
HAL Id: hal-00823664
https://inria.hal.science/hal-00823664

Submitted on 17 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Adaptive Cost-Efficient Consistency Management in
the Cloud

Houssem-Eddine Chihoub

To cite this version:
Houssem-Eddine Chihoub. Self-Adaptive Cost-Efficient Consistency Management in the Cloud. 27th
IEEE International Parallel & Distributed Processing Symposium IPDPS 2013 PhD Forum, May 2013,
Boston, United States. �hal-00823664�

https://inria.hal.science/hal-00823664
https://hal.archives-ouvertes.fr

Self-Adaptive Cost-Efficient Consistency Management in the Cloud

Houssem-Eddine Chihoub∗

INRIA Rennes - Bretagne Atlantique
Rennes, France

houssem-eddine.chihoub@inria.fr

Abstract—Many data-intensive applications and services in
the cloud are geo-distributed and rely on geo-replication.Tradi-
tional synchronous replication that ensures strong consistency
exposes these systems to the bottleneck of wide areas network
latencies that affect their performance, availability and the
monetary cost of running in the cloud. In this context, several
weaker consistency models were introduced to hide such effects.
However, these solutions may tolerate far too much stale data
to be read. In this PhD research, we focus on the investigation
of better and efficient ways to manage consistency. We propose
self-adaptive methods that tune consistency levels at runtime in
order to achieve better performance, availability and reduce the
monetary cost without violating the consistency requirements
of the application. Furthermore, we introduce a behavior
modeling method that automatically analyzes the application
and learns its consistency requirements. The set of experimental
evaluations on Grid’5000 and Amazon EC2 cloud platforms
show the effectiveness of the proposed approaches.

I. I NTRODUCTION

Cloud computing evolution over the years made services
deployment in the cloud very easy. Moreover, clients deploy-
ments can be at very large scales with no need for physical
infrastructure management and maintenance. Such paradigm
has attracted a variety of service providers and IT managers.
Henceforth, they migrate their systems to the cloud to
benefit from multiple features such as on demand scalability,
geographical availability, and economical deployments.

Many of the applications that run in the cloud are data-
intensive. These applications may be geo-distributed in order
to provide geographically available services around the
globe. In this context, cloud storage systems rely on geo-
replication. Geo-replication allows storage systems designers
to provide lower latency (fast access) through reading from
replicas located in a close geographical area, geo-availability
by replicating data in different geographical distant zones,
fault-tolerance and disaster recovery from catastrophes that
may hit one or more areas. However, geo-replication intro-
duces the data consistency issue. Traditional strong consis-
tency by the mean of synchronous replication may present a
real bottleneck for system availability and performance due
to the network latencies between wide areas. For instance,
the cost of a single hour of downtime for a system doing

∗ Advisers: Gabriel Antoniu, INRIA, Rennes, France,
gabriel.antoniu@inria.fr; Marı́a S. Pérez, Universidadpolitécnica de
Madrid, Madrid, Spain, mperez@fi.upm.es

credit card sales authorizations has been estimated to be
between2.2M−3.1M [1]. As to overcome such limitations,
many service providers rely on eventually consistent storage
systems. Eventual consistency [2] may tolerate stale data
to be read at some points in time, but ensures that all
data willeventuallybecome consistent. Eventually consistent
systems such as Amazon Dynamo [3], and Cassandra [4],
provide a massively scalable storage support while main-
taining performance with very high availability for services
like Amazon.com platform and Facebook social network.
By avoiding synchronous replication, these systems tend
to consume less resources in the cloud. Subsequently, they
reduce the service monetary cost. However, this efficiency
does come at the price of exposing stale data to the storage
system users. In [5], it has been shown that under heavy
data access, 66% of the read data may be stale. Many
administrators as well as users would consider this rate as
an unacceptable rate even if it provides better performance
and costs less money.

In this PhD research, we focus on data consistency
management in the cloud to provide systems that are:

• Self-adaptive: automatically manage consistency at run-
time in order to provide better performance and avail-
ability without violating application requirements.

• Cost-efficient: Since cloud computing is an economy-
driven model, the monetary cost should be considered
when selecting the consistency level at runtime.

• Application-specific: Applications are different, thus
mechanisms that apprehend their requirements are im-
portant to reach efficient consistency management.

II. RELATED WORK

Consistency management and its impact on different stor-
age system features, such as performance and availability,
was widely studied. One particular solution that gained ma-
jor popularity in the context of cloud computing is Eventual
Consistency [2]. Systems such as Amazon Dynamo [3] and
Cassandra [4] are respectively, the key for Amazon.com
and Facebook large scale services’ availability and fast
accesses. A fair number of studies investigated the provided
consistency in the cloud.Wada et al.[5] measure the actual
consistency provided to consumers in cloud platforms. They
investigate the consistency and performance properties as
well as the monetary cost offered by various cloud providers.

