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Abstract—In this paper, a distributed asynchronous al-
gorithm for intelligent lighting is presented that minimizes
collective power use while meeting multiple user lighting con-
straints simultaneously and requires very little communication
among agents participating in the distributed computation.
Consequently, the approach is arbitrarily scalable, adapts to
exogenous disturbances, and is robust to failures of individual
agents. This algorithm is an example of a decentralized
primal-space algorithm for constrained non-linear optimization
that achieves coordination between agents using stigmergic
memory cues present in the physical system as opposed to
explicit communication and synchronization. Not only does
this work make of stigmergy, a property first used to describe
decentralized decision making in eusocial insects, but details of
the algorithm are inspired by classic social foraging theory and
more recent results in eusocial-insect macronutrient regulation.
This theoretical analysis in this paper guarantees that the
decentralized stigmergically coupled system converges to within
a finite neighborhood of the optimal resource allocation. These
results are validated using a hardware implementation of the
algorithm in a small-scale intelligent lighting scenario. There
are other real-time distributed resource allocation applications
that are amenable to these methods, like distributed power
generation; in general, this paper means to provide proof of
concept that physical variables in cyberphysical systems can be
leveraged to reduce the communication burden of algorithms.

Keywords-Optimization algorithms, Resource allocation,
Pareto optimality, Constrained optimization, Intelligent light-
ing, Bioinspiration, Agents and autonomous systems, Decen-
tralized control, Distributed optimization, Stigmergy.

I. INTRODUCTION

Conventional distributed primal- or dual-space algorithms

for solving constrained optimization problems with non-

separable constraints require some coordination between

agents [1]–[9]. Here, a novel numerical approach for non-

linear optimization under constraints is described that imple-

ments this on-line coordination using stigmergy, which is a

term that has gained recent popularity in the cooperative

robotics literature [e.g., 10] but was originally coined by

Grassé [11] to describe the indirect communication among
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insects through modifications of the environment. The algo-

rithms discussed in this paper are designed specifically for

optimal resource allocation problems where it is guaranteed

that the desired solution will exist on a constraint boundary,

and these constraint boundaries will provide the environmen-

tal cues that guide the collective motion of the distributed

actuators in lieu of formal communication between them.

This class of constrained resource allocation problems can

be used to describe energy problems such as intelligent light-

ing and economic power dispatch. However, they can also

serve as a description of eusocial insect foraging under nu-

trient constraints. So rather than simply mimicking biology

as in the stigmergy-related robotics literature, this resource

allocation model can be used as a general framework to

describe both artificial and natural autonomous agents. This

paper uses intelligent lighting as a running example, but

the general concept of using physical variables as shared

memory may enhance many other distributed algorithms

running within cyberphysical systems.

This paper is organized as follows. The relevant con-

strained optimization problem is presented in Section II as

well as example applications; among those applications is

an intelligent lighting case that serves as a focal example

throughout the paper. In Section III, the proposed stigmergic

distributed algorithm is given along with theoretical results

describing its convergence and ultimate boundedness. Next,

experimental results shown in Section IV validate the effi-

cacy of the algorithm in an intelligent lighting case. Finally,

brief concluding remarks are included in Section V.

II. FOCAL PROBLEMS

This section describes the general optimization problem

of interest and the motivating applications for this problem

and the proposed solution method. The focal example of

intelligent lighting is described in detail in Section II-C1, and

the model system presented there will be used throughout

the paper. A salient feature of the general optimization

problem and all of the example applications is that an “all-

off” solution is less costly than all other solutions but is

infeasible due to operational constraints. For example, it

is energetically favorable for a room to always be dark,



but the occupants require at least some light in the room.

Consequently, like a shelf supporting a potted plant, the

operational constraints are reactive surfaces that support an

ever-present attraction to the origin of the resource space.

A. Focal Optimization Problem

Consider n ∈ N continuous resources where, for each

i ∈ {1, . . . , n}, resource i can be allocated along a con-

tinuum from lower level xi ∈ R≥0 to an upper level

xi ∈ R≥0. The convex and continuously differentiable

function F :
∏n

i=1[0, xi] → R maps the resource space

X ,
∏n

i=1[xi, xi] to a cost which the optimal allocation

will minimize. It is assumed that function F is not constant

and that the gradient of F increases along each dimension

of the resource space; that is, for each i ∈ {1, . . . , n} and

~x ∈ X and δ ∈ R>0, ∇iF (~x+ δ~ei) > ∇iF (~x) where ~ei is

the elementary vector along the ith direction. So although F
is convex, it need not be strictly convex.

Next, take m ∈ N to be the number of linear inequality

constraints. In particular, for each j ∈ {1, . . . ,m}, a feasible

~x ∈ X is such that ~a⊤j ~x ≥ cj where ~aj ∈ R
n
≥0 and cj ∈ R≥0

are parameters representing the jth operational constraint.

For each constraint j ∈ {1, . . . ,m}, the constraint boundary

{~x ∈ X : ~a⊤j ~x = cj} can be drawn as a hyperplane

in resource space X , and the vector ~aj is normal to that

hyperplane and points toward allocations that continue to

meet the constraint. To prevent the pathological case where

all constraints are trivially met by the origin of the resource

space, it is additionally assumed that there is some con-

straint j ∈ {1, . . . ,m} such that
∑n

i=1 aji > 0.

