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Abstract—In this paper, we address the problem of scheduling
dynamically-arriving tasks to machines in an oversubscribed
heterogeneous computing environment. Each task has a monoton-
ically decreasing utility function associated with it that represents
the utility (or value) based on the task’s completion time. Our
system model is designed based on the environments of interest
to the Extreme Scale Systems Center at Oak Ridge National
Laboratory. The goal of our scheduler is to maximize the total
utility earned from task completions while satisfying an energy
constraint. We design an energy-aware heuristic and compare its
performance to heuristics from the literature. We also design an
energy filtering technique for this environment that is used in
conjunction with the heuristics. The filtering technique adapts to
the energy remaining in the system and estimates a fair-share
of energy that a task’s execution can consume. The filtering
technique improves the performance of all the heuristics and
distributes the consumption of energy throughout the day. Based
on our analysis, we recommend the level of filtering to maximize
the performance of scheduling techniques in an oversubscribed
environment.

Index Terms—scheduling; energy-constrained; utility func-
tions; energy filtering;

I. INTRODUCTION

During the past decade, large-scale computing systems

have become increasingly powerful. As a result, there is a

growing concern with the amount of energy needed to operate

these systems [1], [2]. From 2005 to 2010 the electricity

consumption of high performance computing (HPC) systems

has increased by 56% worldwide [3]. In addition to the

rising costs of increased electricity use, some data centers are

now unable to increase their computing performance due to

physical limitations on the availability of energy. A survey

conducted in 2008 showed that 31% of the data centers

identified energy availability as a key factor limiting new

server deployment [4]. Another example to emphasize this

point: Morgan Stanley, a global financial services firm based

in New York, is physically unable to draw the energy needed

to run a new data center in Manhattan [5]. If examples such

as these become commonplace, many HPC systems could be

forced to execute workloads with severe constraints on the

amount of energy available to be consumed.

The need for additional performance among HPC systems

combined with higher energy consumption and costs are

making it increasingly important for system administrators

to adopt energy-efficient workload execution policies. In an

energy-constrained environment, it is desirable for such poli-

cies to maximize the performance of the system. This research

investigates the design of energy-aware scheduling techniques

with the goal of maximizing the performance of a workload

executing on an energy-constrained HPC system.

Specifically, we model a compute facility and workload

being investigated by the Extreme Scale Systems Center

(ESSC) at Oak Ridge National Laboratory (ORNL). The ESSC

is a joint venture between the United States Department of

Defense (DoD) and Department of Energy (DOE) to perform

research and deliver tools, software, and technologies that can

be integrated, deployed, and used in both DoD and DOE

environments. Our goal is to study techniques that allow

system administrators to maximize the performance of their

computing systems while staying within a specified energy

constraint using intelligent resource allocations (i.e., assign-

ment of tasks to machines). Each task has a monotonically

decreasing utility function associated with it that represents the

utility (or value) based on the task’s completion time. System

performance is measured in terms of total utility earned, which

is the sum of all utility earned by tasks that complete within

the energy-constraint [6], [7]. The computing environment

we model, based on the expectations of future DoD and

DOE environments, incorporates heterogeneous resources that

utilize a mix of different machines to execute workloads with

diverse computational requirements.

In a heterogeneous environment, tasks typically have dif-
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ferent execution time and energy consumption characteristics

when executed on different machines. We model our machines

to have three different performance states (P-states) in which

tasks can execute. By employing different resource allocation

strategies, it is possible to manipulate the performance and

energy consumption of the system to align with the goals set

by the system administrator. We develop a novel energy-aware

resource allocation policy that has the goal of maximizing

the utility earned while obeying an energy constraint. We

compare our policy with three techniques from the literature

designed to maximize utility [6], [7], and show that for energy-

constrained environments, heuristics that manage their energy

usage throughout the day outperform heuristics that only try to

maximize utility. We enhance the resource allocation policies

by designing an energy filter (based on a simpler method [8])

for our environment. The goal of the filtering technique is

to remove high energy consuming allocation choices that con-

sume more energy than an estimated fair-share. This distributes

the budgeted energy across the whole day. We perform an in-

depth analysis to demonstrate the benefits of our energy filter.

In summary, we make the following contributions: (a)

the design of a new resource management technique that

maximizes utility earned within an energy constraint for an

oversubscribed heterogeneous computing system based on

environments of interest to the DoD and DOE, (b) the design

of an energy filtering mechanism that is adaptive to the

energy remaining in the system, enforces “fairness” in energy

consumed by tasks and distributes the energy budgeted for

the day throughout the day, (c) show how heuristics that

only maximize performance can become energy-aware by

adapting three previous techniques to use an energy filter, (d)

a sensitivity analysis of energy filtering for all four heuristics

and (e) a recommendation on how to select the best level of

filtering for a heuristic, based on a detailed analysis of the

performance of our heuristics.

