of the offspring generated during 
each generation of the evolution phase among the different 
processing arrays, in order to reduce the time required to obtain 
a suitable solution. In this case, the reference image is 
delivered to the three arrays simultaneously. Each one 
evaluates a single candidate solution, and therefore, several 
fitness values are computed in parallel. Thus, it can be used in 
the same cases the independent evolution is used, but achieving 
better evolution times. Timing results are offered in the 
experimental results section. 
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Fig. 5. Independent and Parallel Evolution Mode 

Beyond the acceleration obtained applying parallel 
evolution, cascaded-specific evolution modes are also 
implemented in the platform. 

Fig. 6. Cascaded Evolution Modes. In (a) cascaded evolution with separated 
fitness unit, and fb) cascaded evolution with a single fitness unit. 

In Cascaded evolution modes, each array in the sequence can 
be evolved considering the results of the rest of the arrays in 
the processing chain. More specifically, two cascaded modes 
have been envisaged, cascaded evolution with separate fitness 
computation, and cascaded evolution with merged fitness. In 
the case of evolution with separate fitness units, shown in 
Figure 6-a, each array is evolved considering its own fitness, 
but using the same reference image in all arrays. Furthermore, 
the output of the previous array is used as the input for the 
evolution of the subsequent array. On the other hand, evolution 

may be guided by a single fitness unit, shown in Figure 6-b, so 
all candidates are selected or rejected jointly. For each of these 
modes, two variants, simultaneous and sequential evolution, 
have been developed. In the case of sequential cascaded 
evolution, adaptation of array i+1 is carried out once array i is 
finished. Differently, simultaneous or interleaved cascaded 
evolution, is based on moving forward a single generation in 
each array sequentially, and therefore, the adaptation of all of 
them is carried out together. In both cases, a different 
chromosome is kept for each array. These cascaded evolution 
modes drive to the Collaborative Cascade operation mode. 

Another envisaged evolution mode is Evolution by 
Imitation, shown in Figure 7. This mode is one of the main 
proposals of this work, and it is based in the connection of a 
filter in bypass mode with respect to another, while the 
evolution of the bypassed filter is carried out evaluating the 
MAE between its output and output images of a neighboring 
filter. Ideally, this fitness metric should get close to zero, 
showing that one functionally equivalent filter was obtained 
from another working filter. Although this technique seems to 
be pointless, since just copying the genotype should produce 
the same result, it is a key technique to recover from a 
permanent fault, without using the reference image, which 
might have disappeared, damaged, or erased. So, a given filter 
can learn online from another one in the chain, just by imitating 
it. This is similar to the jiggling technique proposed in [13], but 
its application is not restricted to a TMR scheme for self-
recovery. 
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Fig. 7. Evolution by imitation Mode 

V. SELF-HEALING STRATEGIES 

Besides the autonomous capability of the embedded 
platform proposed in this work to adapt itself to different 
processing tasks, it offers an inherent tolerance against injected 
faults. In the case of a single array, this feature has been 
already shown in [4], where a systematic fault analysis was 
carried out, injecting faults in each position of a single 4 x 4 
processing array. Results showed that the system can self-
recover from permanent faults by launching an evolution stage 
whenever such a fault is detected. Therefore, the same 
mechanism used to adapt the platform allows its self-recovery 
from permanent and accumulated faults. The number of 
supported faults depends on the characteristics of the filtering 
problem. On the other hand, transient faults, like SEUs, do not 
need to launch another evolutionary run, since it can be done 
by means of scrubbing. So, the detection of a permanent fault 
is obtained after detecting that the fault cannot be removed by a 
previous scrubbing operation. 

In this work, since multiple evolvable arrays are able to 
work in different operation modes, more advanced self-healing 



strategies are proposed. Thus, techniques based on evolvable 
hardware are combined with other strategies, such as Triple 
Modular Redundancy. In the rest of the section, the proposed 
self-healing mechanisms are described both for cascaded and 
parallel operation modes. 

A. Self-Healing strategy combined with fault recovery based 
on evolution by Imitation 

Self-healing strategy corresponding to the cascaded 
operation modes is composed by the following steps: 

a) Run initial evolution (Using either single or parallel mode) and select 
a working circuit, for each array in the platform. 

b) Keep track of the individual fitness value of each array, by using a 
calibration image. 

c) Run normally until next calibration. 
d) Re-evaluate fitness. 
e) If fitness from b) and d) in every array are equal, no fault is detected. 

—>Go back to c). 
f) If not, rewrite last reconfiguration (Scrubbing) in the damaged array. 
g) Reevaluate fitness with pattern image. 
h) If fitness from g) and b) are equal, then fault was transient. —> Go back 

toe). 
i) If fitness in g) > fitness from b) —> Fault is permanent. Set faulty array 

in bypass mode, and either re-evolve with a reference image (if 
available), or launch an evolution by imitation process. 