Thus, the focal optimization problem is to

minimize F (~x)

subject to A~x ≥ ~c

E ~x ≥ [x1, x2, . . . , xn]
⊤

(1)

with elementary matrix E , [~e1, . . . , ~en]
⊤, constraint matrix

A , [~a1, . . . ,~an]
⊤, and constraint vector ~c , [c1, . . . , cm]⊤.

B. Characterization of Optimal Solutions

An optimal solution to equation (1) must exist; however,

there may be several optima. Let ~x∗ ∈ X be an optimal so-

lution. By the Karush–Kuhn–Tucker (KKT) conditions [12],

there must exist a scalar Lagrange multiplier λ∗
j ∈ R≥0

for each constraint j ∈ {1, . . . ,m} and scalar Lagrange

multipliers µ∗
i , ν

∗
i ∈ R≥0 respectively for the lower and

upper bounds xi, xi for each i ∈ {1, . . . , n} such that

∇F (~x∗) = λ∗
1~a1 + · · ·+ λ∗

m~am

+ (µ∗
1 − ν∗1 )~e1 + · · ·+ (µ∗

n − ν∗n)~en
(2)

where ~ei is an elementary vector for i ∈ {1, . . . , n}. Thus,

when ~x∗ is in the interior of X , it is the case that the

multipliers µ∗
i = 0 and ν∗i = 0 for all i ∈ {1, . . . , n}, and

the gradient ∇F (~x∗) is a conical combination of the vectors

normal to each active constraint. Using the example of the

potted plant on a shelf from earlier, the gradient plays the

role of the force of gravity and the constraint vectors play

the role of normal forces supporting the potted plant from

below. Moreover, the additional constraints provided by the

upper and lower bounds are like bookends on that bookshelf.

C. Example Applications

The non-linear optimization problem in equation (1) can

be shown to be a more general case of existing problems

in engineering and theoretical ecology. In the following

examples, a resource is being optimally distributed across to

a set of tasks (e.g., power allocated to lights for minimum

luminance, power allocated across generators to supply

required demand, foragers allocated to food patches to

supply minimum nutrients). In each case, the constrained

optimization problem is equivalent to the projection of the

origin (i.e., a supremely favorable operating point) onto

the constraint set (i.e., requirements on the system that

prevent operating at minimum cost). Consequently, each

active constraint may be viewed as a surface supporting

a descending particle, and each inactive constraint may be

viewed as an even lower surface whose interaction with the

particle is prevented by the active surfaces above it.

1) Intelligent Lighting: In the built environment, there

are usually several overhead sources of artificial light as

well as windows that provide variable levels of natural

light. Intelligent lighting systems have been proposed that

use feedback control of individual lights to meet occupant

preferences measured at sensors distributed throughout the

environment. Although some schemes are designed to con-

trol the color of light [13], most approaches are ostensibly

if not explicitly designed to reduce the power used by

artificial sources [9], [14]–[18]. However, few power-saving

methods are constructed within an optimization framework;

instead, they save power solely by eliminating preference

surpluses. In these over-actuated systems (i.e., many more

lights than lighting constraints), there is a continuum of

resource allocations that can meet all constraints, but the

power demanded by each of these constraint-equivalent al-

locations can vary greatly. Consequently, simply eliminating

preference surpluses does not guarantee minimal power

use. The algorithms that are sensitive to measurements of

power or energy are either heuristic [15] or assume optimal

solutions are provided by an exogenous procedure [17].

Moreover, the optimality criteria chosen are often ad hoc

and either lack physical significance or lead to impractical

equilibrium solutions. So intelligent lighting research is

presently a vacuum for rigorous distributed optimization

results.

Here, an intelligent lighting optimization problem similar

to the one used by Wen and Agogino [17] is presented, but

our approach uses inequality constraints to match the form

of equation (1). By using inequality constraints, different
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Figure 1. Top view of prototypical lighting system with n = 8 lights and
m = 8 sensors. Lights, which are shown as circles around their indexes, are
mounted in the ceiling of the room. Sensors, which are shown as patches
underneath their indexes, are located at a distance beneath the lights. There
are two disturbance sources (e.g., windows) shown as hatched rectangles.
In general, m 6= n and sensors need not be placed directly beneath lights.

solutions activate different constraints and the optimization

problem always has feasible solutions. This approach is

similar to the minimal-power inequality-constrained prob-

lem motivating the recent distributed lighting controller of

Caicedo and Pandharipande [9]. However, that sophisti-

cated controller requires explicit communication of control

variables with local neighbors, and it converges to a sub-

optimal neighborhood of the optimal solution that cannot

be made arbitrarily small. The lighting controller proposed

here requires no explicit communication and converges to

a suboptimal neighborhood which can be made arbitrarily

small by selection of a parameter that reduces the speed of

the system. This intelligent lighting case will be used as a

motivating example throughout the rest of the paper.

Let there be n ∈ N lights positioned above m ∈ N

sensors. The lights and sensors can be in any position,

but one possible configuration is the room depicted in

Figure 1 where eight lights are shown as circles, eight

sensors are shown as squares, and two disturbance sources

(e.g., windows) are shown as rectangles in the perimeter of

the room; this picture shows n = m, but typically n > m.