The remainder of this paper is organized as follows. The

next section formally describes the problem we address and the

system model. Section III describes our resource management

techniques. We then provide a sample of related work in

Section IV. Our simulation and experimental setup are detailed

in Section V. In Section VI, we discuss and analyze the results

of our experiments. We finish with our conclusion in Section

VII.

II. PROBLEM DESCRIPTION

A. System Model

In this study, we assume a workload where tasks arrive

dynamically throughout the day and the scheduler maps the

tasks to machines for execution. We model our workload and

computing system based on the needs of the ESSC. Each

task in the system has a utility function associated with it

(as described in [6]). Utility functions are monotonically-

decreasing functions that represent the utility (or value) of

completing the task at different times. We assume the utility

functions are given by users or system administrators for any

task.

Tasks are assumed to be independent (they do not require

inter-task communication) and can execute concurrently (each

on a single machine, possibly with parallel threads). This is

typical of many environments such as [36]. We do not allow

the preemption of tasks, i.e, once a task starts execution, it

must execute until completion.

Our computing system environment consists of a suite of

heterogeneous machines, where each machine belongs to a

specific machine type (rather than a large monolithic system,

such as Titan). Machines belonging to different machine

types may differ in their microarchitectures, memory modules,

and/or other system components. We model the machines to

contain CPUs with dynamic voltage and frequency scaling

(DVFS) enabled to utilize three different performance states

(P-states) that offer a trade-off between execution time and

power consumption. We group tasks with similar execution

characteristics into task types. Tasks belonging to different

task types may differ in characteristics such as computational

intensity, memory intensity, I/O intensity and memory access

pattern. The type of a task is not related to the utility function

of the task. We model heterogeneity in our computing system

and workload, i.e., machine type A may be faster (or more

energy-efficient) than machine type B for certain task types

but slower (or less energy-efficient) for others.

For a task of type i on a machine of type j running in P-

state k, we assume that we are given the Estimated Time to

Compute (ETC(i, j, k)) and the Average Power Consumption

(APC(i, j, k)). It is common in the resource management

literature to assume the availability of this information based

on historical data or experiments [9]–[15]. This assumption

is also valid for our ESSC environment. For the simulation

study conducted in this paper, we synthetically create our

ETC and APC matrices. We can compute the Estimated

Energy Consumption (EEC(i, j, k)) by taking the product

of its execution time and average power consumption, i.e.,

EEC(i, j, k) = ETC(i, j, k) × APC(i, j, k). We model

general-purpose machine types and special-purpose machine

types [16]. The special-purpose machine types execute cer-

tain special-purpose task types much faster than the general-

purpose machine types, although they may be incapable of

executing the other task types.

B. Problem Statement

Recall that we consider a workload model where tasks arrive

dynamically throughout the day. However, the scheduler does

not have prior knowledge of the arrival pattern of the tasks, the

utility functions of the task, nor their task type. The goal of

the scheduler is to maximize the total utility that can be earned

from completing tasks while satisfying an annual energy con-

straint. To help meet the annual energy constraint, we constrain

the energy consumption of the computing system for each day

of the year. We can calculate an appropriately scaled value

for a given day’s energy constraint (energy constraintday)

by taking the ratio of the total energy remaining for the year

and the number of days remaining in the year. This reduces

the problem to that of maximizing the total utility earned per
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day while obeying energy constraintday . We perform our

simulations to gather the results for the duration of a day

to keep the simulation time tractable, but we could use any

interval of time (e.g., two hours, six months, a year). If a

task starts execution on one day and completes execution on

the next, the utility earned and the energy consumed for each

day is prorated based on the proportion of the tasks execution

time in each day. This is done so that each day gets the

utility for the executions that consumed its energy to permit a

fair comparison of different heuristic approaches. For ESSC,

constraints on power (energy per second) are not a concern.

III. RESOURCE MANAGEMENT

A. Overview

It is common to use heuristics for solving the task to

machine resource allocation problem as it has been shown,

in general, to be NP-complete [17]. There are different types

of dynamic heuristics (also known as on-line heuristics [18])

that can be used to quickly assign incoming tasks to machines.

