
A Novel FPGA-based Evolvable Hardware System
based on Multiple Processing Arrays

Ángel Gallego, Javier Mora, Andrés Otero, Rubén Salvador, Eduardo de la Torre and Teresa Riesgo

Abstract— In this paper, an architecture based on a scalable
and flexible set of Evolvable Processing arrays is presented.
FPGA-native Dynamic Partial Reconfiguration (DPR) is used for
evolution, which is done intrinsically, letting the system to adapt
autonomously to variable run-time conditions, including the
presence of transient and permanent faults. The architecture
supports different modes of operation, namely: independent,
parallel, cascaded or bypass mode. These modes of operation can
be used during evolution time or during normal operation. The
evolvability of the architecture is combined with fault-tolerance
techniques, to enhance the platform with self-healing features,
making it suitable for applications which require both high
adaptability and reliability. Experimental results show that such
a system may benefit from accelerated evolution times, increased
performance and improved dependability, mainly by increasing
fault tolerance for transient and permanent faults, as well as
providing some fault identification possibilities. The evolvable
HW array shown is tailored for window-based image processing
applications.

Index Terms—Reconfigurability, adaptability; scalability;
evolvable systems, evolvable hardware, fault tolerance, self-
healing.

I. INTRODUCTION

SRAM-based FPGA's can be reconfigured as many times
as required, which is especially attractive if it is done
autonomously and at run-time. Indeed, enhancing a system
with Dynamic and Partial Reconfiguration (DPR) features may
be a complex task, but it gives unrivalled flexibility and
adaptability and, if used appropriately, it may contribute to
improve system fault tolerance. DPR is based on replacing a
portion of a working circuit by a different one, by writing a
partial bitstream (PBS) into the corresponding positions of the
device configuration memory. In the case of autonomous
systems, PBSs can be taken from a library of presynthesized
PBSs or generated in the device itself. However, autonomous
embedded bitstream generation is complex, and only some
basic transformations such as module reallocation or small
functional and parametric modifications are affordable at run­
time.

In this work, an evolvable HW (EHW) system is presented,
which uses DPR for evolution. It is based on designing or
transforming a circuit by using evolutionary techniques [1], i.e.
an evolvable algorithm (EA) controls the generation of new
circuits. The evolutionary loop is in charge of generating

candidate circuits, evaluating their quality (fitness evaluation)
and selecting the most appropriate candidate(s) as the parent(s)
for the next generation. This technique opens the possibility of
reaching solutions which cannot be conceived by conventional
model-based design methodologies. If native FPGA
reconfiguration is carried out at a fast enough rate, it can be
used as the method to evolve one circuit to another one. This
way, candidate's evaluation is performed on the programmable
device itself, so that this evolution is noted as intrinsic.
Intrinsic evolution has additional properties with respect to
extrinsic or offline evolution. These include higher evolution
speeds, but it should be mainly stressed the autonomy and self-
adaptation features offered by this technique.

Besides adapting the circuit functionality to deal with run­
time changing specifications, intrinsic evolution may be used
to circumvent and recover from faults appearing in the
reconfigurable fabric, due to aging or to high-energy particles
reaching the device [2]. This way, if a permanent fault is
produced, a new evolution process may generate candidates
that avoid using such a portion of the circuit, recovering its
functionality as much as possible. If this is done autonomously,
the system gets self-healing properties.

When building intrinsic EHW systems on dynamically
reconfigurable FPGAs, there exists different strategies, which
range from direct bitstream manipulation, considered
unfeasible due to the extremely large design space to explore,
to coarse grain approaches [3], where complete functional
blocks are reconfigured. As a trade off solution, authors
presented in [4] an architecture, which is a 2-D mesh-type
array of fine-grain Processing Elements (PEs), working in a
systolic way. Each PE has a specific connectivity and
functionality, and it can be selected from a library of
presynthesized PBs stored in an external memory. Evolution is
in charge of deciding which PE is reconfigured in each position
of the array, until obtaining the desired functionality. Basic
self-healing properties of this system were reported in [5].

In order to increase both the adaptability and the self-
healing features of the basic EHW system presented in [4],
authors propose in this work the replication of the evolvable
array, building an evolutionary structure with a variable
number of parallel processing structures arranged in a flexible
manner, which includes independent, cascaded, parallel and
bypass operation modes. In addition, novel evolutionary

strategies and self-healing mechanisms are provided in this
work, suited to the proposed architecture. Main benefits
derived from the use of a variable number of arrays, as it will
be reported throughout this paper, are:

- System evolution is accelerated due to the evaluation of
candidates in parallel. In addition, a novel evolution
strategy, called evolution by imitation, is proposed, that
permits to evolve with no reference data sets, reducing the
criticality of such component.

- Processing quality may be improved in several ways:
during cascaded operation, better fitness values may be
obtained by splitting up the task into several stages, with
circuits adapted to each one. Also, in parallel mode, higher
processing throughputs are achieved. Therefore, more
complex tasks can be addressed.

- New fault-tolerance and fault-recovery strategies based on
array processing redundancy are proposed. In particular,
new TMR schemes can be implemented, so that the fitness
function can be used as a fault diagnosis technique, useful
for surviving with accumulated permanent faults.