In general,

• Each light i ∈ {1, . . . , n} is actuated by control xi ∈
[xi, xi] ⊆ R≥0 where ∞ > xi ≥ xi ≥ 0.

• For each sensor j ∈ {1, . . . ,m}, if the control for

light i ∈ {1, . . . , n} increases from xi to xi + δi
with δi ∈ R>0 while all other lighting controls remain

constant, the reading of sensor j increases by ajiδi.
• Associated with each sensor j ∈ {1, . . . ,m} is a

minimum desired sensor level γj ∈ R≥0 and a positive

sensor bias bj ∈ R≥0 due to an exogenous light source

(e.g., the sun); it is taken for granted that bj is constant

or changes at a slow rate relative to the speed of the

control system. Assuming that weight-vector ~aj and

the present value of control variables ~x is available to

sensor j ∈ {1, . . . ,m} [e.g., 19], the value of bias bj
can be estimated by subtracting the expected sensor

value from the actual sensor value. Thus, to harvest

the injected daylight, the effective minimum constraint

cj , γj − bj for each sensor j ∈ {1, . . . ,m}.

So the intelligent lighting system must

minimize F (~x)

subject to a11x1 + · · · + a1nxn ≥ γ1 − b1,

...

am1x1 + · · · + amnxn ≥ γm − bm,

(3)

which is equivalent to equation (1). This paper considers

a general class of objective functions; however, a natural

choice is to minimize the instantaneous power F (~x) = ‖~x‖22.

Mathematically, this choice projects the origin (i.e., all lights

off) onto the constraint set using the Euclidean distance.

Moreover, for each i ∈ {1, . . . , n}, if xi represents a control

voltage (e.g., the RMS voltage of a dimmed AC power

signal) across a linear lighting element, this policy will

minimize the power used by a group of identical lights.

Alternatively, for each i ∈ {1, . . . , n}, xi may simply be

a set-point reference for a lower-level control system on the

individual light (e.g., xi may be the input to a dimmable

fluorescent ballast or LED driver electronics). In that case,

minimization of ‖ · ‖22 will create diffuse aesthetically pleas-

ing pools of light as opposed to single bright point sources

that would be induced by 1-norm minimization.
2) Economic Power Dispatch: The basic economic dis-

patch problem in power engineering is summarized by

Bergen and Vittal [20]. There are n ∈ N generators that

supply the PD ∈ R≥0 power demanded by a given commu-

nity. At each generator i ∈ {1, . . . , n}, the cost Ci(Pi) of

supplying Pi ∈ R≥0 units of power is assumed to come from

the convex increasing function Ci : R≥0 → R≥0. Thus, the

optimal allocation ~P ∗ = [P1, P2, . . . , Pn]
⊤ is the solution

to the problem

minimize

n∑

i=1

Ci(Pi) subject to

n∑

i=1

Pi ≥ PD

(4)

So the methods from this paper are amenable to the dis-

tributed solution of the economic power dispatch problem.

Moreover, the problem can be extended for multiple power

demand constraints. For example, consider m = 2 commu-

nities, and let community j ∈ {1, 2} demand PDi units of

power and receive aji fraction of its power from genera-

tor i ∈ {1, . . . , n}. Due to network effects (e.g., distance,

connectivity), the vector ~a1 6= ~a2. Thus, the extension of

equation (4) for this problem is to

minimize

n∑

i=1

Ci(Pi)

subject to a11P1 + · · · + a1nPn ≥ PD1,

a21P1 + · · · + a2nPn ≥ PD2,

(5)

where one or both constraints may be active. When both

constraints are active, the optimal solution to this problem



cannot be solved using numerical methods described by

Bergen and Vittal. However, this problem does have the

form of equation (1) and is applicable to the methods in

this paper. Moreover, the decentralized algorithm discussed

in this paper is well suited for spatially distributed generation

of power.

3) Ideal Free Distribution and Nutrient Foraging: The

ideal free distribution (IFD) of social foraging theory was

originally introduced by Fretwell and Lucas [21], and a

review of recent biological advances in the theory is given

by Stephens et al. [22, Box 10.1]. Engineering extensions

of IFD theory have lately been used to solve distributed

resource allocation problems in application areas such as

temperature control, municipal water distribution, and au-

tonomous-air-vehicle surveillance [23]–[28]. Here, the IFD

is shown to be a degenerate single-constraint case of equa-

tion (1), and so the methods presented in this paper can

also be used to find distributed IFD solutions. However,

because the framework in this paper generalizes the IFD,

it can provide more practicality for engineering applications

and more explanatory power in social foraging analysis.

