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Abstract

The energy consumption of computer and communication sys-
tems does not scale linearly with the workload. A system
uses a significant amount of energy even when idle or lightly
loaded. A widely reported solution to resource management
in large data centers is to concentrate the load on a subset of
servers and, whenever possible, switch the rest of the servers
to one of the possible sleep states. We propose a reformulation
of the traditional concept of load balancing aiming to optimize
the energy consumption of a large-scale system: distribute the
workload evenly to the smallest set of servers operating at an
optimal energy level, while observing QoS constraints, such as
the response time. Our model applies to clustered systems;
the model also requires that the demand for system resources
to increase at a bounded rate in each reallocation interval. In
this paper we report the VM migration costs for application
scaling.

1 Introduction and Motivation

The concept of “load balancing” dates back to the time the
first distributed computing systems were implemented in the
late 1970s and early 1980s. It means exactly what the name
implies, to evenly distribute the workload to a set of servers
to maximize the throughput, minimize the response time, and
increase the system resilience to faults by avoiding overloading
one or more systems in the distributed environment.

Distributed systems became popular after communication
networks allowed multiple computing engines to effectively
communicate with one another and the networking software
became an integral component of an operating system. Once
processes were able to easily communicate with one another
using sockets1, the client-server paradigm became the pre-
ferred method to develop distributed applications; it enforces
modularity, provides a complete isolation of clients from the
servers, and enables the development of stateless servers.

The client-server model proved to be not only enduring,
but also increasingly successful; three decades later, it is at

1 The sockets were introduced by BSD (Berkeley Systems Distribu-
tion) Unix in 1977

the heart of utility computing. In the last few years pack-
aging computing cycles and storage and offering them as a
metered service became a reality. Large farms of computing
and storage platforms have been assembled and a fair num-
ber of Cloud Service Providers (CSPs) offer computing and
storage services based on three different delivery models SaaS
(Software as a Service), PaaS (Platform as a Service), and
IaaS (Infrastructure as a Service).

Reduction of energy consumption thus, of the carbon foot-
print of cloud related activities, is increasingly more impor-
tant for the society. Indeed, as more and more applica-
tions run on clouds, more energy is required to support cloud
computing than the energy required for many other human-
related activities. While most of the energy used by data
centers is directly related to cloud computing, a significant
fraction is also used by the networking infrastructure used to
access the cloud. This fraction is increasing, as wireless access
becomes more popular and wireless communication is energy
intensive. In this paper we are only concerned with a single
aspect of energy optimization, minimizing the energy used by
cloud servers.

Unfortunately, computer and communication systems are
not energy proportional systems, in other words, their energy
consumption does not scale linearly with the workload; an idle
system consumes a rather significant fraction, often as much
as 50%, of the energy used to deliver peak performance. Cloud
elasticity, one of the main attractions for cloud users, comes
at a stiff price as the cloud resource management is based on
over-provisioning. This means that a cloud service provider
has to invest in a larger infrastructure than a “typical” or av-
erage cloud load warrants. At the same time, cloud elasticity
implies that most of the time cloud servers operate with a low
load, but still use a large fraction of the energy necessary to
deliver peak performance. The low average cloud server uti-
lization [1, 3, 10, 15] affects negatively the common measure
of energy efficiency, the performance per Watt of power and
amplifies the ecological impact of cloud computing.

The strategy for resource management in a computing
cloud we discuss is to concentrate the load on a subset of
servers and, whenever possible, switch the rest of the servers
to a sleep state. In a sleep state the energy consumption is
very low. This observation implies that the traditional con-
cept of load balancing could be reformulated to optimize the
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energy consumption of a large-scale system as follows: dis-
tribute evenly the workload to the smallest set of servers op-
erating at an optimal energy level, while observing QoS con-
straints, such as the response time. An optimal energy level
is one when the normalized system performance, defined as
the ratio of the current performance to the maximum per-
formance, is delivered with the minimum normalized energy
consumption, defined as the ratio of the current energy con-
sumption to the maximal one.
From the large number of questions posed by energy-aware

load balancing policies discussed in Section 3, we discuss only
the energy costs for migrating a VM when we decide to either
switch a server to a sleep state or force it to operate within
the boundaries of an energy optimal regime.