- Bypass mode allows keeping operation while a single array
is being re-evolved due to a new permanent fault.
A wide range of window-based digital image filters has

been used for demonstration of these proposals.
The paper is structured as follows. An analysis of the state

of the art is shown in section 2. The single array architecture
and the transformations to make it scalable are shown in
section 3. The modes of operation are presented in section 4,
while self-healing mechanisms are tackled in section 5. Results
on the benefits of their use and the impact on resource
utilization are shown in section 6. Conclusions are drawn in
section 7.

II. ANALYSIS OF THE STATE OF THE ART

SRAM-based FPGA's are prone to faults due to many
factors, especially those that work in space, where devices are
affected by aging and high-energy radiation. Both produce two
kinds of faults: transient faults or Single Event Upsets (SEU),
and permanent faults or Local Permanent Damage (LPD) [6].
SEUs occur more frequently than LPDs, but LPDs should not
be ignored, mainly in long-life missions, such as deep space
exploration. This paper shows techniques to deal with both of
them.

Self-healing is the capability of autonomous recovering
from a fault, or a series of faults, trying to minimize system
degradation effects. This property is one of the major processes
of an autonomic computing system [7] [8], and it has a vital
role to play in system's reliability. In order to achieve a self-
healing architecture, a fault recovery mechanism or a
combination of several elements must be implemented.

Fault recovery mechanisms in FPGAs can be classified in
offline and online methods [9]. The former imply stopping the
data processing while the healing process is active, while the
latter involve being able to keep processing data while the
system is faulty or being repaired, with the advantage of
keeping the system running and therefore increasing the
system's availability.

On the one hand, within the offline mechanisms, an
interesting approach is the use of the inherent self-healing
properties provided by the use of EAs. This has been analyzed
in [5], [10] and [11], in combination with EHW. Apart from
using the EA as a method for finding an optimized solution to
solve a problem, this technique works as a self-healing
technique because faulty designs are treated as sub-optimal
solutions in the evolution, and therefore they are discarded in
favor of a better solution, so the fault is avoided, or healed.
Some authors also explore the approach of evolving not only
the logic blocks, but also the routing blocks [12]. This may
benefit if the fault is placed in a routing element, but it is done
at a lower granularity level and a specific EA is needed in order
to achieve admissible results.

On the other hand, examples of online mechanisms are
redundant systems, such as triple module redundancy (TMR),
which is widely used and allows mitigating faults by
implementing the same logic three times and a voting system
that compares the results obtained. Different approaches of
TMR and variations are TMR/Simplex, TMR+Scrubbing, and
the TMR + Lazy Scrubbing + Jiggling architecture proposed
by Garvie et al. [13], which extend the avoidance of a fault
(provided by TMR), and the recovery of a transient fault (using
a scrubbing process, i.e. reading the configuration memory to
check for faults, and re-writing it in case that any fault is
found), allowing the system to be able to recover from an LPD
by imitation of the others behavior. This is achieved by using
an EA, which in this work is the same that is used to generate
an adapted filter. Thus, an online fault recovery is achieved,
because the system keeps running, but with an offline method,
since the faulty element stops its processing task.

III. ARCHITECTURE OF THE EVOLVABLE ARRAY

The single array evolvable system used as the starting point
for this work was presented by the authors in [4].The first part
of this section is therefore included to make this paper self-
contained. Transformations performed to make it scalable,
being capable to increase or decrease the number of arrays,are
shown later.

A. The Single-Array Evolvable HW System

Figure 1 shows the SoPC architecture of a single-array
evolvable system. Main elements are the reconfigurable circuit,
the evolutionary algorithm and the reconfiguration engine. The
array is the reconfigurable circuit, where the functionality of
each Processing Element (PE) can be changed by DPR, taking
the PBSs from an external DDR memory. Candidate circuits to
be configured in the array are generated in the EA that runs on
the embedded microprocessor (a MicroBlaze) where, after
selecting a candidate, either randomly for the first generation or
choosing the best candidate of the previous generation, makes a
mutation in the genotype (the set of coded values that defines
exactly one solution and allows to create the phenotype, i.e. the
implementation of the circuit described by the genotype), and
calls the reconfiguration engine to create a new circuit.
Afterwards, the array takes either a reference image during
evolution, or a real image taken, for instance, from a camera, in
normal operation. A fitness function, the so-called Mean

:z"s:

External DDR2
Memory

K 3E

F=L . Sgg

n-Mfldi
PLB BUS

3EI
3

C^S^H
KcconhqLration I

SoC
Fig. 1. Internal architecture of a single array evolvable hardware system

Absolute Error (MAE), compares the quality of the resulting
image with the expected result, and from here, a new candidate
is selected.

The input training image and the reference image are stored
in the flash memory, and they specify what filtering application
is required. For instance, if a noisy image is set as training
image, and the noise-free image is set as a reference, the EA
will generate a noise reduction circuit. However, if the training
image is the noise-free one, and the reference is set to the edge
detected image, the circuit will converge to an edge-detection
filter. This way, during system life-time new functionalities can
be obtained, only by providing the system with the
corresponding training and reference images.