Mapping events occur any time a scheduling decision has to

be made. We use batch-mode heuristics that trigger mapping

events after fixed time intervals as they performed best in

our previous work [6]. To account for oversubscription, we

use a technique that drops tasks with low potential utility at

the current time. We also design an energy filter that helps

guarantee the energy constraint by avoiding allocating tasks

that use more than their “fair-share” of energy. Our simulation

results show the benefit of this technique.

Mapping events for our batch-mode heuristics are triggered

every minute. If the execution of the previous mapping event

takes longer than a minute then the next mapping event is

triggered after the previous one completes execution. The task

that is next-in-line for execution on a machine is referred to

as the pending task. All other tasks that are queued for the

machines are said to be in the virtual queues of the scheduler.

Figure 1 shows an example system with four machines, the

executing tasks, the tasks in the pending slot, and the virtual

queues of the scheduler. At a mapping event, the batch-mode

heuristics make scheduling decisions for a batch of tasks that

are composed of the tasks that have arrived since the last

mapping event and the tasks that are currently in the virtual

queues. This set of tasks is called the mappable tasks. The

batch-mode heuristics are not allowed to remap the pending

tasks so that the machines do not idle if the currently executing

tasks complete while the heuristic is executing. In this study,

we adapt three batch-mode heuristics (from our previous

work [6], [7]) to the new environment, design a new energy-

aware batch-mode heuristic, and analyze and compare their

performances.

We design the batch-mode heuristics such that they are not

allowed to schedule a task that will violate the day’s energy

constraint. The batch-mode heuristics also are not allowed to

map a task to a machine on which it will start execution

on the next day. This is because the next day may have

different values for the energy constraint (if the current day

consumes less energy than budgeted for the day) and therefore
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Fig. 1. An example system of four machines showing tasks that are currently
executing, waiting in the pending slot, waiting in the virtual queue, and have
arrived since the last mapping event (and are currently unmapped).

the scheduling decision for this task may be different. If the

task will violate the current day’s energy constraint or if no

machine can start the execution of the task within the current

day, then the task’s consideration is postponed to the next day.

At the start of the next day, all postponed tasks are added to

the batch and the heuristics make mapping decisions for these

tasks as well.

B. Batch-mode Heuristics

We present a new heuristic that tries to minimize en-

ergy while maximizing the utility earned. The Max-Max

Utility-Per-Energy Consumption (Max-Max UPE) is a two-

stage heuristic based on the concept of the two-stage Min-Min

heuristic that has been widely used in the task scheduling

literature [19]–[29]. In the first stage, the heuristic indepen-

dently finds for each task in the batch, the machine and P-

state that maximizes “utility earned / energy consumption.”

If none of the machine-P-state choices for a task satisfy the

day’s energy constraint nor start the execution of the task

within the current day, then, the task is postponed to the next

day and removed from the batch. In the second stage, the

heuristic picks the task-machine-P-state choice from the first

stage that provides the overall highest “utility earned / energy

consumption.” The heuristic assigns the task to that machine,

removes that task from the set of mappable tasks, and repeats

this process iteratively until all tasks are either mapped or

postponed.

For comparison, we analyze the following three utility

maximization heuristics to examine how heuristics that do

not consider energy perform in an energy-constrained environ-

ment. These heuristics assign tasks until there is no remaining

energy in the day.

The Min-Min Completion Time (Min-Min Comp) heuristic

is a fast heuristic adapted from [6], [7] and is a two-stage

heuristic like the Max-Max Utility-Per-Energy heuristic. In the

first stage, this heuristic finds for each task the machine and P-

state choice that completes execution of the task the soonest.

This also will be the machine-P-state choice that earns the

highest utility for this task (because we use monotonically-
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decreasing utility functions). In the second stage, the heuristic

picks the task-machine-P-state choice from the first stage that

provides the earliest completion time. This batch-mode heuris-

tic is computationally efficient because it does not explicitly

perform any utility calculations.

The Max-Max Utility (Max-Max Util) heuristic introduced

in [6], [7] is also a two-stage heuristic like the Min-Min

Comp heuristic. The difference is that in each stage Max-Max

Util maximizes utility, as opposed to minimizing completion

time. In the first stage, this heuristic finds task-machine-P-state

choices that are identical to those found in the first stage of the

Min-Min Comp heuristic. In the second stage, the decisions

made by Max-Max Util may differ from those of Min-Min

Comp. This is because picking the maximum utility choice

among the different task-machine-P-state pairs depends both

on the completion time and the task’s specific utility function.