2 Operating Efficiency of a System

In this section we discuss energy proportional systems, the
dynamic range of different subsystems including memory,
secondary storage, and interconnection networks. Then we
overview methods to reduce the energy consumption of a com-
puter system and discuss sleep states.
Operating efficiency. The operating efficiency of a sys-

tem is captured by an expression of “performance per Watt
of power.” It is reported that during the last two decades
the performance of computing systems has increased much
faster than their operating efficiency; for example, during
the period 1998 till 2007, the performance of supercomput-
ers has increased 7, 000% while their operating efficiency has
increased only 2, 000%. Recall that power is the amount of
energy consumed per unit of time and it is measured in Watts,
or Joules/second.
Energy proportional systems. In an ideal world, the

energy consumed by an idle system should be near zero and
grow linearly with the system load. In real life, even systems
whose power requirements scale linearly, when idle use more
than half the power they use at full load. Data collected
over a long period of time shows that the typical operating
region for data center servers is far from an optimal energy
consumption region as we shall see in Section 3.
Energy-proportional systems could lead to large savings in

energy costs for computing clouds. An energy-proportional
system consumes no power when idle, very little power under
a light load and, gradually, more power as the load increases.
By definition, an ideal energy-proportional system is always
operating at 100% efficiency. Humans are a good approxima-
tion of an ideal energy proportional system; the human energy
consumption is about 70 W at rest, 120 W on average on a
daily basis, and can go as high as 1, 000− 2, 000 W during a
strenuous, short time effort [5].
Dynamic range of subsystems. The dynamic range is

the difference between the upper and the lower limits of the
energy consumption of a system function of the load placed
on the system. A large dynamic range means that a system
is able to operate at a lower fraction of its peak energy when
its load is low. Different subsystems of a computing system
behave differently in terms of energy efficiency; while many

processors have reasonably good energy-proportional profiles,
significant improvements in memory and disk subsystems are
necessary.

The processors used in servers consume less than one-third
of their peak power at very-low load and have a dynamic
range of more than 70% of peak power; the processors used
in mobile and/or embedded applications are better in this
respect. According to [5] the dynamic power range of other
components of a system is much narrower: less than 50% for
DRAM, 25% for disk drives, and 15% for networking switches.

The largest consumer of power of a system is the proces-
sor, followed by memory, and storage systems. The power
consumption can vary from 45W to 200W per multi-core
CPU; newer processors include power saving technologies.
Large servers often use 32 − 64 dual in-line memory mod-
ules (DIMMs); the power consumption of one DIMM is in the
5 − 21 W range. Server secondary memory cooling requires
additional power; a server with 2−4 hard disk drives (HDDs)
consumes 24− 48 W.

A strategy to reduce energy consumption by disk drives
is to concentrate the workload on a small number of disks
and allow the others to operate in a low-power mode. One
of the techniques to accomplish this is based on replication.
A replication strategy based on a sliding window is reported
in [25]; measurement results indicate that it performs better
than LRU, MRU, and LFU2 policies for a range of file sizes,
file availability, and number of client nodes and the power
requirement is reduced by as much as 31%.

Another technique is based on data migration. The system
in [11] uses data storage in virtual nodes managed with a dis-
tributed hash table; the migration is controlled by two algo-
rithms, a short-term optimization algorithm used for gather-
ing or spreading virtual nodes according to the daily variation
of the workload so that the number of active physical nodes
is reduced to a minimum, and a long-term optimization algo-
rithm, used for coping with changes in the popularity of data
over a longer period, e.g., a week.