In the basic IFD model, each of N ∈ N foragers is

free to move among n food patches. At each food patch,

food arrives at some rate and then is distributed among the

foragers within the patch. So whenever a new forager enters

a patch, the food available to each of the previous patch

occupants decreases per unit time. In the IFD model, it

is assumed that each forager that is free to move among

these n patches has perfect knowledge of a continuous and

decreasing suitability function si : [0, N ] → R>0 that

maps the number of foragers in patch i ∈ {1, . . . , n} to a

subjective patch-quality valuation related to decreasing food

availability. When suitability of one patch is higher than

the suitability of another, some small number of animals

immediately move from the higher-suitability patch to the

lower-suitability patch so that the imbalance between all

suitabilities decreases to its minimum. This search for suit-

ability balance is analogous to the numerical computation

of a Lagrange multiplier for a singly constrained separable

convex optimization of a differentiable cost function. Con-

sequently, the IFD can be described by the solution to the

problem

minimize

n∑

i=1

∫ xi

0

1

si(τ)
dτ subject to

n∑

i=1

xi ≥ N (6)

which matches equation (1) and is applicable to the methods

in this paper. However, the IFD can be generalized to a more

useful model that is also applicable to methods in this paper.

Quantitative predictions of an IFD require that population

size N is known a priori. Consequently, conventional bioin-

spired resource allocation techniques based on the IFD [25],

[28] introduce an artificial constraint corresponding to this

fixed population size. For example, over a bank of tempera-

ture controllers, the sum of the actuator voltages is fixed at

a constant population size, and that population of voltages

distributes itself across actuators in different temperature

zones. In this case, the suitability in a zone represents the

temperature error from the desired set point – a temperature

zone is relatively more suitable for entry if it is farther

from its desired temperature set point. So as the IFD-

inspired algorithm operates, foraging voltages accumulate

in temperature zones, suitabilities equalize, and temperatures

approach their set points. If the desired set points can be met

without the total population being allocated, a fictitious tem-

perature zone is introduced in software that provides a region

for the surplus population to be stored. So the population

constraint adds extra complications to the implementation of

these resource allocation techniques. Moreover, although set

points are reached and less power is used than conventional

distributed regulation techniques (e.g., each zone having a

PID controller operating independently in parallel with the

controllers in the other zones), there is no guarantee that the

regulating resource allocation also achieves minimal power

use. So it is more desirable to remove the fixed popu-

lation requirement and introduce sensitivity to meaningful

optimization metrics, as is described in Section II-C1 for

minimal-power lighting.

Not only is the constant-population assumption imprac-

tical for bioinspired engineering applications, but it is also

unnatural for the analysis of social foraging in some cases.

For colonial foraging (e.g., an ant colony), foragers are a

team that do not simply maximize caloric intake but instead

simultaneously regulate the intake of several macronutri-

ents (e.g., protein and carbohydrates) to colony-specific set

points [29], and that team has the ability to adapt its size

based on the richness of the environment. The solution to

minimize

n∑

i=1

∫ xi

0

1

si(τ)
dτ

subject to a11x1 + · · · + a1nxn ≥ c1,

...

am1x1 + · · · + amnxn ≥ cm,

(7)

matches the IFD case in equation (6) with m = 1 and

~a1 = ~1, but it also allows the single population constraint to

be replaced with possibly many macronutrient constraints.

So it is a better description of the colonial foraging problem

in general. In this colonial case, the suitability function

represents the desired spread of foraging effort to meet

the requirements. For example, letting si(τ)
−1 = 1 for

each i ∈ {1, . . . , n} minimizes the sum of the foragers

required at each patch, which leads to clumps of foragers

at only the richest patches. Letting si(τ)
−1 = τ for each

i ∈ {1, . . . , n} increases the number of foragers required to

meet the constraints, but the foraging distributions are spread

across more patches, and thus is more risk averse. So the

number of required foragers (i.e., resources being allocated)



scale with nutrient constraints, richness of the environment,

and desired spread. These are desirable features for explain-

ing allocations in nature and they are useful in designing

resource allocation strategies for engineering applications.

Likewise, the on-line optimization method described later in

this paper may be viewed as a model of nutrient-constrained

foraging dynamics or a guide for decentralized strategies to

solving this problem.

III. NATURE-INSPIRED DECENTRALIZED ALGORITHM

Using Section II-C1 as a motivating example, a distributed

optimization algorithm is developed here for intelligent

lights. This algorithm was originally inspired by the ideal

free distribution (IFD) [21] of social foraging theory, which

is described in Section II-C3. Like other uses of the IFD in

engineering [23]–[28], each step of this algorithm causes

abstract “animals” (e.g., marginal units of a fixed power

budget or members of a vehicle) to move from less suitable

“food” patches to more suitable ones. However, unlike this

algorithm, those algorithms endow information-processing

agency to the actuators. That is, either the patches (e.g.,

heaters across rooms) or the resources themselves (e.g., ve-

hicles) gather information from sensors and nearby patches,

and resources are passed from one patch to another. Existing

work in intelligent lighting takes a similar actuator-centric

approach [9], [13]–[18], [30] – agents sit at the level of lights

and adjust their local lighting level based on communication

with sensors and surrounding lights. Not only do those

approaches require direct communication between lights, but

they require significant system-level reconfiguration when

constraints are added, removed, or shifted.

A Sensor-Centric Approach: The algorithm here puts

information-processing agency at the level of each sensor.