In [6], the authors propose an offline consistency verifi-
cation algorithm. Their algorithm checks three consistency
semantics properties (safety, regularity, and atomicity)of
data accesses in the key-value store.

Since static predefined approaches deal poorly with cloud
workloads dynamicity, dynamic adaptive consistency poli-
cies were introduced.Kraska et al.[7] propose a flexible
consistency management that adaptively alternates between
strong and weak consistency. In their model, inconsisten-
cies are the results of update conflicts. Accordingly, they
compute the probability of an update conflict. Based on this
probability, and according to a threshold, they select either
serializability as strong consistency or session consistency,
which is a weaker consistency. However, their approach does
not consider the staleness in the eventual consistency model.
The staleness is due to the update propagation latency, while
in their model, the inconsistency is due to the conflict of
two or more updates on different replicas. Additionally, their
threshold computation relies on the financial cost of pending
update queues and not related to the cost of the storage back-
end itself nor the application explicit requirements.Wang et
al. [8] propose an application-based adaptive mechanism of
replicas consistency. Their approach was designed for their
specific replication architecture. The architecture consists of
multiple primary replicas and read-only secondary replicas.
The proposed mechanism selects either strong or eventual
consistency based on the comparison of the read rate and
the write rate to a threshold. The main limitation of this
work is the arbitrary choice of a static threshold. Moreover,
the adaptive approach is restricted to their replication ar-
chitecture, which is not commonly used. In contrast to the
aforementioned work, our proposed approaches rely on the
application consistency requirements and the storage system
state in order to provide gradually stronger consistency when
it is needed. Moreover, the monetary cost of the residing
storage system in the cloud itself is considered in order to
provide a cost-efficient model.

III. EFFICIENT CONSISTENCY MANAGEMENT

The core work of this PhD research consists of three main
contributions.

A. Automated Self-Adaptive Consistency for cloud storage

We propose a novel approach [9], namedHarmony, that
automatically tunes the consistency level at runtime accord-
ing to the application requirements. Harmony monitors the
storage system and data accesses in order to estimate the
stale reads rate in the system. Accordingly, it scales up/down
the consistency level to preserve a stale rate tolerated by
the application. Meanwhile, performance and availability
are favored as long as the application requirements are not
violated.

On a higher level, Harmony relies on a simple algorithm
that compares the estimated stale reads rate in the system

T Tp

Xr

Xw

Xw : Date of write

Xr : Possible date of read
T : Time to write the first replica
Tp : Total propagation time

Time

Figure 1. Situation that leads to a stale read:The read may be stale if its
starting time Xr is in the time interval between the startingtime of the last
write Xw and the end of data propagation time to the other replicas Tp.

to the application tolerated stale reads rate. Accordingly, it
chooses whether to select the basic consistency level ONE
(involving only one replica) or else, computes the number of
involved replicas necessary to maintain an acceptable stale
reads rate while allowing better performance.

In order to estimate the stale reads rate in the system,
Harmony embraces an estimation model based on proba-
bilistic computations. The situation that leads to a stale read
is defined as shown in Figure 1. A read may be stale if
its starting time occurs when data is being propagated to
one or more replicas. Based on this situation, we compute
the probability of a stale read considering key information
such as read and write mean arrivals rates and average data
propagation time.

Harmony can be applied to different cloud storage sys-
tems that are featured with flexible consistency rules. In
our current implementation Harmony operates on top of
Apache Cassandra storage and consists of two modules.
The monitoring module collects relevant metrics about data
access in the storage system : read rates and write rates, as
well as network latencies. These data are further fed to the
adaptive consistency module. This module is the heart of
the Harmony implementation where the estimation and the
resulting consistency level computations are performed.

B. Cost-Efficient Consistency

While most optimization efforts focus on consistency -
performance and/or availability tradeoffs, a little work in-
vestigated the impact of consistency on monetary cost in the
economy-driven paradigm of cloud computing. In this work
[10], we first investigate the bill details of running storage
service in the cloud considering various consistency levels.
We provide an in-depth understanding of the monetary cost
of cloud services with respect to their adopted consistency
models. We discuss the different resources contributed to
the service and the cost of these resources. Therefore, we
introduce an accurate decomposition of the total bill of the
services into three parts for these resources: VM instances
cost, storage cost and network cost.

In order to have a better understanding of the tight relation
between monetary cost and consistency, we introduce a new
metric, consistency-cost efficiency, to evaluate consistency
in the cloud from an economical point of view. Based on
our metric, we introduce a simple yet efficient approach

namedBismar, which adaptively tunes the consistency level
at run-time to reduce the monetary cost while simultaneously
maintaining a low fraction of stale reads.Bismarrelies on a
relative computation of the expected cost and probabilistic
estimation of consistency in the cloud. At runtime, the
consistency level with the highest consistency-cost efficiency
value is always chosen.