A number of proposals have emerged for energy propor-
tional networks; the energy consumed by such networks is
proportional with the communication load. For example, in
[1] the authors argue that a data center network based on
a flattened butterfly topology is more energy and cost effi-
cient. High-speed channels typically consist of multiple serial
lanes with the same data rate; a physical unit is stripped
across all the active lanes. Channels commonly operate ple-
siochronously3 and are always on, regardless of the load, be-
cause they must still send idle packets to maintain byte and
line alignment across the multiple lines. An example of an
energy proportional network is InfiniBand.

Sleep states. A comprehensive document [12] elaborated
by Hewlett-Packard, Intel, Microsoft, Phoenix Technologies,
and Toshiba describes the advanced configuration and power

2LRU (Least Recently Used), MRU (Most Recently Used), and
LFU(Least Frequently Used) are replacement policies used by memory
hierarchies for caching and paging.

3Different parts of the system are almost, but not quite perfectly,
synchronized; in this case, the core logic in the router operates at a
frequency different from that of the I/O channels.
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Table 1: Estimated average power use of volume, mid-range, and high-end servers (in Watts) along the years [13].
Type 2000 2001 2002 2003 2004 2005 2006
Vol 186 193 200 207 213 219 225
Mid 424 457 491 524 574 625 675
High 5,534 5,832 6,130 6,428 6,973 7,651 8,163

interface (ACPI) specifications which allow an operating sys-
tem (OS) to effectively manage the power consumption of
the hardware. Several types of sleep sates, are defined: C-
states (C1-C6) for the CPU, D-states (D0-D3) for modems,
hard-drives, and CD-ROM, and S-states (S1-S4) for the basic
input-output system (BIOS).
The C-states, allow a computer to save energy when the

CPU is idle. In a sleep state the idle units of a CPU have
their clock signal and the power cut. The higher the state
number, the deeper the CPU sleep mode, the larger the energy
saved, and the longer the time for the CPU to return to the
state C0 which corresponds to the CPU fully operational. In
states C1 to C3 the clock signal and the power of different
CPU units are cut, while in states C4 to C6 the CPU voltage
is reduced. For example, in the C1 state the main internal
CPU clock is stopped by the software but the bus interface is
and the advanced programmable interrupt controller (APIC)
are running, while in state C3 all internal clocks are stopped,
and in state C4 the CPU voltage is reduced.
Economy of scale. Economy of scale affects the energy

efficiency of data processing [8]. For example, Google re-
ports that the annual energy consumption for an Email service
varies significantly depending on the business size and can be
15 times larger for a small one [10]. Cloud computing can
be more energy efficient than on-premise computing for many
organizations [4, 18].
The power consumption of servers has increased over time.

Table 1 [13] shows the evolution of the average power con-
sumption for volume (Vol) servers - servers with a price less
than $ 25 K, mid-range (Mid) servers - servers with a price
between $25 K and $499 K, and high-end (High) servers -
servers with a price tag larger than $500 K.
The energy to transport data is a significant component of

the total energy cost. According to [4] ”a public cloud could
consume three to four times more power than a private one
due to increased energy consumption in transport.”

3 Energy optimization in large-scale

data centers

Motivation. Recently, Gartner research reported that the
average server utilization in large data-centers is 18% [21],
while the utilization of x86 servers is even lower, 12%. These
results confirm earlier estimations that the average server uti-
lization is in the 10−30% range [5]. A 2010 survey [6] reports
that idle servers contribute 11 million tones of unnecessary
CO2 emissions each year and that the total yearly costs for
idle servers is $19 billion.