While the important details of the algorithm are given below,

the salient features of this algorithm are depicted graphically

in Figure 2. In this sensor-centric paradigm, the actuators

have naive but consistent behaviors in isolation – they

all reduce allocation levels at a uniform rate, as seen in

Figure 2(b). This behavior will inevitably cause a constraint

to be violated at one of the sensors. At that point, the

sensor commands a subset of lights to increase according

to a particular non-uniform profile. Because lights decrease

uniformly and are commanded to non-uniformly increase,

the result causes resources to accumulate more in some

lights than others – like animals shifting to different patches

in an IFD. Sensors giving these commands do not commu-

nicate with each other. However, because they share access

to the artificial light, their actions become correlated in a

way that ensures that the sum of the non-uniform increase

commands will be uniform at the optimal lighting allocation.

The uniform upward sum will be precisely balanced by the

uniform lighting decay, and thus the system comes to equi-

librium, as shown in Figures 2(b) and 2(c). In this regard,

the action of a system with multiple constraints is more
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Figure 2. Graphical depiction of algorithm action for n = 2 lights with
levels ~x = [x1, x2]⊤. The light gray curves in (a) are level sets of a
cost function F (~x) = ‖~x‖2

2
= x2

1
+ x2

2
, and the oblique line shows the

zero-surplus ~x allocations that meet the constraint ~a⊤j ~x ≥ cj with strict

equality. The minimal-cost solution ~x∗ is the solid dot occurring where the
constraint line is tangent to the cost function. At that point, vector ~aj is co-
linear with cost gradient ∇F (~x∗). Due to constraint convexity and cost-
gradient monotonicity, the gradient is steeper (shallower) to the left (right)
of ~x∗ when sliding along the constraint boundary. In (b), the algorithm
action for (a) is shown. The gray diagonal arrows show the mean action of
two lights that regularly reduce illumination level by value δ. The arrows
pointing upward from the constraint boundary show each marginal increase
~vj commanded by the sensor when the constraint is violated at point ~x.
For light i ∈ {1, . . . , n}, coordinate vji(~x) = aji/∇iF (~x). Thus, the
slope of ~vj here is vj2/vj1 = (aj2/aj1)/(∇2F (~x)/∇1F (~x)), which
is unity only at the optimal solution ~x∗ because the constraint vector ~aj
and gradient ∇F (~x∗) are co-linear. The unity-slope increase balances the
unity-slope decrease from the naive decaying action of the lights. A sample
trajectory for the system is shown originating at the open circle and moving
toward the closed dot at the equilibrium. It becomes asymptotically closer
to a set of points inside a δ-sized square anchored near the solution ~x∗. In
(c), a sample trajectory is shown for a case with two active constraints –
the optimal solution is the intersection of the two constraint lines, which is
found by the algorithm as movement along the second constraint is balanced
by opposite movement along the first constraint.

like a macronutrient-constrained social-insect colony with

foragers that continually retire from foraging and then are re-

allocated independently when each macronutrient constraint

is violated.

Notation: In the following, let there be n ∈ N lighting

agents and m ∈ N sensor agents that each have access to the

n lighting control variables ~x , [x1, x2, . . . , xn]
⊤ ∈ X . For

example, the lighting levels can be learned by the sensors

through observing broadcasts over radio or even visual-light



communication [19] embedded within the light itself. As in

Section II-C1, there are m ∈ N luminescence constraints

of the form ~a⊤j ~x ≥ cj for each j ∈ {1, . . . ,m}. There is

also a sufficiently small parameter δ ∈ R>0 that is chosen

such that δ < cj/(~a
⊤
j
~1) for all j ∈ {1, . . . ,m}. In the

algorithm below, this parameter can be tuned to increase

convergence speed (i.e., high δ) or increase the accuracy of

the equilibrium solution (i.e., low δ).

A. Algorithm Action

The algorithm implemented on each agent operates asyn-

chronously and results in the system as a whole jumping

from one state (i.e., set of lighting levels) to another state

at discrete events. Lighting agents act regularly to decrease

allocations while sensor agents only act to increase lighting

levels when corresponding constraints cease to be met. In the

following, assume that ∇iF (~x) > 0 for each i ∈ {1, . . . , n};

this assumption is met if the lower bound xi > 0 for

all i ∈ {1, . . . , n}. For simplicity, the upper and lower

bounds of the lighting levels are not discussed here; an

actual implementation would truncate lighting-level changes

to their bounds.

• At regularly scheduled events, each lighting agent i ∈
{1, . . . , n} will decrease its lighting level by di, which

may in general depend on state xi or time, but will

be taken as di ≡ δ unless otherwise noted. Thus, the

lighting agent may operate without knowledge of the

gradient nor states of other lights. In the social-insect

analogy, this action corresponds to regular attrition of

foragers allocated to a particular patch. An individual

may transition out of foraging due to either a behavioral

timeout or because she is unable to detect a global

signal, such as a macronutrient-specific pheromonal cue

that decays at a constant rate.