Regarding the reconfigurable module, every PE within the
array matrix can perform one operation with one or two inputs.
Inputs are either the west (W) or the north (N) sides, or both,
and data is always propagated, after a register that allows
pipelined execution (improving speed), to both the south (S)
and east (E) outputs. By eliminating redundancies and
symmetries, the library of available PEs was reduced to 16
different elements, which allows the corresponding gene
coding in 4 bits. For a 4x4 array, there are eight inputs, four in
the north side and four in the west side. Every input has a 9-to-
1 mux, letting the EA to select one out of the nine pixels of a
sliding window which performs the computation of the central
pixel in the output. The output of the array is one of the four
outputs on the east side, and this selection is controlled also by
the EA, which selects with a mux one of them.

The reconfiguration engine used in this system was
presented by the authors in [14]. This module is capable of
reading PBSs from an external memory or from the
configuration memory itself, providing fast reconfiguration and
relocation capabilities. Therefore, it may be used to insert, copy
or move HW blocks within the reconfigurable fabric.

Regarding the evolutionary framework, getting inspiration
from Cartesian Genetic Programming (CGP), a simple (1+k)
Evolution Strategy with 1 parent and X offspring has been
implemented. More details can be found in [4].

B. Scalable Array Architecture Modifications

In order to make the system scalable, some modifications
are required, as shown in Figure 2, where the multiple array
architecture is presented. The modified architecture pretends to
be effective for having a variable number of arrays. Enhanced.

1 Reconfigurable
Core

L. i JSXil

1

l | Fitna»

i>
SoC

Fig. 2. Internal architecture of a 3-stage evolvable hardware system

system dependability and functional adaptability to a wider
number of applications, or with a better performance, are the
main motivations for this architecture.

When designing an architecture for scalability, there exist
different approaches. For instance, scalability can be static or
dynamic, depending on whether the number of arrays is
defined at design time or at run-time. In this work, scalability
for a variable number of arrays was implemented using the
same design principles as in [15], where generic dynamically
scalable processing cores are presented. Main proposal of this
work is that a change of dimensions of the architecture is
tackled with a proportional change of the footprint of the core,
leading to scalable footprints depending on performance or
functional requirements. Thus, in this case, the more
demanding are the system requirements in terms of self-
adaptation and self-healing, the larger is the area occupied by
the EHW system on the device. In addition, to reduce the cost
of changing the dimensions of the architecture, processing
cores are designed in a highly modular way, where each
possible size is obtained by combining a different number of
basic modules. In this case, each processing array with its
corresponding controller, the structures to compute and to deal
with the variable latency of the arrays, some FIFOs to align
data and the fitness unit are envisaged as a unique module, so
that the EHW architecture can grow by changing the number of
those modules instantiated in the design. This basic module is
referred as Array Control Block (ACB), and its internal
architecture is shown in Figure 3.

The first ACB is connected to the static part through a
vertical connector at the top, and it has a congruent connection
in the bottom side to stack vertically with the next ACB. The
connections between ACB and array are horizontal, so arrays
also stack vertically. A self-addressing scheme was designed so
that every control register in any ACB can be easily addressed
by the EA in the MicroBlaze. The control registers allow
different modes of operation of every individual array, as well
as reading fitness and latency values.

The ACB structure is such that any array may be fed with a
common input image, or an image coming from the previous
array. The fitness computation block may compute the pixel
aggregated MAE between the reference image and the output
image of the array, but it may also be set to calculate MAE
between the input and output images of the array, as well as
MAE between the output and another output from an adjacent

array. These settings enable different evolution modes, as it
will be described in the next section. According to the design
principles in [15], scalable arrays with multiple arrays can be
directly built up by assembling the required number of these
modules. In this version, the number of arrays is fixed during
system lifetime, but in the future a dynamically scalable
approach will be implemented.

Output Output

Fig. 3. Internal architecture of a single stage of the Evolvable Hardware
Platform

Compared with the single array system, more logic
resources are required, but in contrast, new operation modes
are allowed, which results in benefits in terms of enhanced
quality performance, platform adaptability and self-healing, as
described in the next sections.

IV. EHW SYSTEM OPERATION MODES

The strategy followed to enhance both the dependability
and adaptability of the proposed EHW system, is based on
providing its internal structure with such a flexibility that,
besides the reconfiguration of the PEs within each array, is also
possible to modify the connectivity between them, both during
adaptation and mission times. Thus, different operation modes
have been envisaged. Each mode offers different self-
adaptation and self-healing capabilities, and therefore, it is
tailored to deal with different processing requirements, as well
as to work under different hazard conditions.

In the rest of the section, processing and evolution category
modes are described, while drawbacks and benefits offered in
each case are discussed in the results section.

A. Processing Modes

At mission time, the set of arrays can be arranged in four
basic modes, which are a) Cascaded, b) Bypass, c) Parallel and
d) Independent, as shown in Figure 4.

In Cascaded mode, the output of an array is taken through a
3 image lines FIFO to rebuild the 3x3 window, and fed to the
next processing array. This scheme provides two types of
functionality, which will be referred as collaborative or
independent. They are shown below.

