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Abstract—Big data and the Internet of Things era
continue to challenge computational systems. Several
technology solutions such as NoSQL databases have
been developed to deal with this challenge. In order to
generate meaningful results from large datasets, analysts
often use a graph representation which provides an
intuitive way to work with the data. Graph vertices
can represent users and events, and edges can represent
the relationship between vertices. Graph algorithms
are used to extract meaningful information from these
very large graphs. At MIT, the Graphulo initiative
is an effort to perform graph algorithms directly in
NoSQL databases such as Apache Accumulo or SciDB,
which have an inherently sparse data storage scheme.
Sparse matrix operations have a history of efficient
implementations and the Graph Basic Linear Algebra
Subprogram (GraphBLAS) community has developed a
set of key kernels that can be used to develop efficient
linear algebra operations. However, in order to use the
GraphBLAS kernels, it is important that common graph
algorithms be recast using the linear algebra building
blocks. In this article, we look at common classes of
graph algorithms and recast them into linear algebra
operations using the GraphBLAS building blocks.

I. INTRODUCTION

The volume, velocity and variety [1] of data being
collected by today’s systems far outpace the ability to
provide meaningful results or analytics. A common
way to represent such large unstructured datasets is
through a graph representation as they provide an
intuitive representation of large data sets. In such
a representation, graph vertices can represent users
or events and edges can represent the relationship
between vertices. Many recent efforts have looked
at the mapping between graphs and linear algebra.
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In such a mapping, graphs are often represented as
sparse arrays such as associative arrays or sparse
matrices using a graph schema. One such effort is
the Graph Basic Linear Algebra Subprogram (Graph-
BLAS) group which looks to provide a set of kernels
that can be used to cast graph algorithms as sparse
linear algebraic operations [2]. The abilty to represent
graph algorithms as linear algebraic operations can be
greatly beneficial for algorithms scaled for large data
volume such as those in [3], [4]. However, for such
an initiative to be successful, it is important that the
proposed linear algebra kernels cover a wide variety of
graph algorithms that are often used by analysts. This
article looks at common classes of graph algorithms
and provides an initial set of graph algorithms recast
as linear algebraic operations.

The purpose of our present research effort is to
enable graph algorithms directly on NoSQL (Not Only
SQL) databases. Databases such as Apache Accumulo
or SciDB have become a popular alternative to tra-
ditional relational databases due to their high avail-
ability, partition tolerance and performance. NoSQL
databases often make use of a key value store or
store information in triples which are similar to the
way sparse matrices are stored [5]. We see a large
similarity between our work on performing graph
algorithms directly on NoSQL databases and research
on the GraphBLAS specification. The GraphBLAS
community has proposed an initial set of building
blocks:

• SpGEMM: Sparse Generalized Matrix Multiply
• SpM{Sp}V: Sparse Matrix (Sparse) Vector Mul-

tiply
• SpEWiseX: Sparse Element-wise Multiplication
• SpRef: Sparse Reference to a subset
• SpAsgn: Sparse Assignment to a subset
• Scale: SpEWiseX with a scalar
• Apply: Apply a function to each element
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Further, these kernels have been described to work
on alternate semiring structures such as the tropical
semiring which replaces traditional algebra with the
min operator and the traditional multiplication with
the + operator. This flexibility allows a wide variety of
graph analytics to be represented using the aforemen-
tioned building blocks. Table I summarizes classes of
graph algorithms that are widely used by the graph
analytics community.

With the popularity of NoSQL databases and the
inherent parallels between the representation of data
in such databases and sparse arrays, our research
effort looks at determining how kernels from the
GraphBLAS specification can be evaluated on NoSQL
databases. However, in order to ensure that these
kernels will be able to perform common NoSQL
database tasks, such as exploration and community
detection, it is important that the proposed kernels
are able to express a wide variety of common graph
analytics.