• When its corresponding constraint is violated, sen-

sor j ∈ {1, . . . ,m} causes the n lighting levels in

vector ~x to transition to new levels ~xnext such that

~xnext = ~x+

{

σj ~vj if ~a⊤j ~x ≤ cj ,

0 otherwise
(8)

where state-dependent direction

~vj ,
[

aj1

∇1F (~x) ,
aj2

∇2F (~x) , · · ·
ajn

∇nF (~x)

]⊤

(9)

and scalar σj > 0. For each j ∈ {1, . . . ,m}, the scalar

σj may depend on ~x. Unless otherwise noted, we take

σj ,
cj − ~a⊤j ~x

~a⊤j ~vj
, (10)

which ensures that ~a⊤j ~x
next = cj if sensor j ∈

{1, . . . ,m} acts alone. This scalar can also be related

to the index proposed by Yamamoto [31] for ordering

active and inactive constraints in a linear programming

problem. It is assumed that each sensor has access to

broadcasted values of the state vector ~x; however, no

sensor has any information about any other sensor. Co-

ordination between sensors is stigmergic and makes use

of the state variables (i.e., the lighting levels available

to all sensors simultaneously) as shared memory in the

system. In the social-insect analogy, this action cor-

responds to colony-wide deficits in one macronutrient

triggering an increase in foraging allocation biased to

bring in more of that macronutrient from appropriate

patches.

Improving Transient Characteristics: When compo-

nents of ~x are sufficiently large, lights will go for many

update cycles without receiving signals from sensors. Thus,

decay di of light i ∈ {1, . . . , n} can be temporarily increased

during times of little sensor contact in order to improve

transient response. Similarly, to reduce system overshoot

from simultaneous action of many sensors, each sensor

j ∈ {1, . . . ,m} can temporarily reduce scalar σj when it is

far under its constraint. In this respect, the action of the al-

gorithm is similar to the action of interior-point optimization

algorithms that drive the state toward constraint boundaries.

From the perspective of sliding mode control [32], these

far-from-boundary actions merely establish the constraint

boundary a sliding mode of the system.

B. Ultimate Boundedness and Stability

As with many primal-space algorithms, there is no single

equilibrium point where this algorithm will come to rest.

Here, it is shown that the motion of this algorithm can

be eventually constrained to a ball around the optimal

solution of equation (1); moreover, the size of this ball

can be made arbitrarily small by decreasing the size of

δ, albeit at the cost of decreasing convergence speed.

Using the IFD interpretation, for each i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}, the component vji = aji/∇iF (~x)
represents the suitability of light i induced by the constraint

at sensor j. The motion of the algorithm will continually

move resources from low suitability lights to relatively

higher suitability lights. Because of the coordinate-level

monotonicity of ∇F , a decrease (increase) in a lighting level

will increase (decrease) its suitability. Thus, the algorithm

causes all suitabilities to collapse onto a single common

suitability. At that point ~x∗, the gradient ∇F (~x∗) is co-linear

with the constraint vector ~aj , which implies that the system

arrives at an optimal equilibrium (Figure 2(a)). For multiple

constraints, actuator bounds, or weakly convex optimization

functions, this motion continues until balanced by actuator

truncation or collision with motion from another sensor.

1) Simplifying Assumptions: For simplicity, the timing of

events is slightly constrained in this analysis. Agents update

asynchronously in general, and some agents may update

simultaneously, but the order of events must be fixed. This

assumption is met, for example, if all agents are triggered



by local clocks that have been manufactured to tick at the

same rate. Formally, it is assumed that there is an M ∈ N

such that the set of agents triggered at time k must be equal

to the set of agents triggered at time k + M . The state of

the system at time k is denoted ~x[k].
Here, consider sensor j ∈ {1, . . . ,m} and assume that the

system is operating in a region that meets constraints of all

other sensors. Consequently, j is the only sensor that will

be activated in this analysis. Likewise, it is assumed that

the system light levels are operating sufficiently far from

their upper and lower bounds so as to not activate truncation

constraints. The analysis starts at a time k, and sensor j will

have its influence on state ~x at time k + 1.

2) A Period-M Invariant Sliding Mode: If ~x[k] is such

that ~a⊤j ~x[k] > cj , then sensor j will be inactive because it

will be far over its constraint, but the persistent decaying

action of the lighting agents will eventually cause con-

straint j to be violated. Hence, assume that ~x[k] is such

that ~a⊤j ~x[k] ≤ cj . Then, at the time k +M when sensor j
and all lighting agents have also executed,

~a⊤j ~x[k +M ] = ~a⊤j




~x[k] +

σj~vj from sensor j
︷ ︸︸ ︷

cj − ~a⊤j ~x[k]

~a⊤j ~vj [k]
~vj [k]

combined
lighting

decay
︷ ︸︸ ︷

−~1δ






= cj − ~a⊤j ~1δ. (11)

That is, after violating the constraint at time k, the state ~x[k+
M ] will return to the set Pj , {~x ∈ X : ~a⊤j ~x = cj−~a⊤j ~1δ},

which is parallel to the constraint boundary for sensor j. In

fact, Pj is the set of allocations that satisfy the sensor j
constraint if it is reduced slightly from cj to cj −~a⊤j ~aδ. So

Pj is positively invariant with respect to a version of the

system re-sampled at period M after the time k. Moreover,

at all times between these period-M samples, the system is

confined to

Cj , {~x ∈ X : ~a⊤j ~x = cj − δ~a⊤j
∑

i∈A

~ei,A ⊆ {1, . . . , n}},

and so Cj is positively invariant with respect to the full

system. Surfaces Cj and Pj are reduced-order sliding

modes [32] of the full and period-M sampled systems,

respectively.