H f»
J K l

í J
(b)

m »

* • *

fci fcj-

jfj ¡fj-
(o) (d)

Fig. 4. Processing Modes of the architecture: (a) Cascaded, fb) Bypass and
(c) Parallel and (d) Independent

The Collaborative Cascaded mode is based on splitting up
the filtering task into subsequent stages, all of them trying to
achieve a common target (the reference, zero-noise image). In
this case, each filtering stage is different from the others, since
each one is specialized for processing the output of the
previous stage. Thus, the more stages in the chain, the more
processing elements working together to achieve the common
goal, and therefore, more complex tasks can be addressed.

Similarly, Independent Cascaded filters are also supported.
In this mode, different filters are also used in each stage, but in
this case, each one is in charge of a different task, such as noise
removal, followed by a smoothing filters, and then edge
detection. Therefore, instead of working together for the same
purpose, each stage is specialized in a different task, and it will
be obtained by evolving against different reference images.

On the other hand, Bypass mode, shown in Figure 4-b, is a
variant of the Cascade mode, but one or more stages are
disconnected and replaced by a bypass connection between its
input and output. Bypassed array still receives its input data
stream. This mode is the key of one of the self-healing
strategies subsequently proposed in this work.

Parallel mode is based on arranging the processing arrays
in such a way that all of them receive the same input, which is
therefore filtered simultaneously. In this case, with three
stages, different processing arrays may work as in a Triple
Modular Redundancy (TMR) mode.

Finally, it is possible to configure all the arrays in
Independent mode, to carry out the same or different
processing tasks on the same or different input sources. This
aims just at accelerating processing by means of several
processing units in parallel, and therefore is not further
analyzed in this work.

B. Evolution Modes

Evolution during system adaptation can be also carried out
in different modes. The choice depends on the desired
processing mode and the fault-tolerance strategy to be applied.
Proposed evolution modes are referred as Independent,
Parallel, Cascaded and Imitating.

Independent evolution is the simplest strategy. In this case,
each array is evolved with its own reference, which allows
adjusting them to different processing tasks. Therefore, this
strategy may be used to obtain filters to work in the
Independent processing mode, the parallel redundant mode, the
independent cascade or parallel modes during mission. All
arrays need to be evolved in a sequential manner. This situation
has been already evaluated in [4].

On the other hand, Parallel evolution, shown in Figure 5-b,
is based on the distribution of the offspring generated during
each generation of the evolution phase among the different
processing arrays, in order to reduce the time required to obtain
a suitable solution. In this case, the reference image is
delivered to the three arrays simultaneously. Each one
evaluates a single candidate solution, and therefore, several
fitness values are computed in parallel. Thus, it can be used in
the same cases the independent evolution is used, but achieving
better evolution times. Timing results are offered in the
experimental results section.

Hj^EKiii1

Fig. 5. Independent and Parallel Evolution Mode

Beyond the acceleration obtained applying parallel
evolution, cascaded-specific evolution modes are also
implemented in the platform.

Fig. 6. Cascaded Evolution Modes. In (a) cascaded evolution with separated
fitness unit, and fb) cascaded evolution with a single fitness unit.

In Cascaded evolution modes, each array in the sequence can
be evolved considering the results of the rest of the arrays in
the processing chain. More specifically, two cascaded modes
have been envisaged, cascaded evolution with separate fitness
computation, and cascaded evolution with merged fitness. In
the case of evolution with separate fitness units, shown in
Figure 6-a, each array is evolved considering its own fitness,
but using the same reference image in all arrays. Furthermore,
the output of the previous array is used as the input for the
evolution of the subsequent array. On the other hand, evolution

may be guided by a single fitness unit, shown in Figure 6-b, so
all candidates are selected or rejected jointly. For each of these
modes, two variants, simultaneous and sequential evolution,
have been developed. In the case of sequential cascaded
evolution, adaptation of array i+1 is carried out once array i is
finished. Differently, simultaneous or interleaved cascaded
evolution, is based on moving forward a single generation in
each array sequentially, and therefore, the adaptation of all of
them is carried out together. In both cases, a different
chromosome is kept for each array. These cascaded evolution
modes drive to the Collaborative Cascade operation mode.

Another envisaged evolution mode is Evolution by
Imitation, shown in Figure 7. This mode is one of the main
proposals of this work, and it is based in the connection of a
filter in bypass mode with respect to another, while the
evolution of the bypassed filter is carried out evaluating the
MAE between its output and output images of a neighboring
filter. Ideally, this fitness metric should get close to zero,
showing that one functionally equivalent filter was obtained
from another working filter. Although this technique seems to
be pointless, since just copying the genotype should produce
the same result, it is a key technique to recover from a
permanent fault, without using the reference image, which
might have disappeared, damaged, or erased. So, a given filter
can learn online from another one in the chain, just by imitating
it. This is similar to the jiggling technique proposed in [13], but
its application is not restricted to a TMR scheme for self-
recovery.

ti
0

CM.