C. Customized Consistency by means of Application Behav-
ior Modeling

Applications consistency requirements are different. A
webshop application for instance requires a stronger consis-
tency as reading stale data could, in many cases, lead to se-
rious consequences and a probable loss of client trust and/or
money. A social network application on the other hand,
requires a less strict consistency as reading stale data hasless
disastrous consequences. Understanding such requirements
only at the level of the storage system is not possible. In
this work, and in contrast to related work, we focus on the
application level. We argue that in order to fully understand
the application and its consistency requirements, such a
step is necessary. Therefore, we introduce an approach to
provide a customized consistency specific to the application.
In order to build a customized consistency, we introduce a
modeling process for application data access behavior. This
is an offline process that consists of several steps. First,
several predefined metrics are collected based on application
data access past traces. These metrics are collected per
time period in order to build the applicationtimeline. This
timeline is further processed by machine learning tech-
niques in order to identify the different states and states
evolvements of the application during its lifetime. Each
state is then automatically associated with a consistency
policy (policies include geographical policies, Harmony,and
static eventual and strong policies) based on a set of both
generic predefined rules and customized rules (integrated by
application’ administrator) specific for the application.At
runtime, the application state is identified by the application
classifier and accordingly, it chooses the consistency policy
associated with that state. The experimental evaluations of
this approach are part of future plans.

IV. RESULTS

In order to validate our approaches, we conducted a set
of experimental evaluations on two main platforms: Amazon
Elastic Cloud Compute (EC2) [11], and the french cloud
and grid testbed Grid’5000 [12] that consists of 10 sites in
France and Luxembourg. For all experiments we ran Apache
Cassandra as an underlying storage system, and used the
Yahoo Cloud Serving Benchmark! (YCSB) [13].

A. Performance/Staleness evaluation in Harmony

We deployed Cassandra on 20 VMs on Amazon EC2,
and 84 nodes on two different clusters in Grid’5000. The

goal of these experiments is to evaluate system performance
and measure staleness rate. We used a heavy read-update
workload from YCSB! with two data sets of size 23.85
GB for EC2, and 14.3 GB for Grid’5000. The workload
consisted of 5 million operations for Amazon EC2 and 3
million operations for Grid’5000. We compare Harmony
with two different tolerable stale read rates (20% and 40%
for Grid’5000, and 40% and 60% for EC2) with static
strong and eventual consistency approaches on our both
platforms (Grid5000 and Amazon EC2). Results show that
Harmony reduces the read stale data when compared to
weak consistency by almost 80% while adding minimal
latency. Meanwhile, it improves the throughput of the system
by up to 45% while maintaining the desired consistency
requirements of the applications when compared to the
strong consistency model in Cassandra.

B. Consistency-Cost Efficiency

As to investigate the consistency cost in the cloud, we
conducted two separate sets of experiments. First, we wanted
to build a deeper understanding picture of the consistency
impact on monetary cost in the cloud. After that, experiments
to evaluate our cost-efficient consistency model Bismar were
conducted. In all experiments we used a heavy read-update
YCSB workload that consists of 10 million operations and a
total data size of 23.84 GB. Apache Cassandra was deployed
with a replication factor of 5 on two availability zones
(datacenters) in theus-east-1region in Amazon EC2 with
a total of 18 VMS for the first set of experiments, and two
sites in the east and the south of France in Grid’5000 with
a total of 50 nodes for both sets of experiments.

• Consistency impact on monetary cost. Results show
the total monetary cost decreases when degrading the
consistency level. We observed down to 48% of cost re-
duction with weaker consistency. This was an expected
result as lower consistency levels use less resources
and lower the operations latencies. This cost reduction,
however, is associated with a significant increase in the
stale reads rate. For instance we observed that only
21% of reads are estimated to be up-to-date when the
consistency level is the lowest (level ONE). Obviously,
one of the most efficient consistency levels is the level
Quorum. This level returns always an up-to-date replica
(which is always included in the quorum) but reduces
the cost of the strong consistency level by 13%.

• Bismar evaluation. In order to validate our efficiency
metric, we collect samples when running the same
workload with different access patterns and different
consistency levels. Results show that the most efficient
consistency levels are the ones that provide a staleness
rate smaller than 20%. This demonstrates the effective-
ness of our metric where lower levels are efficient only
when they provide an acceptable consistency. Experi-
ments on Bismar show that only the consistency level

ONE costs less. This level (ONE) however, tolerates up
to 61% of stale reads. Our approach Bismar achieves
up to 31% of cost reduction compared to the static level
Quorum which is one of the most efficient approaches.
Meanwhile, it only tolerates 3.5% of stale reads which
is acceptable for a large class of applications that do
not require strictly strong consistency.