3) Optimality of Period-M Equilibria: In Section II-B, it

was shown that the optimal solution ~x∗ for a single active

constraint will be such that ∇F (~x)∗ = λ∗
j~aj for some λ∗

j >

0. Consequently, the corresponding vji = aji/∇F ( ~x∗) =
1/λ∗

j , and ~vj ∝ ~1. In the IFD interpretation, if vji represents

the suitability of patch i, then the IFD represents the equal-

suitability distribution. Assuming that ~vj [k + M ] ∝ ~1 and

x[k +M ] ∈ Pj , then

~x[k +M +M ] = ~x[k +M ] +
δ~a⊤j ~1

~a⊤j ~vj [k]
~vj [k]− δ~1

= ~x[k +M ] + δ~1− δ~1 = ~x[k +M ]

Consequently, the optimal solution for the system when

constraint cj is reduced to cj − ~aT~1δ is also a period-M
fixed point for the system. In fact, any period-M fixed point

has vj ∝ ~1. Thus, the full system has a period-M steady

state that oscillates near the vicinity of the solution ~x∗.

4) Stability By Suitability Range Compression: Here, it

is shown that each iteration of the algorithm increases the

allocation to the patch with the highest suitability and de-

creases the allocation to the patch with the lowest suitability.

So long as the identity of the highest and lowest suitability

eventually stabilizes, the system will converge because all

suitabilities will collapse onto a single global suitability and

~v ∝ ~1. For brevity, the discussion here establishes a very

low upper bound on δ that ensures that the identities of the

highest-and lowest-suitability patch are fixed for all time. It

is left for future work to show that a tight upper bound on

δ is much higher.

Let u, ℓ ∈ {1, . . . , n} such that aju/∇uF (~x) >
ajℓ/∇ℓF (~x). Because ∇F is continuous and xi ∈ [xi, xi] ⊂
(0,∞), there is some ∆ ∈ R>0 such that aju/∇uF (~x +
∆) > ajℓ/∇ℓF (~x − ∆) for all ∆ ∈ (0,∆]. Next, assume

the period-M system is within Pj at time k but not at a fixed

point. Let i = argmaxni=1 vji[k] and i = argminni=1 vji[k].
Here it will be shown that, with appropriate choice of δ,

0 < xi[k+M ]−xi[k] < ∆ and 0 > xi[k+M ]−xi[k] > −∆.

Thus, i and i do not vary while the system slides along

Pj . The minimum and maximum suitabilities, vji and vji,
always correspond to the same two patches, and the dif-

ference between these suitabilities continually decreases. So

the system converges to the ~vj ∝ ~1 fixed point.

Because ~x[k] ∈ Pj ,

xi[k + 1]− xi[k] = δ

(

aj1 + . . .+ ajn
aj1

vj1

vji

+ . . . ajn
vjn

vji

− 1

)

.

However, vji/vji ≤ 1. Consequently, xi[k + 1]− xi[k] > 0
and can be made arbitrarily small by choice of δ. By similar

reasoning, it can be shown that xi[k] − xi[k + 1] > 0 and

can also be made arbitrarily small by choice of δ. Thus, by

the reasoning above, suitabilities tend to equalize, and the

period-M re-sampled system converges.

5) Ultimate Bounds of Suboptimality: It has been shown

that for sufficiently small δ, the period-M re-sampled system

converges to a suboptimal allocation ~x+ that is F -optimal

subject to the modified constraint that ~a⊤~x ≥ cj − ~a⊤~1δ.

Moreover, it will not deviate from this result by more than δ
in each coordinate. The distance between ~x+ and ~x∗ varies

with the cost function in general. For example, for F (~x) =
‖~x‖22, both ~x∗ and ~x+ are proportional ~aj and each other.

In this case, it is possible to show that the steady state of

the system oscillates within a 2δ max-norm distance of ~x∗.

On the other hand, internally increasing the constraint by

~a⊤~1δ ensures that ~x+ = ~x∗, which decreases max-norm

suboptimality to δ.



(a) Incandescent Sources (b) Photoresistive Sensors

Figure 3. Small-scale Lighting Testbed Similar to Figure 1.

This discussion assumes that ~x∗ only involves the acti-

vation of a single constraint j. As shown in Figure 2(c),

the sliding motion along one constraint can collide with

the sliding motion along another. It can be shown that the

algorithm described here will reach equilibria that rest on

multiple constraint boundaries, and it can be shown that the

suboptimal solutions can also be made arbitrarily close to

the optimal solution by appropriate choice of δ.

IV. EXPERIMENTAL VALIDATION

Experimental validation of the distributed-lighting algo-

rithm was performed using an 8-light–8-sensor hardware-

in-the-loop apparatus resembling Figure 1. In particular, in-

candescent lights and Cadmium Sulfide (CdS) photoresistor

sensors were installed inside a shoe box sealed from outside

light sources (Figure 3). Algorithms were implemented on

a single dSPACE RTI1104 DSP, and so distributed con-

trols were simulated on a single embedded controller using

stochastic delays and scheduling. The controller received

analog inputs from the sensors and responded with analog

control signals fed to a series of Darlington-style drivers

providing voltage control of the incandescent bulbs. In the

experiments here, only sensors 3 and 7 shown in Figures 1

and 3(b) are used; inputs from the six other sensors are

ignored. So in the following, there are n = 8 lights and

m = 2 sensors. The cost function used was the 2-norm of

the resource allocation, which is a proximate for the total

instantaneous power as described in Section II-C1. That is,

the cost function F (~x) , ‖~x‖22 =
∑n

i=1 x
2
i .