Fig. 7. Evolution by imitation Mode

V. SELF-HEALING STRATEGIES

Besides the autonomous capability of the embedded
platform proposed in this work to adapt itself to different
processing tasks, it offers an inherent tolerance against injected
faults. In the case of a single array, this feature has been
already shown in [4], where a systematic fault analysis was
carried out, injecting faults in each position of a single 4 x 4
processing array. Results showed that the system can self-
recover from permanent faults by launching an evolution stage
whenever such a fault is detected. Therefore, the same
mechanism used to adapt the platform allows its self-recovery
from permanent and accumulated faults. The number of
supported faults depends on the characteristics of the filtering
problem. On the other hand, transient faults, like SEUs, do not
need to launch another evolutionary run, since it can be done
by means of scrubbing. So, the detection of a permanent fault
is obtained after detecting that the fault cannot be removed by a
previous scrubbing operation.

In this work, since multiple evolvable arrays are able to
work in different operation modes, more advanced self-healing

strategies are proposed. Thus, techniques based on evolvable
hardware are combined with other strategies, such as Triple
Modular Redundancy. In the rest of the section, the proposed
self-healing mechanisms are described both for cascaded and
parallel operation modes.

A. Self-Healing strategy combined with fault recovery based
on evolution by Imitation

Self-healing strategy corresponding to the cascaded
operation modes is composed by the following steps:

a) Run initial evolution (Using either single or parallel mode) and select
a working circuit, for each array in the platform.

b) Keep track of the individual fitness value of each array, by using a
calibration image.

c) Run normally until next calibration.
d) Re-evaluate fitness.
e) If fitness from b) and d) in every array are equal, no fault is detected.

—>Go back to c).
f) If not, rewrite last reconfiguration (Scrubbing) in the damaged array.
g) Reevaluate fitness with pattern image.
h) If fitness from g) and b) are equal, then fault was transient. —> Go back

toe).
i) If fitness in g) > fitness from b) —> Fault is permanent. Set faulty array

in bypass mode, and either re-evolve with a reference image (if
available), or launch an evolution by imitation process.

Error detection is carried out by means of the periodic
application of calibration images, which must provide a known
fitness value, in case the array is not damaged. However,
having multiple arrays allows recovering from a fault without
having training images available in the system, once the initial
evolution has finished. This situation may appear in case
training images are removed from memory to save resources,
or if a fault appears in the memories storing the images.
Differently, the damaged array is able to deal with the
permanent fault by learning from the closer neighboring array,
in order to recover from the fault. In order to do that, the array
is configured in Bypass mode, with respect to the array it is
learning from. This situation is shown in Figure 8.

dffffln -ki
Fig. 8. The faulty array is configured in bypass mode to learn by imitation

from a neighboring array,

This approach allows system to be recovered online,
without stopping the filtering stream. This way, criticality of
each PE under faults is reduced, since data stream is never
stopped. In order to recover properly, the fault free filter should
be processing the images accordingly to what the apprentice is
desired to imitate.

B. Self-Healing based on TMR for Parallel Processing Mode

In this case, platform robustness could be improved by
means of the parallel operation mode, which would allow
implementing a TMR strategy, including a pixel voting
strategy, as well as a fault recovery mechanism. This situation

is shown in Figure 9. To achieve this, two different voter
modules are implemented, depending on fitness comparisons
or by pixel by pixel comparisons of the processed image
outputs. Both voters are implemented in hardware, so the
comparison would be at run-time. Fitness voter is able to
detect, after each image filtering, if a fault has occurred. On the
other hand, the output pixel voter is able to keep the system
working with no fault impact. In this mode, only three parallel
arrays are considered. The overall mechanism is the following:

a) Run initial evolution (Using either single or parallel mode) and select
a working circuit. This circuit is configured in each one of the three
arrays of the platform in parallel mode.

b) Compare online the individual fitness of each array, using the fitness
voter module.

c) Run normally until a fitness divergence is found. If no fault is
detected—>Go back to b).

d) Rewrite last reconfiguration (Scrubbing) in the damaged array.
e) Reevaluate fitness with pattern image.
f) If fitness from d) and e) are equal, then fault was transient. —> Go back

toe).
g) If fitness in e) > fitness from d) —> Fault is permanent. Launch an

evolution by imitation process.
h) Ideally, if the imitating process reaches zero fitness value, the exactly

same functionality is implemented in the faulty array. If not, the new
configuration obtained can be pasted in every array to keep the
validity of the TMR voter.

*

*

»

Fig. 9. Fault-tolerant Strategies in parallel processing mode are shown.

The self-healing strategy proposed for the parallel
processing mode also offers benefits compared against the
self-healing mechanism available in the case of a single array.
For instance, it is able to keep data processing throughput
under the presence of a single fault. Furthermore, it is able to
detect faults autonomously, without requiring the use of an
image for calibration, with the corresponding savings in
processing time. Moreover, faults are mitigated due to the
existence of the TMR voter in the output of the filtering
stream. Therefore, when a single filter is misbehaving, a valid
output can still be provided. A particular situation appears
after the recovery from a permanent fault. In this case,
expected fitness from the damaged filter may be different to
the undamaged counterparts. To cope with this situation, a
similarity threshold can be defined in the voter. In this case, an
error is detected in case fitness disparity is out of the
threshold. Compared to traditional TMR approaches, this
technique allows autonomous fault surveillance even under a

considerable number of permanent faults, which is one of the
main contributions of this work. Pixel-level and fitness level
voters work separately, such that, if the application supports
that a faulty image may be processed, the pixel voter may be
removed, keeping fitness based diagnosis as a lightweight
mechanism for fault detection.