The Max-Max Utility-Per-Time (Max-Max UPT) heuristic

introduced in [7] is similar to the Max-Max Util heuristic,

but in each stage it maximizes “utility earned / execution

time,” as opposed to maximizing utility. This heuristic selects

assignments that earn the most utility per unit time, which can

be beneficial in an oversubscribed system.

C. Dropping Low Utility Earning Tasks

We use the technique to drop tasks with low potential utility

at the current time (introduced in our previous work [7]).

Dropping a task means that it will never be mapped to a

machine. The dropping operation helps the batch-mode heuris-

tics tolerate high oversubscription. Due to the oversubscribed

environment, if a resource allocation heuristic tried to have

all tasks execute, most of the task completion times would be

so long that the utility of most tasks would be very small.

This would negatively impact users as well as the overall

system performance. Given the performance measure is the

total utility achieved by summing the utilities of the completed

tasks, dropping tasks leads to higher system performance, as

well as more satisfied users.

The dropping operation is performed before a heuristic is

called for making its scheduling decisions so the heuristic is

not required to make as many scheduling decisions. When

a mapping event is triggered, we determine the maximum

possible utility that each mappable task could earn on any

machine assuming it can start executing immediately after

the pending task is finished. If this utility is less than a

dropping threshold (determined empirically), we drop this task

from the set of mappable tasks. If the utility earned is not less

than the threshold, the task remains in the mappable tasks

set and is included in the batch-mode heuristic’s allocation

decisions.

Because of the high oversubscription in our environment,

the number of tasks in the batch increases quickly. This can

cause the heuristic execution time to be long enough to delay

the trigger of subsequent mapping events. This results in poor

performance because it now takes longer for the heuristics to

service any high utility earning task that may have arrived.

By the time the next mapping event triggers, the utility from

this task may decay substantially. By dropping tasks with low

potential utility at the current time, we reduce the size of the

batch and enable the heuristics to complete their execution

within the mapping interval time (a minute). This allows the

heuristics to move quickly any high utility earning task up to

the front of the virtual queue to complete its execution soon.

If a batch-mode heuristic postpones a task to the next day,

a check is performed to make sure that the maximum possible

utility that the task could earn (at the start of the next day)

is greater than the dropping threshold. If it is not, the task is

dropped and it is not postponed.

D. Energy Filtering

The goal of our new energy filter technique we have de-

signed is to remove potential allocation choices (task-machine-

P-state combination) from a heuristic’s consideration if the

choice of allocation consumes more energy than an estimated

fair-share energy budget. We call this budget the task budget.
The value of the task budget needs to adapt to the energy

being consumed by the system and should account for the

energy remaining in the day and the time of the day. Therefore,

the value of the task budget is recomputed at the start of every

mapping event.

We denote energy consumed as the total energy that

has been consumed by the system in the current day, and

energy scheduled as the energy that will be consumed by

tasks queued for execution. At the start of a mapping event,

the virtual queued tasks are removed from the machine

queues and inserted into the mappable tasks set. Therefore,

energy scheduled will account for the energy that will be

consumed by all tasks that are currently executing and the

tasks that are in the pending slot. The total energy that can

be scheduled by heuristics (without violating the day’s energy

constraint) is denoted by energy remaining. It is computed

using Equation 1.

energy remaining = energy constraintday

− energy consumed

− energy scheduled

(1)

The ready time of a machine is set to either the completion

time of the last queued task for the machine or the current time,

whichever is greater. At the start of the mapping event, the last

queued task on a machine will be the pending task. The total

time remaining for computations (summed across machines)

in the day is denoted as the aggregate time remaining.

We compute it by summing across machines the difference

between the end time of the day and the ready time of the

machine. Figure 2 shows its computation for an example

system with three machines. As shown, even though machine

m3 is not executing anything after time 16, the available

compute time from that machine is obtained by taking the

difference between end of the day and the current time.

The average of the execution time values of all tasks, ma-

chines, and P-states is represented as average exec time. The

energy filtering technique needs to estimate the total number
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m1 
m2 
m3 

16     18    20     22     24 
             time 

current 
time     

aggregate time 
remaining =  
(24 – 22) + 
(24 – 20) +  
(24 – 18)  

Fig. 2. An example system of three machines showing the computation
of aggregate time remaining. It represents the total computation time
available from the current time till the end of the day.

of tasks that can be executed in the remaining part of the day.

It does this by taking the ratio of aggregate time remaining
and average exec time. The energy filter has to use

average exec time because the scheduler is unaware of the

type of tasks that may arrive or which machine or P-state they

will be assigned to for the rest of the day.