A. The Graphulo Initiative

Graphulo [6] is an ongoing initiative at the Mas-
sachusetts Institute of Technology that looks at using
the GraphBLAS kernels on the Apache Accumulo
database. Accumulo is used for a variety of ap-
plications and has some of the highest published
performance [7]. A goal of the Graphulo initiative is
to use Accumulo server components such as iterators
to perform graph analytics. In order to provide end
users with a specification to which they can write their
algorithms, Graphulo is being written to conform to
the GraphBLAS specifications.

B. Paper Outline

In this article, we present an initial set of common
graph algorithms recast in the language of sparse
linear algebra and expressed using the proposed
GraphBLAS kernels. In Section II we introduce the
base datatype of NoSQL databases - associative arrays
- and discuss common schemas used to represent large
graphs in associative arrays. In Section III, we recast
popular graph algorithms from the Exploration &
Traversal, Subgraph Detection, Centrality and Com-
munity Detection classes of graph algorithms using
GraphBLAS kernels. In Section IV we discuss the re-
sults, limitations and future work and provide readers
with an understanding of how these algorithms can
be implemented on NoSQL databases such as Apache
Accumulo. We conclude the article in Section V.

II. ASSOCIATIVE ARRAYS AND GRAPH SCHEMAS

The Graphulo project looks at how graph algo-
rithms can be performed on NoSQL databases. As-
sociative arrays are used as the data type for storing
and manipulating a large variety of complex datasets.
In order to represent a dataset using associative arrays,
we look at a few common schemas that can be used.

A. Associative Arrays

Associative arrays are used to describe the rela-
tionship between multidimensional entities using nu-
meric/string keys and numeric/string values. Associa-
tive arrays provide a generalization of sparse matrices.
Formally, an associative array A is a map from d sets
of keys K1 ×K2 × ...×Kd to a value set V with a
semi-ring structure

A : K1 ×K2 × ...×Kd → V,

where (V,⊕,⊗, 0, 1) is a semi-ring with
addition operator ⊕, multiplication operator ⊗,
additive-identity/multiplicative-annihilator 0, and
multiplicative-identity 1. Furthermore, associative
arrays have a finite number of non-zero values which
means their support supp(A) = A−1(V \{0}) is
finite.

As a data structure, associative arrays returns a
value given some number of keys and constitute a
function between a set of tuples and a value space.
In practice, every associative array can be created
from an empty associative array by simply adding and
subtracting values. With this definition, it is assumed
that only a finite number of tuples will have values,
and all other tuples will have a default value of the
additive-identity/multiplicative-annihilator 0. Further,
the associative array mapping should support opera-
tions that resemble operations on ordinary vectors and
matrices such as matrix multiplication. In practice,
associative arrays support a variety of linear algebraic
operations such as summation, union, intersection, and
multiplication. Summation of two associative arrays,
for example, that do not have any common row or
column key performs a union of their underlying non-
zero keys.

Graphulo database tables are exactly described us-
ing the mathematics of associative arrays [5]. In the
D4M schema, a table in the Accumulo database is an
associative array. In this context, the primary differ-
ences between associative arrays and sparse matrices
are: associative array entries always carry their global
row and column labels while sparse matrices do not.
Another difference between associative arrays is that
sparse matrices can have empty rows or columns



Algorithm Class Description Algorithm Examples
Exploration & Traversal Algorithms to traverse or search

vertices
Depth First Search, Breadth First Search

Subgraph Detection & Vertex Nomination Finding subgraphs or components
within a graph

K-Truss subgraph detection, Clique detec-
tion

Centrality Finding important vertices or
within a graph

Betweenness Centrality, Eigen Centrality

Similarity Finding parts of a graph which are
similar in terms of vertices or edges

Graph Isomorphism, Jaccard Index, Neigh-
bor Matching

Community Detection Look for communities (areas of
high connectedness or similarity)
within a graph

Topic Modeling, Non-negative matrix fac-
torization (NMF), Principle Component
Analysis, Singular Value Decomposition

Prediction Predicting new or missing edges Link Prediction, Emerging community de-
tection

Shortest Path Finding the shortest distance be-
tween vertices or sets of vertices

Floyd Warshall, Bellman Ford, A* Algo-
rithm, Johnson’s Algorithm

TABLE I: Classes of Graph Algorithms

while associative arrays do not. For the purposes of
this algorithmic work associative arrays are encoded
as sparse matrices.