VI. EXPERIMENTAL RESULTS

The validation of the proposed platform has been carried
out considering both the adaptation capability of the evolvable
arrays, as well as the fault-tolerance and self-healing features.
Different operation modes and adaptation strategies are
evaluated experimentally in this section. Also, a modified
evolution strategy is proposed specifically for this multiple
array system in order to improve evolution time taking into
consideration the nature of the intrinsic evolution with native
DPR. Experimental results provided in this work have been
obtained with the system implemented in a medium size Xilinx
Virtex-5LX-110TFPGA.

A. Resource utilization

A snapshot of the floorplanning of the system is shown in
Figure 10. In this case, three stages have been implemented. In
future work, this number will be dynamically changed. Each
PE occupies two CLB columns wide by one quarter of a clock
region height (5 CLBs), each array occupies eight CLB
columns of a clock region, which means a total of 160 CLBs.
Reconfiguration time obtained with the reconfiguration engine
used in this work is 67.53(j,s per PE. This result is obtained
with the ICAP working at nominal 100MHz. Since each PE
uses less than a clock region, configuration data allocated in
the position of the PE has to be read back before
reconfiguration. This process is carried out automatically by
the Reconfiguration Engine, using its readback / relocation /
writeback feature.

The control logic of the static part in charge of addressing
and managing the ACB registers consumes 733 slices,
requiring 1365 FFs and 1817 LUTs. Every ACB requires 754
slices, with 1642 FFs and 1528 LUTs.

Fig. 10. Layout of the processing platform with three processing arrays.

B. Speed-up Experiments in Parallel Mode. New
Evolutionary Algorithm

In the first experimental setup, speed up of independent
versus parallel arrays is analyzed. In order to achieve better

performance in the evolution time, the chromosomes
mutations are done in groups of three at the same time,
configuring the three arrays, one with each chromosome,
instead of the classical evolution method, testing the
chromosomes one by one. Nine chromosomes are generated in
every generation, so the working diagram with one array or
with three arrays is as shown in Figure 11. As shown in this
figure, the only process that can be parallelized is the
evaluation of the solution circuits, due to the fact that there is
just one reconfiguration engine in the system. Mutation of the
chromosomes is done in software, simultaneously to the
evaluation process of the previous candidate(s), to improve the
performance of the system.

HGDrQrl
t M F2 LI

\ " I f S W MS U n w
[^7] { ^ { ^ { ^^7] { ^J^] { ^7] { ^7] - - {TrU^O-H

H
H
H

'h
•h
,LJ

Fig. 11. Diagram of the process carried out in each generation with one array
(upper) and with three arrays (lower).M stands for mutation, Rfor

reconfiguration, and Ffor fitness evaluation

Figure 12 shows average evolution time for 50 runs of
100,000 generations each (these values will be kept constant
throughout all experiments), using different mutation rates, for
both single and parallel schemes. It can be observed that, the
higher the mutation rate, the higher the reconfiguration time,
and time differences are kept when increasing the mutation
rate. So, a fixed time saving is achieved in the evolution
process (around 50 seconds).

k=3
Mutation rate

Fig. 12. Average evolution time of 50 runs of 100,000 generations each, with
different mutation rates (128x128pixels).

The speed up is limited since the reconfiguration time is
higher than the evaluation time, and it consumes a high
percentage of the time spent in every generation. However, if
evaluation time was higher, which might happen, for instance,
if images to be filtered are larger, benefits of Parallel evolution
mode clearly increase. This case is shown in Figure 13, were
the system has been modified in order to filter images of

256x256 pixels, four times the original size. In this case, more
acceleration is achieved, increasing the time differences
between the single array version versus the three arrays one.
Time savings are also constant (around 200 seconds in this
case), and higher than in the previous case, showing that the
impact of reconfiguration time versus evaluation time is
important to determine the speed improvement.

500-

Í 0 0 -

S

| 300-

200-

100

^ ^ ^

^ ^ ~

^ ^
•

• Usmg 3 arrays

k= 1 fc-3 k-5

Mutation rate

Fig. 13. Average evolution timewith different mutation rates for 256x256
pixels images (50 runs, 100,000 generations).

However, looking at the two previous figures, evolution time
always depends strongly on the mutation rate. In order to
reduce this dependence, a new evolutionary strategy is
originally proposed. It is as follows: the first parallel evaluation
of every generation (in this case, the first three chromosomes)
are created by mutating the selected chromosome from the
previous generation with the usual mutation rate, but the other
parallel evaluations of the same generation (six chromosomes)
are created by mutating the chromosomes of the previously
generated ones, but these mutations are always done with low
mutation rate (k=l). Thus, every evaluated circuit is similar to
the previous one, and so, fewer reconfigurations are carried out
in every generation. Evolution time obtained with this new
strategy, compared with the old one, is shown in Figure 14.