In practice, conventional multiple-access communication

techniques can be used so that each sensor can estimate

the illumination contribution of nearby lights continuously

during normal operation [e.g., 19]. For simplicity, a separate

commissioning process is used here during the first sixteen

seconds of each run. That is, over two seconds per each

of the eight lights, the light assumes two discrete output

levels while all other lights are off. Sensors then fit an affine

influence model to each light. After this commissioning

process, there is no explicit coordination between lights

and no information provided to lights or sensors about the

relative location of other agents.
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Figure 4. Results for distributed algorithm. For sensor readings shown
in (a) and (b), the corresponding constraint level is shown with a dashed
line. In the first sixteen seconds of the experiment, an auto-commissioning
process fits a linear model of the influence of the lights on the sensors.
Immediately after commissioning, the power-minimization algorithm starts.
Based on the fitted model, the predicted optimal allocations are shown
with double arrowheads on each of (c)–(j). In (c), the actual allocation is
truncated to zero by an unmodeled dead-zone non-linearity added to disable
the actuator outside of its normal operating range.

A. Results

Results for a sample distributed power-minimization ex-

periment are shown in Figure 4. The double arrowheads

adjacent to each of Figures 4(c)–4(j) indicate the opti-

mal open-loop output allocation predicted from a static

optimization based on the linear model fitted from the

commissioning process. To mitigate overshoot effects at

the end of the commissioning process, the step size σj for

each sensor j ∈ {3, 7} is less aggressive than the example

in equation (10). The decay parameter di for each light

i ∈ {1, . . . , 8} could also be adjusted to tune the transient

behavior of the algorithm. The chattering across the 2V

output level seen in Figure 4(c) is due to an artificial dead

zone introduced on each actuator to disable the incandescent

light at the bottom of its linear region of operation when it

ceases to produce visible light.

For comparison, the results of a centralized dual-space op-

timization procedure is shown in Figure 5. This centralized

procedure continuously re-calculates its allocation based on

new sensor information. As before, the double arrowheads

in each of Figures 5(c)–5(j) indicate the optimal open-loop

allocation predicted from a static optimization based on the

linear model fitted from the commissioning process. Because

the centralized optimization procedure may not converge

in real time, intermediate allocation estimates are used at

each real-time clock event based on the current Lagrange

multiplier estimates. Moreover, the dual-space algorithm

always uses the most recently available sensor information.
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Figure 5. Benchmark results from centralized algorithm. For sensor
readings shown in (a) and (b), the corresponding constraint level is shown
with a dashed line. In the first sixteen seconds of the experiment, an auto-
commissioning process fits a linear model of the influence of the lights
on the sensors. Immediately after commissioning, the power-minimization
algorithm starts. Based on the fitted model, the predicted optimal allocations
are shown with double arrowheads on each of (c)–(j).

Otherwise, the algorithm is prone to significantly more

chattering due to the relatively slow sampling time that

would be induced by waiting for convergence.

B. Discussion

The equilibrium behavior of the decentralized and cen-

tralized allocations match. That is, the distributed algorithm

with no coordination between agents reaches the same

constrained optimum as the centralized algorithm. The de-

centralized allocation in Figure 4(e) is noticeably lower than

the predicted allocation from static optimization; however,

the centralized allocation in Figure 5(e) is also less than

predicted by the static model. Thus, the noticeable variation

in Figure 4(e) is due to model error as opposed to an

error in the distributed algorithm. Moreover, if a sensor is

added or removed from the system, the centralized algorithm

would have to be re-configured and re-started. However, the

distributed algorithm will automatically adapt to the change.

V. CONCLUSIONS

A decentralized algorithm for solving constrained non-

linear optimization problems with linear constraints has

been outlined. This algorithm is particularly tailored for

physical resource allocation problems. It uses heterogeneous

agents in two classes: one class that continuously decreases

resource allocations in the direction of decreasing cost, and

another class that reacts when an operational constraint is

violated. In these cases, the physical resource itself (e.g.,

light, temperature) is used as a stigmergic shared memory

implicitly communicating information between constraints.

Thus, rather than communicating directly along explicit

networks, the agents coordinate through the use of a shared

physical medium in which they all reside.

In applications like intelligent lighting, additional reduc-

tions in power use may be possible with predictive mod-

els of disturbances (e.g., seasonal patterns, cloud motion,

occupancy changes) and demand changes. The algorithms

presented in this paper are not meant to replace conventional

methods like model predictive control (MPC) for this task.

Instead, a hierarchal control scheme may be used where

control methods like MPC adjust the schedule of how set

points change over relatively slow time scales while the algo-

rithms presented here can regulate to those set points quickly

using minimal power and low communication bandwidth.

Moreover, the physical stigmergy used in these algorithms

is uniquely amenable to the physical isolation induced by

visible light communication. So there is an opportunity for

conventional and stigmergic distributed resource allocation

to complement each other.
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