B. Graph Schemas

The promise of big data is the ability to correlate
diverse and heterogeneous data sources to reduce
the time to insight. Correlating this data requires
putting data into a common frame of reference so
that similar entities can be compared. The associative
arrays described in the previous subsection can be
used with a variety of NoSQL databases such as
Accumulo and require a schema to convert the dense
arbitrary data into a sparse associative representation.
Given the variety of data, there are a few commonly
used graph schemas [5] which we discuss below.

1) Adjacency Matrix: In this schema, data is
organized as a graph adjacency matrix which can
represent directed or undirected weighted graphs.
In this schema, rows and columns of the adjacency
matrix represents vertices, and values represent
weighted edges between vertices. Adjacency matrices
provide a great deal of functionality and are one
of the more common ways to express graphs
through matrices. For graph G = (V,E) where
V = {v1,v2, ...,vn} and E = {e1, e2, ..., em}, the
adjacency matrix A is a n× n matrix where:

A(i, j) =

{
# edges from vi to vj , if i 6= j
number of self loops, if i = j

2) Incidence Matrix: The incidence matrix rep-
resentation of a graph can represent multi-hyper-
weighted as well as directed and multi-partite graphs
(multiple edges between vertices, multiple vertices per
edge and multiple partitions). The incidence matrix
representation is capable of representing complex

graphs when compared to the adjacency matrix rep-
resentation. In the incidence matrix representation,
matrix rows correspond to edges, and matrix columns
represent vertices, with nonzero values in a row indi-
cated vertices associated with the edge. The value at a
particular row-column pair represents the edge weight
and sign is often used to represent direction. There are
many representations for the incidence matrix, and a
common format is described below.

For graph G = (V,E) where V =
{v1,v2, ...,vn} and E = {e1, e2, ..., em}, the
incidence matrix E is a m× n matrix where:

E(i, j) =

+|ei| if ei goes into vj
−|ei| if ei leaves vj
0 otherwise

3) D4M Schema: The D4M 2.0 Schema [8],
provides a four associative array solution, (Tedge,
TedgeT, Tdeg, and Traw), that can be used to
represent complex data. The edge tables, Tedge and
TedgeT, contain the full semantic information of the
data set in the rows and columns of the associative
arrays. From the schema described in [8], a dense
database can be converted to a sparse representation
by exploding each data entry into an associative array
where each unique column-value pair is a column. The
Tdeg array maintains a count of the degrees of each of
the columns of Tedge, and Traw is used to store the
raw data. A more thorough description of the schema
is provided in [8]. Once in sparse matrix form, the
full machinery of linear algebraic graph processing
and detection theory can be applied. Linear algebraic
operations applied on associative arrays organized
using the D4M schema can have useful results. For
example, addition of two arrays represents a union,
and the multiplication of two arrays represents a
correlation.



III. ALGORITHMS

There are many different graph algorithms that can
be analyzed. In this section, we present an overview
of our work in representing the classes of graph
algorithms presented in Table I using kernels from
the GraphBLAS specification. For the work presented
in this section, we encode associative arrays as sparse
matrices.

A. Centrality
Of the many centrality metrics, there are a few that

are particularly well-suited to the GraphBLAS frame-
work. Degree centrality, for example, assumes that
a vertex’s importance is proportional to the number
of connections it shares. Given an adjacency matrix,
A, this can easily be computed via a row or column
reduction, depending on whether in- or out-degree is
of interest.

Other centrality metrics are explicitly linear alge-
braic in their formulation. For example, eigenvector
centrality assumes that each vertex’s centrality is
proportional to the sum of its neighbors’ centrality
scores. This is equivalent to scoring each vertex based
on its corresponding entry in the principal eigenvec-
tor, which can be computed via the power method.
Starting with Starting with a random positive vector
x0 with entries between zero and 1, we iteratively
compute

xk+1 = Axk

until |xTk+1xk|/(‖xk+1‖2‖xk‖2) is close to 1.
Related metrics are Katz centrality and PageRank.