To adjust the value of the task budget around its estimate,

we use a multiplier called energy leniency. Higher values

of the energy leniency factor imply more leeway for high

energy allocation choices to pass through the filter, whereas

a low value for the energy leniency would filter many more

choices. This value is determined empirically.

The task budget that is used to compare the energy con-

sumption of potential allocation choices against is computed

using Equation 2.

task budget =

energy leniency × energy remaining(
aggregate time remaining

average exec time

) (2)

This task budget is recomputed at the start of each

mapping event and is an estimate of the amount of fair-share

energy that we want an execution of a task to consume. At

each mapping event, the heuristics consider only those task-

machine-P-state allocation choices that consume less energy

than the task budget.

IV. RELATED WORK

Heterogeneous task scheduling in an energy-constrained

computing environment is examined in [26]. The authors

model an environment where devices in an ad-hoc wireless

network are limited by battery capacity. This differs signif-

icantly for our environment where we model a larger and

more complex heterogeneous system with a utility based

performance metric. Additionally, in our study, the energy

available for use under the constraint is shared across all

resources, while in [26] each resource contains its own energy

constraint.

An energy-constrained task scheduling problem in a wire-

less sensor network environment is studied in [30]. The authors

analyze how the presence of an energy constraint affects the

schedule length when executing a set of dependent tasks.

A wireless sensor network is significantly different from

the environment we are modeling. In our model, each task

contributes a certain amount of utility to the system. We are

not concerned with minimizing a schedule length, as tasks

continuously arrive through out the day.

In [31], a set of dynamically arriving tasks with individual

deadlines are allocated to machines within a cluster environ-

ment with the goal of conserving energy. Specifically, the

authors try to optimize the energy consumption while meeting

the constraint of completing all tasks by their deadlines.

Our environment tries to maximize the total utility earned

while operating under an energy constraint. Additionally, [31]

uses constant arrival patterns in an undersubscribed system,

while our work focuses on highly oversubscribed environments

where tasks arrive in varying sinusoidal or bursty patterns.

A dynamic resource allocation problem in a heterogeneous

energy-constrained environment is studied in [8]. Tasks within

this system contain individual deadlines, and the goal is to

complete as many tasks by their individual deadlines as pos-

sible within an energy constraint. This is a different problem

from our work as we are trying to maximize the utility earned

not the number of tasks that meet their hard deadlines. The

authors of [8] use heuristics that map each task to machine

as soon as the task arrives with no remapping, whereas in our

environment we map batches of tasks at a time, allowing us to

use more information when making allocation decisions and

can remap tasks in the virtual queue. This allows heuristics to

move high utility earning tasks that have recently arrived in

the system to the front of the queues in order to earn more

utility.

In [32] the authors formulate a bi-objective resource allo-

cation problem to analyze the trade-offs between makespan

and energy consumption. Their approaches use makespan as

a measure of system performance as opposed to utility as we

do in our work. Additionally, they model static environments

where the workload is a bag-of-tasks, unlike our work that

considers a system where tasks arrive dynamically. In our

work, we consider maximizing the utility earned while meeting

an energy constraint whereas [32] does not consider an energy

constraint in its resource allocation decisions.

V. SIMULATION SETUP

A. Overview

We simulate the arrival and mapping of tasks for a span of

two days with the first day used to bring the system up to

steady-state operation. We collect our results (e.g., total utility

earned, energy consumed) only for the second day to avoid

the scenario where the machines start with empty queues. We

average the results of our experiments across 48 simulation

trials. Each of the trials represents a new workload of tasks

(with different utility functions, task types, and arrival times),

and a different compute environment by using new values for

the entries in the ETC and APC matrices (but without changing

the number of machines). All of the parameters used in our

simulations are set to closely match the expectations for future

environments of interest to the ESSC.
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B. Workload Generation

The utility functions for all the tasks in a workload are

given, and can start at one of four maximum utility values: 8,

4, 2, or 1. These values are based on the needs of the ESSC, but

for other environments, different values and greater or fewer

number of values may be used. A method for generating utility

functions can be found in [6], [33].

We generate the arrival patterns to closely match expected

workloads that are of interest to ESSC [34]. In this environ-

ment, general-purpose tasks arrive in a sinusoidal pattern and

special-purpose tasks follow a bursty arrival pattern.

C. Execution Time and Power Modeling

In our simulation environment, approximately 50,000 tasks

arrive during the duration of a day and each of them belong

to one of 100 task types. The compute system that we model

has 13 machine types consisting of a total of 100 machines.