Error detection is carried out by means of the periodic 
application of calibration images, which must provide a known 
fitness value, in case the array is not damaged. However, 
having multiple arrays allows recovering from a fault without 
having training images available in the system, once the initial 
evolution has finished. This situation may appear in case 
training images are removed from memory to save resources, 
or if a fault appears in the memories storing the images. 
Differently, the damaged array is able to deal with the 
permanent fault by learning from the closer neighboring array, 
in order to recover from the fault. In order to do that, the array 
is configured in Bypass mode, with respect to the array it is 
learning from. This situation is shown in Figure 8. 
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Fig. 8. The faulty array is configured in bypass mode to learn by imitation 

from a neighboring array, 

This approach allows system to be recovered online, 
without stopping the filtering stream. This way, criticality of 
each PE under faults is reduced, since data stream is never 
stopped. In order to recover properly, the fault free filter should 
be processing the images accordingly to what the apprentice is 
desired to imitate. 

B. Self-Healing based on TMR for Parallel Processing Mode 

In this case, platform robustness could be improved by 
means of the parallel operation mode, which would allow 
implementing a TMR strategy, including a pixel voting 
strategy, as well as a fault recovery mechanism. This situation 

is shown in Figure 9. To achieve this, two different voter 
modules are implemented, depending on fitness comparisons 
or by pixel by pixel comparisons of the processed image 
outputs. Both voters are implemented in hardware, so the 
comparison would be at run-time. Fitness voter is able to 
detect, after each image filtering, if a fault has occurred. On the 
other hand, the output pixel voter is able to keep the system 
working with no fault impact. In this mode, only three parallel 
arrays are considered. The overall mechanism is the following: 

a) Run initial evolution (Using either single or parallel mode) and select 
a working circuit. This circuit is configured in each one of the three 
arrays of the platform in parallel mode. 

b) Compare online the individual fitness of each array, using the fitness 
voter module. 

c) Run normally until a fitness divergence is found. If no fault is 
detected—>Go back to b). 

d) Rewrite last reconfiguration (Scrubbing) in the damaged array. 
e) Reevaluate fitness with pattern image. 
f) If fitness from d) and e) are equal, then fault was transient. —> Go back 

toe). 
g) If fitness in e) > fitness from d) —> Fault is permanent. Launch an 

evolution by imitation process. 
h) Ideally, if the imitating process reaches zero fitness value, the exactly 

same functionality is implemented in the faulty array. If not, the new 
configuration obtained can be pasted in every array to keep the 
validity of the TMR voter. 
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Fig. 9. Fault-tolerant Strategies in parallel processing mode are shown. 

The self-healing strategy proposed for the parallel 
processing mode also offers benefits compared against the 
self-healing mechanism available in the case of a single array. 
For instance, it is able to keep data processing throughput 
under the presence of a single fault. Furthermore, it is able to 
detect faults autonomously, without requiring the use of an 
image for calibration, with the corresponding savings in 
processing time. Moreover, faults are mitigated due to the 
existence of the TMR voter in the output of the filtering 
stream. Therefore, when a single filter is misbehaving, a valid 
output can still be provided. A particular situation appears 
after the recovery from a permanent fault. In this case, 
expected fitness from the damaged filter may be different to 
the undamaged counterparts. To cope with this situation, a 
similarity threshold can be defined in the voter. In this case, an 
error is detected in case fitness disparity is out of the 
threshold. Compared to traditional TMR approaches, this 
technique allows autonomous fault surveillance even under a 



considerable number of permanent faults, which is one of the 
main contributions of this work. Pixel-level and fitness level 
voters work separately, such that, if the application supports 
that a faulty image may be processed, the pixel voter may be 
removed, keeping fitness based diagnosis as a lightweight 
mechanism for fault detection. 

VI. EXPERIMENTAL RESULTS 

The validation of the proposed platform has been carried 
out considering both the adaptation capability of the evolvable 
arrays, as well as the fault-tolerance and self-healing features. 
Different operation modes and adaptation strategies are 
evaluated experimentally in this section. Also, a modified 
evolution strategy is proposed specifically for this multiple 
array system in order to improve evolution time taking into 
consideration the nature of the intrinsic evolution with native 
DPR. Experimental results provided in this work have been 
obtained with the system implemented in a medium size Xilinx 
Virtex-5LX-110TFPGA. 