The alternative to the wasteful resource management pol-
icy when the servers are always on, regardless of their load, is
to develop energy-aware load balancing policies. Such policies
combine dynamic power management with load balancing and
attempt to identify servers operating outside their optimal
power regime and decide if and when they should be switched
to a sleep state or what other actions should be taken to opti-
mize the energy consumption. The term server consolidation
is sometimes used to describe the process of switching idle
systems to a sleep state.
Challenges and metrics for energy-aware load bal-

ancing. Some of the questions posed by energy-aware load
balancing are:

1. Under what conditions should a server be switched to a
sleep state?

2. What sleep state should the server be switched to?

3. How much energy is necessary to switch a server to a
sleep state and then switch it back to an active state?

4. How much time it takes to switch a server in a sleep state
to a running state?

5. How much energy is necessary to migrate a VM running
on a server to another one?

6. Howmuch energy is necessary to start a VM on the target
server?

7. How to choose the target for the migration of a VM?

8. How much time it takes to migrate a VM?

Two basic metrics ultimately determine the quality of an
energy-aware load balancing policy: (1) the amount of energy
saved; and (2) the number of violations it causes. In practice,
the metrics depend on the system load and other resource
management policies, e.g., the admission control policy and
the QoS guarantees offered. The load can be slow- or fast-
varying, have spikes or be smooth, can be predicted or is
totally unpredictable; the admission control can restrict the
acceptance of additional load when the available capacity of
the servers is low. What we can measure in practice is the
average energy used and the average server setup time. The
setup time varies depending on the hardware and the operat-
ing system and can be as large as 260 seconds [9]; the energy
consumption during the setup phase is close the maximal one
for the server.
The time to switch the servers to a running state is critical

when the load is fast varying, the load variations are very
steep, and the spikes are unpredictable. The decisions when
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to switch servers to a sleep state and back to a running state
are less critical when a strict admission control policy is in
place; then new service requests for large amounts of resources
can be delayed until the system is able to turn on a number
of sleeping servers to satisfy the additional demand.
Policies and mechanisms to implement the policies.

Several policies have been proposed to decide when to switch
a server to a sleep state. The reactive policy [22] responds
to the current load, it switches the servers to a sleep state
when the load decreases and switches them to the running
state when the load increases. Generally, this policy leads to
SLA violations and could work only for slowly-varying and
predictable loads. To reduce SLA violations one can envision
a reactive with extra capacity policy when one attempts to
have a safety margin and keep a fraction of the total num-
ber of servers, e.g., 20%, running above those needed for the
current load. The autoscale policy [9] is a very conservative
reactive policy in switching servers to sleep state to avoid the
power consumption and the delay in switching them back to
running state. This can be advantageous for unpredictable,
spiky loads.
A very different approach is taken by two version of pre-

dictive policies [7, 24]. The moving window averages one es-
timates the workload by measuring the average request rate
in a window of size ∆ seconds and use this average to predict
the load during the next second (second ∆+1) and then slide
the window one second to predict the load for second ∆ + 2,
and so on. The predictive linear regression policy uses a linear
regression to predict the future load.
An optimal policy can be defined as one which does not pro-

duce any SLA violations and guarantees that all servers oper-
ate in their optimal energy regime. Optimality is a local prop-
erty of a server and can be easily determined by the energy
management component of the hypervisor. Recall that Eopt

k ,
the optimal energy level of server Sk is one when the normal-
ized system performance, defined as the ratio of the current
performance to the maximum performance is delivered with
the minimum normalized energy consumption, defined as the
ratio of the current energy consumption to the maximal one.
The boundaries of the optimal regions are defined as Eopt

k ± δ

with δ = (0.05 − 0.1) × E
opt
k . In a heterogeneous environ-

ment the normalized system performance and the normalized
energy consumption differ from server to server.
The mechanisms to implement energy-aware load balancing

policies should satisfy several conditions:

1. Scalability - work well for large farms of servers.

2. Effectiveness - lead to substantial energy and cost sav-
ings.

3. Practicality - use efficient algorithms and require as input
only data that can be measured with low overhead and, at
the same time, accurately reflects the state of the system.

4. Consistency - the policies should be aligned with the
global system objectives and with the contactual obliga-
tions specified by Service Level Agreements, e.g., observe
deadlines, minimize the response time, and so on.