Among these 13 machine types, four are special-purpose ma-

chine types while the remaining are general-purpose machine

types. The special-purpose machines run a subset of task types

that are special with respect to them 10 times faster than the

general-purpose machines. The special-purpose machines do

not have the ability to run tasks of other task types. In our

environment, three to five task types were special for each

special-purpose machine type.

We assume that all machines have three major P-states in

which they can operate. We use techniques from the Coeffi-

cient of Variation (COV) method [35] to generate the entries of

the ETC and APC matrices in the highest power P-state. The

mean value of execution time on the general-purpose and the

special-purpose machine types is set to ten minutes and one

minute, respectively. To generate the dynamic power values

for the intermediate P-state and the lowest power P-state, we

scale the dynamic power to 75% and 50%, respectively, of

the highest power P-state. The execution time for these P-

states are also generated by scaling the execution time of

the highest power P-state. To determine the factor by which

we will scale the execution time of the highest power P-state

for the intermediate and lowest power P-states, we sample a

gamma distribution with a mean value that is approximately

1/
√
(% scaled in power). For example, the lowest power P-

state’s execution time will be scaled by a value sampled from

a gamma distribution that has a mean approximately equal

to 1/
√
0.5. The execution time of any task is guaranteed to

be the shortest in the highest power P-state, but the most

energy-efficient P-state can vary across tasks. These are done

to model reality where the impact on execution time and

energy consumption by switching P-states depends on the

CPU-intensity/memory-intensity of the task, overhead power

of the system, etc.

D. Obtaining an Energy Constraint

In real-world scenarios, an annual energy budget is given

for an HPC system. As mentioned in Section II-B, we can

estimate the energy constraint of the current day using a given

annual energy constraint to help ensure each day uses an equal

portion of the remaining energy from the annual budget.

For simulation purposes, we need to create an energy

constraint that we can use to analyze our resource manage-

ment techniques. We first run Max-Max UPT (the heuristic

that provides the best utility earned from our previous work

[7]) for a full 24-hour time period, disregarding the energy

constraint. Based on these results, we average the total energy

consumption throughout the day across 48 simulation trials

and use 70% of this average value as our energy constraint. We

obtain the simulated annual energy constraint by multiplying

this value by the number of days in a year. For our simulations,

we used a value of 405.84 GJ for the year, which averages out

to 1.11 GJ per day.

VI. RESULTS

A. Overview

All results shown in this section display the average over

48 simulation trials with 95% confidence interval error bars

(the simulator uses two 24 core nodes on the Colorado State

University ISTeC Cray [36]). We first discuss the performance

of the four heuristics in the energy-constrained environment

when not using the energy filtering technique. For comparison

purposes, we implement a Random heuristic that randomly

maps tasks to machines. All the heuristics (including Random)

used a dropping threshold of 0.5 units of utility to tolerate the

oversubscription. We use a dropping threshold of 0.5 units of

utility as it gave the best performance in our previous work

[7]. When selecting a dropping threshold, we must consider

the level of oversubscription of the environment in addition to

the utility values of tasks. We then examine the effect of the

filtering mechanism on the heuristics with a sensitivity study

and an analysis of the performance. Finally, we compare all

heuristics when using the best filtering case for each of the

heuristics and suggest how one can tune the level of filtering

to obtain the best performance for any heuristic.

B. Results without Energy Filtering

Figure 3 shows the total utility earned by the four heuristics

that we examined with and without filtering and compare

their performance with that of the Random heuristic. We

first discuss the performance of the heuristics without the

energy filtering. Random performed the worst because it does

not consider the completion time, utility earned, or energy

consumed when making assignment decisions. Min-Min Comp

performed the worst among the batch-mode heuristics because

it does not explicitly account for utility. Both Max-Max Util

and Max-Max UPT perform better than Min-Min Comp as

they try to maximize the utility earned from each allocation,

but Max-Max UPT performs better than Max-Max Util as it

is able to to account for both utility and the execution time of

the tasks on machines, which is helpful in an oversubscribed

system like the one we consider. Max-Max UPE earns the

highest utility even though it consumes the same amount of

energy as the others, i.e., approaches the energy constraint.

This is because the heuristic accounts for energy consumption
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Fig. 3. Total utility earned by the heuristics in the no-filtering case and the
filtering case with their best energy leniency case. These are compared to
the total utility earned by a Random assignment. Results averaged over 48
trials with 95% confidence intervals.

while trying to maximize utility, and thus is able to avoid high

energy-consuming allocation choices without significantly af-

fecting the utility earned. All the heuristics hit the energy

constraint for the day and were not allowed to map any more

tasks that may violate the constraint. These results indicate that

for energy-constrained environments it is best to use heuristics

that consider energy, rather than heuristics that try to solely

optimize for performance. Without energy filtering, Max-Max

UPE is approximately 11% better than Max-Max UPT (the

best performing utility maximization heuristic).