V. FUTURE PLANS

As part of a future plan we intend to investigate three
directions as to provide better consistency management for
cloud storage clients. The primary direction targets the
investigation of power consumption behavior of different
consistency approaches. We plan to conduct an in-depth
study that analyzes power consumption and resources usage
(Cpu, Memory, Disk access ...) of the whole storage system
considering different consistency levels and various cpu fre-
quencies and governors. As a result, we intend to build a new
approach to improve the power-efficiency of storage systems
while maintaining the application consistency requirements.

In a different direction, we intend to provide a cost-
efficient storage provisioning in the cloud under consis-
tency, performance and failures constraints. One of the
main advantages of cloud computing is its flexible resource
leasing in a pay as you use way. In this work, we plan to
provide an efficient mechanism, that considers application
and environment constraints such as the level of consistency
or the presence of failing nodes. Accordingly, the quantity
of additional storage nodes that reduce the bill is computed.

Current eventually consistent systems do not give any
guarantees on when all replicas in the storage system would
converge to a consistent state. This could be a real problem
for many applications as there is no provided certainty about
read data. Moreover, if the read data is stale, the question
is how stale it could be. In this future work, we plan to
design and build an eventually consistent system prototype
that provides guarantees on the freshness of data read and
ensures that data is consistent after a set of defined deadlines.
Furthermore, the proposed system will introduce different
levels of guarantees considering the network performance
and topology in addition to data location.

VI. CONCLUSION

Nowadays, it is easy to rely on multiple distant datacenters
in the cloud to provide geographically available services
by means of geo-replication. However, synchronous geo-
replication that ensures strong consistency can impose a real
bottleneck. Storage systems’ performance and availability, in
addition to monetary cost, may suffer from the high wide
area network latencies. On the other hand static weaker
consistency models such as eventual consistency, may result
in a very high stale data being read. In this work, we
introduced an efficient consistency management in the cloud.

The first step towards this goal, was to introduce a self-
adaptive approach, called Harmony, that automatically tunes
the consistency level at runtime according to the storage
system state and the application specified requirements.
Harmony provides a better performance without exceeding
the application tolerated rate of staleness. Moreover, we pro-
posed the Bismar approach that considers the monetary cost
when selecting consistency in the cloud. Bismar investigates
the efficiency of all consistency levels and always selects the
level with the highest cost-consistency efficiency at runtime.
To complete our consistency management proposal, we
presented an application modeling approach that studies the
data access behavior and learns the consistency requirements
in the aim of providing an application specific consistency.

REFERENCES

[1] R. Peglar, “Eliminating planned downtime: the real impact
and how to avoid it,” May 2012. [Online]. Available:
http://findarticles.com/p/articles/mim0BRZ/is 5 24/ai n6095515/

[2] W. Vogels, “Eventually consistent,”Commun. ACM, pp. 40–44, 2009.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,“Dynamo:
amazon’s highly available key-value store,” inProceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 205–220.

[4] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,”SIGOPS Oper. Syst. Rev., pp. 35–40, April 2010.

[5] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consis-
tency properties and the trade-offs in commercial cloud storage: the
consumers’ perspective,” inCIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12,
2011, Online Proceedings, 2011, pp. 134–143.

[6] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie, “What
consistency does your key-value store actually provide?” in Pro-
ceedings of the Sixth international conference on Hot topics in
system dependability, ser. HotDep’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–16.

[7] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: pay only when it matters,”Proc. VLDB
Endow., vol. 2, no. 1, pp. 253–264, Aug. 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1687627.1687657

[8] X. Wang, S. Yang, S. Wang, X. Niu, and J. Xu, “An application-
based adaptive replica consistency for cloud storage,” inGrid and
Cooperative Computing (GCC), 2010 9th International Conference
on, nov. 2010, pp. 13 –17.

[9] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez-Hernández,
“Harmony: Towards automated self-adaptive consistency incloud
storage,” in2012 IEEE International Conference on Cluster Com-
puting (CLUSTER’12), Beijing, China, 2012, pp. 293–301.

[10] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez,
“Consistency in the cloud: When money does matter!” inTechnical
Report. [Online]. Available: http://hal.inria.fr/hal-00756314/

[11] “Amazon Elastic Compute Cloud (Amazon EC2),” November2012.
[Online]. Available: http://aws.amazon.com/ec2/

[12] Y. Jégou, S. Lantéri, J. Leducet al., “Grid’5000: a large scale and
highly reconfigurable experimental grid testbed.”Intl. Journal of High
Performance Comp. Applications, vol. 20, no. 4, pp. 481–494, 2006.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” inProceedings of
the 1st ACM symposium on Cloud computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154.