4 Clustered Cloud Models

Clustering. Hierarchical organization has long been recog-
nized as an effective way to cope with system complexity.
Clustering supports scalability, as the number of systems in-
crease we add new clusters. Clustering also supports prac-
ticality, server decisions are based primarily on local state
information gathered from the members of the cluster; such
information is more accurate and available with lower over-
head then information from a very large population.
An energy-aware model. In [19] we introduced a model

of large-scale system with a clustered organization. In this
model we distinguish several regimes of operation for a server
based on the energy efficiency.
We assume that the normalized performance of server Sk

depends on the energy level ak(t) = fk[bk(t)] and distinguish
five operating regions of a server, an optimal one, two sub-
optimal, and two undesirable, Figure 1:

R1 - undesirable low region

β0

k ≤ bk(t) ≤ β
sopt,l
k 0 ≤ ak(t) ≤ α

sopt,l
k (1)

R2 - lower suboptimal region

β
sopt,l
k ≤ bk(t) ≤ β

opt,l
k α

sopt,l
k ≤ ak(t) ≤ α

opt,l
k . (2)

R3 - optimal region

β
opt,l
k ≤ bk(t) ≤ β

opt,h
k α

opt,l
k ≤ ak(t) ≤ α

opt,h
k . (3)

R4 - upper suboptimal region

β
opt,h
k ≤ bk(t) ≤ β

sopt,h
k α

opt,h
k ≤ ak(t) ≤ α

sopt,h
k . (4)

R5 - undesirable high (h) region

β
sopt,h
k ≤ bk(t) ≤ 1 α

sopt,h
k ≤ ak(t) ≤ 1 (5)

The classification captures the current system load and al-
lows us to distinguish the actions to be taken to return to
the optimal regime or region. When the system is operating
in the upper suboptimal or undesirable regions one or more
VMs should be migrated elsewhere to lower the load the load
of the server. When operating in the lower suboptimal or
undesirable regions the system is lightly loaded; then addi-
tional load should be brought in, or, alternatively, the system
should be a candidate for switching to a sleep state. This
classification also captures the urgency of the actions taken;
suboptimal regions do not require an immediate attention,
while undesirable regions do. The time spent operating in
each non-optimal region is also important. Of course one can
further refine the model and define a larger number of regions
but this could complicate the algorithms.
An important characteristic of the model is that the rate

of workload increase is limited. This requirement is moti-
vated by the fact that effective admission control policies are
rarely effective because the available capacity of the a cloud
is difficult to estimate; it should be a part of a Service Level
Agreement.
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a - normalized

performance

b - normalized

energy

(3) Optimal

1

(2) Suboptimal-low

(5) Undesirable-high

(4) Suboptimal-high
αk
opt,high

αk
opt,low

αk
sopt,low

αk
sopt,high

βk
sopt,low

βk
opt,high

βk
opt,low 1βk

sopt,high
βk
0

(1) Undesirable-low

Figure 1: Normalized performance versus normalized server energy consumption; the boundaries of the five operating regions
are shown.

A homogeneous cloud model. To estimate the energy
savings by distributing the work load to the smallest set of
servers operating at an optimal energy mode we consider a
simple model. The model assumes a homogeneous environ-
ment all servers have the same peak performance and the
same energy consumption at the peak performance. More-
over, it ignores the overhead of migrating computations from
one server to another during the energy optimization process.
We compare the energy consumption for two scenarios:

• Reference cloud operation - the n physical platforms op-
erate at normalized performance levels uniformly dis-
tributed in the interval [amin, amax]. We assume that
the average normalized energy consumption per opera-
tion in this range is bavg. Then the energy consumption
is

Eref = nbavg (6)

and the number of operations is

Cref = naavg with aavg =
amax − amin

2
(7)

• Optimal energy-operation - a subset, nsleep < n servers
are switched to a sleep state and the remaining (n −

nsleep) platforms operate at a normalized performance
level aopt and the normalized energy consumption per
operation is bopt = bavg+ǫ. Then the energy consumption
is