C. Results with Energy Filtering

We now examine the effect of the energy filtering mecha-

nism on the batch-mode heuristics. The extent to which energy

filtering is performed is controlled by the energy leniency
term (see Equation 2). A higher value for the energy leniency
would result in a higher value of the task budget and would

therefore let more allocation choices pass through the filter.

Alternatively, a lower value of energy leniency would let

fewer allocations pass through the filter. Not using filtering

implies an energy leniency value of infinity. We performed

a sensitivity test for all the heuristics by varying the value

of energy leniency from 0.3 to 4.0, and compared the

performance with the no-filtering case.

Figures 5a and 5b show the effect of varying the value of

energy leniency on the total utility earned by the Max-Max

UPT and the Max-Max UPE heuristics, respectively. Figure 4

shows the energy consumption of the Max-Max UPE heuristic

as the energy leniency value is varied. Sensitivity tests of

the utility earned for the Min-Min Comp and Max-Max Util

heuristics show trends similar to that of the Max-Max UPT

heuristic. While the energy consumed for Min-Min Comp,

Max-Max Util, and Max-Max UPT are similar to Max-Max

UPE.

In general, for all the heuristics, as we increase the value

of energy leniency from 0.3, the utility earned increases and

then decreases as we approach the no-filtering case. All heuris-

tics benefit from the filtering operation. The best-performing

0.3 0.4 0.5 0.6 0.7 0.75 1.0 1.25 1.5 1.75 2.0 4.0 no �lt
energy leniencies for Max-Max UPE

0.0

0.3

0.6

0.9

1.2

1.5

to
ta

le
ne

rg
y

co
ns

um
ed

× 109

Fig. 4. Sensitivity tests showing the total energy consumed as the
energy leniency is varied for the Max-Max UPE heuristic. The energy
constraint is shown by the dashed line. Results averaged over 48 trials with
95% confidence intervals.

case for Min-Min Comp, Max-Max Util, and Max-Max UPT

occurs at an energy leniency of 0.75, whereas the Max-

Max UPE heuristic performance peaks at an energy leniency
of 1.5. We observe that the performance benefit for the

Max-Max UPE heuristic is less sensitive to the value of

energy leniency, especially in the range 1.0 to 4.0. The

drop in performance for this heuristic in the no-filtering case

(compared to its best performance case) is less substantial than

the similar difference for the other heuristics. This is because

the Max-Max UPE heuristic already accounts for energy

consumption, reducing the benefits associated with the energy

filter. Therefore, the best-performing case of energy leniency
for this heuristic is at a higher value than the best-performing

case for the other heuristics. The other heuristics require a

stricter filtering technique to incorporate energy consumption

in allocation choices, therefore they require lower values of

energy leniency to obtain the best results, because energy is

not considered otherwise.

For all heuristics, when we use energy leniency values

from 0.3 to 0.6, the filtering is so strict that it prevents

the heuristic from using all of the available energy that

was budgeted for the day. Not being able to use all of the

budgeted energy results in fewer tasks being executed and

therefore a drop in the total utility earned throughout the day.

Alternatively, when using high values of energy leniency
(and the no-filtering case), all heuristics use all of the day’s

budgeted energy early in the day and thus are unable to execute

tasks that arrive in the later part of the day. We are able to

observe this using trace charts that show the gain in total utility

and increase in total energy consumption.

Figures 6a and 6b show the utility trace, and Figures 7a

and 7b show the energy trace for the Max-Max UPT and

the Max-Max UPE heuristics, respectively. For the no-filtering

case, we see that the system uses all of the available energy

for the day in the early part of the day, and then all future

tasks are unable to execute and dropped from the system

earning no utility. The no-filtering case for the Max-Max UPE

heuristic uses all available energy that was budgeted for the
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Fig. 5. Sensitivity tests showing the total utility earned as the energy leniency is varied for (a) Max-Max UPT and (b) Max-Max UPE. Results averaged
over 48 trials with 95% confidence intervals.

day slightly later (approximately three hours) than the Max-

Max UPT heuristic because the heuristic considers energy at

each mapping event throughout the day. The slope of its no-

filtering energy consumption trace is less steep than the slope

of the similar trace for the Max-Max UPT heuristic.