A. Resource utilization 

A snapshot of the floorplanning of the system is shown in 
Figure 10. In this case, three stages have been implemented. In 
future work, this number will be dynamically changed. Each 
PE occupies two CLB columns wide by one quarter of a clock 
region height (5 CLBs), each array occupies eight CLB 
columns of a clock region, which means a total of 160 CLBs. 
Reconfiguration time obtained with the reconfiguration engine 
used in this work is 67.53(j,s per PE. This result is obtained 
with the ICAP working at nominal 100MHz. Since each PE 
uses less than a clock region, configuration data allocated in 
the position of the PE has to be read back before 
reconfiguration. This process is carried out automatically by 
the Reconfiguration Engine, using its readback / relocation / 
writeback feature. 

The control logic of the static part in charge of addressing 
and managing the ACB registers consumes 733 slices, 
requiring 1365 FFs and 1817 LUTs. Every ACB requires 754 
slices, with 1642 FFs and 1528 LUTs. 

Fig. 10. Layout of the processing platform with three processing arrays. 

B. Speed-up Experiments in Parallel Mode. New 
Evolutionary Algorithm 

In the first experimental setup, speed up of independent 
versus parallel arrays is analyzed. In order to achieve better 

performance in the evolution time, the chromosomes 
mutations are done in groups of three at the same time, 
configuring the three arrays, one with each chromosome, 
instead of the classical evolution method, testing the 
chromosomes one by one. Nine chromosomes are generated in 
every generation, so the working diagram with one array or 
with three arrays is as shown in Figure 11. As shown in this 
figure, the only process that can be parallelized is the 
evaluation of the solution circuits, due to the fact that there is 
just one reconfiguration engine in the system. Mutation of the 
chromosomes is done in software, simultaneously to the 
evaluation process of the previous candidate(s), to improve the 
performance of the system. 
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Fig. 11. Diagram of the process carried out in each generation with one array 
(upper) and with three arrays (lower).M stands for mutation, Rfor 

reconfiguration, and Ffor fitness evaluation 

Figure 12 shows average evolution time for 50 runs of 
100,000 generations each (these values will be kept constant 
throughout all experiments), using different mutation rates, for 
both single and parallel schemes. It can be observed that, the 
higher the mutation rate, the higher the reconfiguration time, 
and time differences are kept when increasing the mutation 
rate. So, a fixed time saving is achieved in the evolution 
process (around 50 seconds). 

k=3 
Mutation rate 

Fig. 12. Average evolution time of 50 runs of 100,000 generations each, with 
different mutation rates (128x128pixels). 

The speed up is limited since the reconfiguration time is 
higher than the evaluation time, and it consumes a high 
percentage of the time spent in every generation. However, if 
evaluation time was higher, which might happen, for instance, 
if images to be filtered are larger, benefits of Parallel evolution 
mode clearly increase. This case is shown in Figure 13, were 
the system has been modified in order to filter images of 



256x256 pixels, four times the original size. In this case, more 
acceleration is achieved, increasing the time differences 
between the single array version versus the three arrays one. 
Time savings are also constant (around 200 seconds in this 
case), and higher than in the previous case, showing that the 
impact of reconfiguration time versus evaluation time is 
important to determine the speed improvement. 
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Fig. 13. Average evolution timewith different mutation rates for 256x256 
pixels images (50 runs, 100,000 generations). 

However, looking at the two previous figures, evolution time 
always depends strongly on the mutation rate. In order to 
reduce this dependence, a new evolutionary strategy is 
originally proposed. It is as follows: the first parallel evaluation 
of every generation (in this case, the first three chromosomes) 
are created by mutating the selected chromosome from the 
previous generation with the usual mutation rate, but the other 
parallel evaluations of the same generation (six chromosomes) 
are created by mutating the chromosomes of the previously 
generated ones, but these mutations are always done with low 
mutation rate (k=l). Thus, every evaluated circuit is similar to 
the previous one, and so, fewer reconfigurations are carried out 
in every generation. Evolution time obtained with this new 
strategy, compared with the old one, is shown in Figure 14. 

Furthermore, results it terms of fitness obtained with this 
strategy are equal or even better than the previously obtained 
results, as it is shown in Figure 15. It has to be noticed that the 
lower the fitness value is, the better the solution. Therefore, 
the new strategy, which was mainly created to reduce 
evolution time, also provides better results in terms of fitness, 
and so, on filtering quality. 
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Fig. 15. Comparison oí average fitness results with different mutation rates 

C. Filtering quality experiments in Cascaded Mode 

In order to show the benefits of using a cascaded evolution 
mode prior to cascade operation mode, comparisons between 
the collaborative cascaded modes and an iterative approach 
(every array stage holds the same circuit, that is, same 
chromosome) are shown in Figures 16 and 17. They show 
average and best fitness results obtained for every stage of the 
cascade filter. 
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Fig. 16. Average results comparison for cascaded modes 
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Fig. 14. Comparison of average evolution time (50 runs, 100,000 generations) 
with different mutation rates using new and old EAs 

Fig. 17. Best results comparison for cascaded modes. 