Eopt = (n− nsleep)bopt (8)

and the number of operations is

Copt = (n− nsleep)aopt (9)

The ratio of energy consumption for the two scenarios is

Eref

Eopt

=
n

n− nsleep

×
bavg

bopt
(10)

We require that the volume of computations carried out
under the two scenarios be the same

naavg = (n− nsleep)aopt ⇒
n

n− nsleep

=
aopt

aavg
. (11)

It follows that

Eref

Eopt

=
aopt

aavg
×

bavg

bopt
(12)

For example, when bavg = 0.6, aavg = 0.3, bopt = 0.8, and
aopt = 0.9 then

Eref

Eopt

= 2.25. (13)

In this case the optimal operation reduces the energy con-
sumption to less than half.
A heterogeneous cloud model. A more complex model

is used for the second type of simulation experiments. Some
of the model parameters are: τk the reallocation interval, λi,k

the largest rate of increase in demand for CPU cycles of the
applicationAi,k on server Sk, qk(t+τk) and pk(t+τk) the costs
for horizontal and vertical scaling, respectively for server Sk

in the next reallocation interval, and jk(t+ τk), cost of com-
munication and data transfer to or from the leader for the
next reallocation interval. The average server load is uni-
formly distributed in the [0.1 − 0.9] range of the normalized
performance. The servers are connected to the leader by star
topology.
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The parameters defining the energy regimes for server Sk,
α
sopt,l
k , α

opt,l
k , α

opt,h
k , and α

sopt,h
k are randomly chosen from

uniform distributions in the [0.20 - 0.25], [0.25 - 0.45], [0.55
- 0.80] and [0.80 - 0.85] range, respectively. Each applica-
tion has a unique λi,k. Initially, all servers are operating in
the C0 mode. A server Sk maintains static information such
as the serverId, and the boundaries of the energy regimes,
α
sopt,l
k , α

opt,l
k , α

opt,h
k , and α

sopt,h
k ; it also maintains dynamic

information such as the number of applications, the server
load, the regime of operation and CPU state. The leader is
informed periodically about the regime of each server of the
cluster.

At the end of the current reallocation interval, Rk(t), server
Sk evaluates the operation regime for the next reallocation
interval, Rk(t+ τk) based on the server load, CPU cycles de-
mand of each individual application and performance of the
server. If needed, it also calculates the costs for horizontal and
vertical scaling and communication with the leader which de-
pends on the regime of operation and number of applications.
In other words, Sk computes ak(t+ τk), qk(t+ τk), pk(t+ τk)
and jk(t+ τk). After determining the regime of operation in
the next reallocation interval, Rk(t+ τk). If the regime is:

1. R1 - then Sk notifies the leader. Upon receiving the no-
tification, the searches for servers operating in the R4 or
R5 regimes, as well as, other servers operating in the R1

or R2 regimes. If such servers are identified, the leader
calculates the cost of transferring VMs from/to such
servers and sends this information to server Sk. Upon re-
ceiving this information, Sk determines if it should gather
additional workload from servers operating in either R4

or R5 regimes, or if it should transfer its own workload
to servers operating in the R1 or R2 regimes and then
switch itself to sleep.

2. R2 - then Sk notifies the leader that it is willing to ac-
cept additional workload. The leader searches for servers
operating in the R4 and R5 regimes and informs them
that Sk is willing to accept some of their workload. Fi-
nally, Sk negotiates directly with the potential partners
for load balancing.

3. R3 - no action is necessary.

4. R4 - then Sk notifies the leader that it is overloaded. The
leader searches for servers operating in the R1 and R2

regimes and informs them that Sk wishes to transfer some
of its workload to them. Finally, Sk negotiates directly
with the potential partners for load balancing.

5. R5 - then Sk notifies the leader. Upon receiving the no-
tification, the leader searches for servers operating in the
R1 or R2 regimes and requests Sk to negotiate directly
with the potential partners for load balancing. If no such
servers are found, the leader wakes up one or more servers
in C3 or C6 (sleep) states and informs Sk.