The energy trace charts show the adaptive ability of the

filtering technique. Recall the task budget is dependent on

the aggregate time remaining and the energy remaining. When

comparing low values of energy leniency to high values of

energy leniency, the energy remaining will be similar at the

beginning of the day, but later in the day, there will be more

energy remaining for low values and compared to the lower

energy remaining for higher values. Therefore the task budget
will change with the energy remaining, it will become larger

when there is more energy remaining in the day and smaller

when there is less energy remaining in the day. For example,

the slope increases for the energy leniency line of 0.3 during

the day in Figures 7a and 7b. Similarly, with high values of

energy leniency, the filter eventually adapts to lower its value

of task budget. This is shown by the decrease in slope for

the 1.5 energy leniency line in Figures 7a and 7b. Figure 3

shows the total utility earned by the heuristics in their best

energy leniency case with filtering and in the no-filtering

case compared to the utility earned by Random. Max-Max

UPE with energy filtering earns approximately 280% of the

utility earned by Random.

The best performance for each of the heuristics comes at an

appropriate energy leniency that allows the total energy con-

sumption of the heuristic to hit the energy constraint of the day

right at the end of the day. Higher values of energy leniency
result in the energy constraint being hit in the earlier part of

the day, while lower values of energy leniency can result in

a strict environment that prevents the consumption of all of the

energy budgeted for the day. Therefore, in energy-constrained

environments, the best performance is obtained by permitting

allocation choices with a fair-share of energy so that the total

energy consumption for the day hits the energy constraint right

at the end of the day so that relatively low earning utility tasks

that arrive early in the day do not consume energy that could

be used by relatively higher utility earning tasks arriving later

in the day. If the energy consumption is not regulated, then

the allocations in the earlier part of the day can consume too

much energy preventing task executions later in the day. Our

energy filtering technique gives this ability to the heuristics.

Therefore, when designing an energy filter for a heuristic in an

oversubscribed environment, the best performance is likely to

be obtained when the level of filtering is adjusted to distribute

the consumption of the energy throughout the day and meet

the constraint right at the end of the day.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we address the problem of energy-constrained

performance maximization. We model an oversubscribed het-

erogeneous computing system where tasks arrive dynamically

and are mapped to machines for execution. The system model

is designed based on the needs of the DoD/DOE ESSC envi-

ronment at ORNL. A heuristic’s performance in our system is

measured in terms of the total utility that it could earn from

task completions. We design an energy-aware heuristic (Max-

Max UPE) and compare its performance with heuristics that

only optimize utility, and the Random heuristic, and integrate

an energy filtering technique into our environment. We show

that in an energy-constrained environment our energy-aware

heuristic earns more utility than heuristics that only optimize

for utility. We also demonstrate that our new energy filtering

technique improves the performance of all the heuristics by

distributing the consumption of the budgeted energy through-

out the day. The energy filtering technique adapts to the

energy remaining in the system and accordingly budgets the

permitted energy for a task’s execution. Max-Max UPE earns

280% of the utility earned by Random in its best performing

energy leniency case. Max-Max UPE is least sensitive to

the level of energy filtering. This is because this heuristic

already considers energy consumption. The best performance

from the filtering is obtained for all heuristics at a level of

filtering that distributes energy consumption approximately
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Fig. 6. Traces of the cumulative utility earned throughout the day at 20 minute intervals as the energy leniency is varied for the (a) Max-Max UPT and
(b) Max-Max UPE heuristics. The results are averaged over the 48 trials with confidence intervals being extremely tight.
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Fig. 7. Traces of the cumulative energy consumed throughout the day at 20 minute intervals as the energy leniency is varied for the (a) Max-Max UPT
and (b) Max-Max UPE heuristics. The results are averaged over the 48 trials with confidence intervals being extremely tight. The energy constraint is shown
by the dashed line in the top of each plot.

equally throughout the day and meets the energy constraint

right at the end of the day. This can be used to guide the

design of heuristics and filtering techniques in oversubscribed

heterogeneous computing environments.

Possible directions for future research include: (a) using our

intuition of meeting the energy constraint right at the end of

the day to design adaptive techniques that can auto-tune the

value of energy leniency dynamically, (b) using stochastic

estimates of execution time and power consumption to make

allocation decisions that are robust to various sources of

uncertainty, (c) examining the performance of the scheduling

techniques in different types of heterogeneous environments,

(d) designing heuristics that use slope information of the

utility-functions to make allocation decisions, and (e) consid-

ering workloads of dependent and parallel tasks to broaden

the scope of this work.
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