As it can be seen, using the same configuration in all filters 
yields a results improvement from the first stage to the second, 
but it gets worse in the third stage of the filter. On the other 
side, adaptive filters obtained with cascaded evolution modes 
have much higher improvements in all stages, getting better 
global results. This is because every filter stage is noise level 
specific. Comparing the two cascaded evolution approaches, 
that is, sequential cascaded evolution and interleaved cascaded 



evolution, results show that there is very little fitness 
difference between both modes. 

An example of noisy input image and the result of a three 
stages adapted filter are shown in Figure 18. The input image 
has a salt & pepper noise with 40 % noise level, and the 
resulting image quality is very high, with a MAE fitness value 
of around 8000. It must be pointed out that the conventional 
reference filter for such type of noise is the median filter. It 
yields a MAE result which is far above this one, more than 
twice the value obtained for just one stage, and it is not 
cascadable. 

Fig. 18. Input and output images of a three stages adapted cascaded filter. 

To take the decision about which operation mode is suited 
to each situation, different system parameters have to be taken 
into account. Thus, the selection must be motivated by the 
primary system goal, which may be processing throughput, in 
the case of parallel operation, or adaptability to more complex 
tasks, in the case of cascaded modes. The selection between 
redundant and collaborative cascaded, as has been described 
in the experimental results, depends on the specific filtering 
problem features. On the other hand, if multiple different tasks 
have to be implemented, both independent mode and 
independent cascaded modes are to be selected. Regarding the 
bypass mode, its main purpose is to work within a Self-
healing strategy, for cascaded systems, as described next. The 
decision on the mode during evolution, has to be taken 
according to the selected operating mode. 

D. Fault Tolerance and Self-Healing Experiments 

Fault emulation is carried out using the same mechanism 
that is used during adaptation, that is, the DPR achieved by the 
reconfiguration engine. Thus, rather than simulating the fault, it 
is injected dynamically in the platform by means of the 
reconfiguration engine. Therefore, faults are generated 
reconfiguring dynamically the desired position of the array, 
with a modified bitstream corresponding to a dummy PE, 
which generates a random value in its output. This fault model 
will be referred as PE-level model, since a fault in any element 
inside a PE produces misbehavior in its output. Using a 
hardware based fault analysis, allows offering a systematic 
fault analysis, by injecting faults in every position in every 
array of the architecture. 
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Fig. 19. Results comparison between two different evolution strategies in the 
evolution by imitation. 

Using this fault injection mechanism, and recovering by 
imitation, we have observed that the imitation on faulty arrays 
performs better if the starting genotype from which evolution is 
started is the same as the non-faulty one, instead of a random 
generated one, as shows Figure 19. The fitness value in an 
imitation setup corresponds to the difference between the 
output image of the master and the output image of the faulty 
array. It should tend to zero (threshold is considered to be 
around 100 of MAE, while random values are about 3 orders of 
magnitude above this value), which is enough to say that both 
evolved systems are almost identical. With two permanent fault 
injections, or even more, a fitness reduction is still achieved, 
but the limitations imposed by the accumulated faults avoid the 
apprentice to work as well as the master. 

In case it is applied to the TMR parallel operating mode 
with a fault in one of the arrays, a complete functional recovery 
is achieved in the best cases. In Figure 20, the complete 
strategy is shown. 

The situation depicted in the figure corresponds to, first, 
three arrays working in parallel with the same results. Then a 
fault occurs in one array, which is detected by an increment in 
the fitness value. When that happens, an evolution by imitation 
process is launched, and after some generations, around 
40,000, the faulty array is completely recovered. The 
combination with the scrubbing process, to determine if the 
fault is transient, is not shown in the figure. 

TMR with imitation evolution 
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Fig. 20. TMR mode with the injection of a fault and the recovery of the system. 



VIL CONCLUSIONS AND FUTURE WORK 

The evolvable hardware architecture proposed in this work 
offers a wide range of possibilities that enhance performance in 
various cooperative formats, both in evolution and operation 
modes. In particular, it has been proved that evolution time 
may be reduced by applying parallel evolution modes, for 
which a new evolutionary algorithm modification, based on 
two-level mutation is proposed, saving extra time with even 
better functional results. Also, the cascaded modes offer 
unrivaled quality, which could be adjusted by selecting a 
variable number of stages. Finally, the evolution by imitation is 
proposed at array level which, seamlessly combined with other 
fault mitigation and recovery techniques such as scrubbing or 
TMR, offer additional protection mechanisms against transient 
and permanent faults. 

In future work, small additional modifications will make 
the arrays to be individually scalable. Also, after analyzing the 
criticality of all elements in the system, an overall fault 
resistance assessment, with realistic fault models, needs to be 
performed. 
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