5 Simulation Experiments

The effect of the system load. In [19] we report on sim-
ulation experiments designed to evaluate the effectiveness of
algorithms to balance the load while attempting to optimize
the energy consumption while accepting additional load. One
of the questions we addressed was whether the system load
has an effect on the resource management strategy to force
the servers in a cluster to operate within the boundaries of the
optimal region. In [19] we experimented with clusters sizes 20,
40, 60, and 80 servers; the experiments we report now are for
the clusters with 102, 103, and 104 servers. For each cluster
size we considered two load distributions:

(i) Low average load - an initial load uniformly distributed in
the interval 20 − 40% of the server capacity. Figures 2 (a),
(c), and (e) show the distribution of the number of servers
in the five operating regions for clusters with 102, 103 and
104 servers, respectively, before and after load balancing. As
expected, when average load 30% of the server capacity, the
initial server distribution is concentrated in operating regions
at the left and in the optimal regionR3. After load balancing,
the majority of the servers operate within the boundaries of
the optimal and the two suboptimal regimes, and almost 4%
in the undesirable regimes.

(ii) High average load - initial server load uniformly dis-
tributed in the 60−80% of the server capacity. Figures 2 (b),
(d), and (f) show the distribution of the number of servers in
the five operating regions for clusters with 102, 103 and 104

servers, respectively, before and after load balancing. In this
case the average load is 70% of the server capacity and the
initial server distribution is concentrated in operating regions
at the right of and in the optimal region. After load balanc-
ing, the majority of the servers operate within the boundaries
of the optimal and the two suboptimal regimes, and almost
4% in the undesirable regimes.
High-cost versus low-cost application scaling. Elas-

ticity is one of the main attraction of cloud computing; cloud
elasticity allows application to seamlessly scale up and down.
In the next set of simulation experiments we investi-

gate horizontal and vertical application scaling for non-
homogeneous clusters. Horizontal scaling requires the cre-
ation of additional VMs to run the application on lightly
loaded servers. Horizontal scaling incurs higher costs for load
balancing than vertical scaling. The higher costs are due to
communication with the leader to identify the potential tar-
gets and then to transport the VM image to one or more
of them. Vertical scaling allows VM running an application
to acquire additional resources from the local server; vertical
scaling has lower costs, but it is only feasible if the server has
sufficient free capacity.

We conduct six experiments for three cluster sizes, 102, 103,
and 104 and two different initial loads for each of them, 30%
and 70% average server loads. We study the evolution of a
cluster for some 40 reallocation intervals. We are interested in
the average ratio of high-cost in cluster horizontal scaling to
low-cost local vertical scaling and in the standard deviation
of this ratio.
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Figure 2: The effect of average server load on the distribution of the servers in the five operating regimes, R1, R2, R3, R4,
and R5, before and after energy optimization and load balancing. Average load: (a), (c), (e) - 30%; (b), (d), (f) - 70%. The
cluster size: (a) and (b) - 102; (c) and (d) - 103; (e) and (f) - 104.
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Figure 3: Time series of in-cluster to local decisions ratios for 40 reallocation intervals. Average load: (a), (c), (e) - 30%;
(b), (d), (f) - 70%. The cluster size: (a) and (b) - 102; (c) and (d) - 103; (e) and (f) - 104. For low average load (a), (c) and
(e) low-cost local decisions become dominant after about 20 reallocation intervals. For high average load (b), (d), and (f)
low-cost local decisions become dominant after some 5 reallocation intervals.
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Table 2: In-cluster to local decisions ratios for 30% and 70% average server load for three cluster sizes, 102, 103, and 104.