Furthermore, results it terms of fitness obtained with this
strategy are equal or even better than the previously obtained
results, as it is shown in Figure 15. It has to be noticed that the
lower the fitness value is, the better the solution. Therefore,
the new strategy, which was mainly created to reduce
evolution time, also provides better results in terms of fitness,
and so, on filtering quality.

Us'rng normal EA
Usilg new EA

k-3

Mutation rate

k-3

Mutation rate

Fig. 15. Comparison oí average fitness results with different mutation rates

C. Filtering quality experiments in Cascaded Mode

In order to show the benefits of using a cascaded evolution
mode prior to cascade operation mode, comparisons between
the collaborative cascaded modes and an iterative approach
(every array stage holds the same circuit, that is, same
chromosome) are shown in Figures 16 and 17. They show
average and best fitness results obtained for every stage of the
cascade filter.

Average

Fig. 16. Average results comparison for cascaded modes

F
itn

es
s

o
i

i
i

i
i

i
i Best

— i —
- Saine fitter

Adapted filters (randrjm)
- Adapted filters (interleaved)

*=^==^_

1 2

Stage
3

Fig. 14. Comparison of average evolution time (50 runs, 100,000 generations)
with different mutation rates using new and old EAs

Fig. 17. Best results comparison for cascaded modes.

As it can be seen, using the same configuration in all filters
yields a results improvement from the first stage to the second,
but it gets worse in the third stage of the filter. On the other
side, adaptive filters obtained with cascaded evolution modes
have much higher improvements in all stages, getting better
global results. This is because every filter stage is noise level
specific. Comparing the two cascaded evolution approaches,
that is, sequential cascaded evolution and interleaved cascaded

evolution, results show that there is very little fitness
difference between both modes.

An example of noisy input image and the result of a three
stages adapted filter are shown in Figure 18. The input image
has a salt & pepper noise with 40 % noise level, and the
resulting image quality is very high, with a MAE fitness value
of around 8000. It must be pointed out that the conventional
reference filter for such type of noise is the median filter. It
yields a MAE result which is far above this one, more than
twice the value obtained for just one stage, and it is not
cascadable.

Fig. 18. Input and output images of a three stages adapted cascaded filter.

To take the decision about which operation mode is suited
to each situation, different system parameters have to be taken
into account. Thus, the selection must be motivated by the
primary system goal, which may be processing throughput, in
the case of parallel operation, or adaptability to more complex
tasks, in the case of cascaded modes. The selection between
redundant and collaborative cascaded, as has been described
in the experimental results, depends on the specific filtering
problem features. On the other hand, if multiple different tasks
have to be implemented, both independent mode and
independent cascaded modes are to be selected. Regarding the
bypass mode, its main purpose is to work within a Self-
healing strategy, for cascaded systems, as described next. The
decision on the mode during evolution, has to be taken
according to the selected operating mode.

D. Fault Tolerance and Self-Healing Experiments

Fault emulation is carried out using the same mechanism
that is used during adaptation, that is, the DPR achieved by the
reconfiguration engine. Thus, rather than simulating the fault, it
is injected dynamically in the platform by means of the
reconfiguration engine. Therefore, faults are generated
reconfiguring dynamically the desired position of the array,
with a modified bitstream corresponding to a dummy PE,
which generates a random value in its output. This fault model
will be referred as PE-level model, since a fault in any element
inside a PE produces misbehavior in its output. Using a
hardware based fault analysis, allows offering a systematic
fault analysis, by injecting faults in every position in every
array of the architecture.

50000

40DOO

£ 30DDO
IT

1Ü000

c

ih
imientec Randam

Evolut ion strategy

Fig. 19. Results comparison between two different evolution strategies in the
evolution by imitation.

Using this fault injection mechanism, and recovering by
imitation, we have observed that the imitation on faulty arrays
performs better if the starting genotype from which evolution is
started is the same as the non-faulty one, instead of a random
generated one, as shows Figure 19. The fitness value in an
imitation setup corresponds to the difference between the
output image of the master and the output image of the faulty
array. It should tend to zero (threshold is considered to be
around 100 of MAE, while random values are about 3 orders of
magnitude above this value), which is enough to say that both
evolved systems are almost identical. With two permanent fault
injections, or even more, a fitness reduction is still achieved,
but the limitations imposed by the accumulated faults avoid the
apprentice to work as well as the master.

In case it is applied to the TMR parallel operating mode
with a fault in one of the arrays, a complete functional recovery
is achieved in the best cases. In Figure 20, the complete
strategy is shown.

The situation depicted in the figure corresponds to, first,
three arrays working in parallel with the same results. Then a
fault occurs in one array, which is detected by an increment in
the fitness value. When that happens, an evolution by imitation
process is launched, and after some generations, around
40,000, the faulty array is completely recovered. The
combination with the scrubbing process, to determine if the
fault is transient, is not shown in the figure.

TMR with imitation evolution

h—
-\

H
5*01) tOtflu 15Í00 50XC 2*úu 5O500 3KÜ0 « T O 45BM KM» SOW 61M0 66300 713» » « i fllKO 8MCÜ 91700 «800

Generations

Fig. 20. TMR mode with the injection of a fault and the recovery of the system.