Plot Cluster Average # of servers Average Standard
sizes load in sleep state ratio deviation

(a) 102 30% 0 0.6490 0.5229
(b) 102 70% 0 0.5540 0.9088
(c) 103 30% 8 0.4739 0.2602
(d) 103 70% 0 0.5248 1.1311
(e) 104 30% 796 0.4294 0.1998
(f) 104 70% 0 0.4843 0.9323

Numerical results of these experiments are summarized in
Table 2. For low average load Figures 3 (a), (c) and (e) show
that low-cost local decisions become dominant after about 20
reallocation intervals. For high average load Figures 3 (b),
(d), and (f) low-cost local decisions become dominant after
some 5 reallocation intervals. As expected for low-average
load after load balancing a number of servers are switched to
the C3 sleep state; this number increases from 0 to 8 and then
to 796 when the clusters size increases from 102 to 103 and
then to 104 servers.

The average ratio of high to low cost scaling for the 40 real-
location intervals is in the 0.42 to 0.65 range, and decreases as
the cluster size increases but has a large standard deviation
due to the large variations for the first reallocation intervals.
As the system stabilizes this ratio tends to have lower values.

6 Summary

The average server utilization in large data-centers is 18%
[21]. When idle the servers of a data center use more than
half the power they use at full load. The alternative to the
wasteful resource management policy when the servers are
always on, regardless of their load, is to develop energy-aware
load balancing policies. Such policies combine dynamic power
management with load balancing.

There are ample opportunities to reduce the energy neces-
sary to power the servers of a large-scale data center and
shrink the carbon footprint of cloud computing activities,
even though this is only a fraction of the total energy required
by the ever increasing appetite for computing and storage ser-
vices. To optimize the resource management of large farms of
servers we redefine the concept of load balancing and exploit
the technological advances and the power management func-
tions of individual servers. In the process of balancing the
load we concentrate it on a subset of servers and, whenever
possible, switch the rest of the servers to a sleep state.

From the large number of questions posed by energy-aware
load balancing policies we discuss only the energy costs for
migrating a VM when we decide to either switch a server to a
sleep state or force it to operate within the boundaries of an
energy optimal regime. The policies analyzed in this paper
aim to keep the servers of a cluster within the boundaries of
the optimal operating regime. After migrating the VMs to

other servers identified by the cluster leader, a lightly loaded
servers is switched to one of the sleep states.

There are multiple sleep states; the higher the state num-
ber, the larger the energy saved, and the longer the time for
the CPU to return to the state C0 which corresponds to a
fully operational system. For simplicity we chose only two
sleep states C3 and C6 in the simulation. If the overall load
of the cluster is more than 60% of the cluster capacity we
do not switch any server to a C6 state because in the next
future the probability that the system will require additional
computing cycles is high. Switching from the C6 state to
C0 requires more energy and takes more time. On the other
hand, when the total cluster load is less than 60% of its ca-
pacity we switch to C6 because it is so unlikely that for the
next interval and the interval after that system needs extra
computational unit.

The simulation results reported in Section 5 show that the
load balancing algorithms are effective and that low-cost verti-
cal scaling occurs even when a cluster operates under a heavy
load. The larger the cluster size the lower the ratio of high-
cost in-cluster versus low-cost local decisions.

The QoS requirements for the three cloud delivery models
are different thus, the mechanisms to implement a cloud re-
source management policy based on this idea should be differ-
ent. To guarantee real-time performance or a short response
time, the servers supporting SaaS applications such as data-
streaming or on-line transaction processing (OLTEP) may be
required to operate within the boundaries of a sub-optimal
region in terms of energy consumption.

There are cases when the instantaneous demand for re-
sources cannot be accurately predicted and system are forced
to operate in a non-optimal region before additional systems
can be switched from a sleep state to an active one. Typically,
PaaS applications run for extended periods of time and the
smallest set of serves operating at an optimal power level to
guarantee the required turnaround time can be determined
accurately.

This is also true for many IaaS applications in the area
of computational science and engineering. There is always a
price to pay for an additional functionality of a system, so the
future work should evaluate the overhead and the limitations
of the algorithms required by these mechanisms.
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