VIL CONCLUSIONS AND FUTURE WORK

The evolvable hardware architecture proposed in this work
offers a wide range of possibilities that enhance performance in
various cooperative formats, both in evolution and operation
modes. In particular, it has been proved that evolution time
may be reduced by applying parallel evolution modes, for
which a new evolutionary algorithm modification, based on
two-level mutation is proposed, saving extra time with even
better functional results. Also, the cascaded modes offer
unrivaled quality, which could be adjusted by selecting a
variable number of stages. Finally, the evolution by imitation is
proposed at array level which, seamlessly combined with other
fault mitigation and recovery techniques such as scrubbing or
TMR, offer additional protection mechanisms against transient
and permanent faults.

In future work, small additional modifications will make
the arrays to be individually scalable. Also, after analyzing the
criticality of all elements in the system, an overall fault
resistance assessment, with realistic fault models, needs to be
performed.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of
Economy and Competitiveness under the project DREAMS
(Dynamically Reconfigurable Embedded Platforms for
Networked Context-Aware Multimedia Systems) with number
TEC2011-28666-C04-02.

REFERENCES

[1] Sakanashi, H.; Iwata, M.; Keymulen, D.; Murakawa, M.;
Kajitani, I.; Tanaka, M.; Higuchi, T.; , " IEEE International
Conference on Evolvable hardware chips and their
applications,", 1999, vol.5, no., pp.559-564

[2] A.M. Tyrrell, G. Hollingworth, S.L. Smith, "Evolutionary
strategies and intrinsic fault tolerance" Proc. 3rd
NASA/DoD Workshop on Evolvable Hardware. EH-2001,
IEEE Comput. Soc, pp. 98-106.

[3] Torresen, J.; Senland, G.A.; Glette, K., "Partial
Reconfiguration Applied in an On-line Evolvable Pattern
Recognition System," NORCHIP, 2008. , vol., no., pp.61-
64, 16-17 Nov. 2008

[4] Otero, A.; Salvador, R.; Mora, J.; de la Torre, E.; Riesgo, T.;
Sekanina, L.; "A fast Reconfigurable 2D HW core
architecture on FPGAs for evolvable Self-Adaptive
Systems," 2011 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS).

[5] Salvador, R.; Otero, A.; Mora, J.; de la Torre, E.; Sekanina,
L.; Riesgo, T.; "Fault Tolerance Analysis and Self-Healing
Strategy of Autonomous, Evolvable Hardware Systems,"
International Conference on Reconfigurable Computing and
FPGAs (ReConFig), 2011

[6] Fuller, E.;Caffrey, M.; Salazar, A.; Carmichael, C.;Fabula,
J.;"Radiation characterization,and SEU mitigation, of the
Virtex FPGA for space-based reconfigurable computing,"
Xilinx Application Note, 2000.

[7] Gericota, M.G.; Lemos, L.F.; Alves, G.R.; Ferreira, J.M.; "A
Framework for Self-Healing Radiation-Tolerant
Implementations on Reconfigurable FPGAs,"IEEEDesign
and Diagnostics of Electronic Circuits and Systems, 2007.
DDECS '07., vol., no., pp.1-6, 11-13 April 2007

[8] Al-Zawi, M.M.; Al-Jumeily, D.; Hussain, A.; Taleb-
Bendiab, A.; "Autonomic Computing: Applications of Self-
Healing Systems,"Developments in E-systems Engineering
(DeSE), 2011

[9] Parris, M.G.; Sharma, C.A.; DeMara, R.F.; "Progress in
Autonomous Fault Recovery of Field Programmable Gate
Arrays," ACM Computing Surveys, 2010.

[10] Oreifej, R.; Sharma, C; DeMara, R.F.; "Expediting GA-
Based Evolution Using Group Testing Techniques for
Reconfigurable Hardware," Int. Conf. on Reconfigurable
Computing and FPGAs (ReConFig 2006), IEEE, 2006, pp.
1-8.

[11] A. Thompson, "Evolving fault tolerant systems" 1st
International Conf. on Genetic Algorithms in Engineering
Systems: Innovations and Applications (GALESIA), IEE,
1995, pp. 524-529.

[12] J. Lohn, G. Larchev, and R.F. DeMara, "Evolutionary Fault
Recovery in a Virtex FPGA Using a Representation That
Incorporates Routing" Proc. 17th International Parallel and
Distributed Processing Symposium (IPDPS), 2003, p. 172.

[13] Garvie, M.; Thompson, A.; "Scrubbing away transient and
Jiggling around the permanent: Long survival of FPGA
systems through evolutionary self-repair,"On-Line Testing
Symposium, 2004. IOLTS 2004. Proceedings. 10th IEEE
International, pp. 155-160,2004.

[14] Otero, A.; Morales-Cas, A.; Portilla, J.; de la Torre, E.;
Riesgo, T.; "A Modular Peripheral to Support Self-
Reconfiguration in SoCs," 13th Euromicro Conference on
Digital System Design: Architectures, Methods and Tools
(DSD), 2010

[15] Otero, A.; de la Torre, E.; Riesgo, T.; Krasteva, Y.E.; "Run­
Time Scalable Systolic Coprocessors for Flexible
Multimedia SoPCs," 2010 International Conference on Field
Programmable Logic and Applications (FPL)