Katz centrality considers the number of k-hop paths
to a vertex, for all k, penalizing those with higher
distances. This is also computed via an iterative
procedure in which the kth-order degree vector is
computed, and added to an accumulator as follows:

dk+1 = Adk

xk+1 = xk + αkdk+1,

where d0 is a vector of 1s and we use the same
stopping criterion as eigenvector centrality. PageRank
simulates a random walk on a graph, with the possi-
bility of jumping to an arbitrary vertex. Each vertex
is then ranked according to the probability of landing
on it at an arbitrary point in an infinite random walk.
If the probability of jumping to an arbitrary vertex
is 0, then this is simply the principal eigenvector of
ATD−1, where D is a diagonal matrix of vertex out-
degrees. If the probability of a jump is α, then we
compute the principal eigenvector of

α

N
1N×N + (1− α)ATD−1.

As with eigenvector centrality, this can be done using
the power method, where multiplication by a matrix
of 1s can be emulated by summing the vector entries
and creating a new vector where each entry is equal
to the resulting value. All of these centrality measures
rely on doing iterative matrix-vector multiplications,
which fits nicely within the scope of GraphBLAS.

There has also been work on casting betweenness
centrality—where a vertex’s importance is based on
the number of shortest paths that contain it—in linear-
algebraic operations [9]. Other metrics, such as close-
ness centrality, will be the subject of future work.

B. Subgraph detection and vertex nomination

Detection of interesting and anomalous subgraphs
has been a problem of interest for the computer
science community for many years. Examples of this
problem space include vertex nomination (ranking
vertices based on how likely they are to be associated
with a subset of “cue” vertices) [10], planted clique
detection [11], and planted cluster detection [12].

A problem related to planted clique and planted
cluster detection is computing the truss decomposi-
tion. A k-truss is a graph in which every edge is part
of at least k−2 triangles. Any graph is a 2-truss, and
any k-truss in a graph is part of a (k − 1)-truss in
the same graph. Computing the truss decomposition
of a graph involves finding the maximal k-truss for
all k ≥ 2. A recent technique for computing the
truss decomposition [13] can be easily converted into
linear-algebraic operations. Define the support of an
edge to be the number of triangles of which the edge
is a member. The algorithm can be summarized as
follows:

1) Compute the support for every edge.
2) If there is no edge with support less than k−2,

stop.
3) Otherwise, remove an edge with support less

than k−2, update the supports of its associated
vertices, and go to 2.

In [13], a more efficient algorithm is proposed that
considers the edges in order of increasing support. In
the linear-algebraic form, all edges are considered at
once, and the appropriate edges are removed simulta-
neously.

To see the linear-algebraic algorithm, first consider
the unoriented incidence matrix E. Each row of E
has a 1 in the column of each associated vertex. To
get the support for this edge, we need the overlap
of the neighborhoods of these vertices. If the rows
of the adjacency matrix A associated with the two
vertices are summed, this corresponds to the entries



that are equal to 2. Summing these rows is equivalent
to multiplying A on the left by the edge’s row in E.
Therefore, to get the support for each edge, we can
compute EA, apply to each entry a function that maps
2 to 1 and all other values to 0, and sum each row of
the resulting matrix. Note also that

A = ETE− diag(ETE),

which allows us to recompute EA after edge removal
without performing the full matrix multiplication. We
take advantage of this fact in Algorithm 1. Within
the pseudocode, xc refers to the complement of x in
the set of row indices. This algorithm can return the
full truss decomposition by computing the truss with
k = 3 on the full graph, then passing the resulting
incidence matrix to the algorithm with an incremented
k. This procedure will continue until the resulting
incidence matrix is empty. This algorithm can be
realized using the GraphBLAS kernels SpGEMM,
SpMV, and Apply.

Data: The unoriented incidence matrix E,
integer k

Result: Incidence matrix of k-truss subgraph Ek

initialization;
d = sum(E)
A = ETE − diag(d)
R = EA
s = (R == 2)1
x = find(s < k − 2)
while x is not empty do

Ex = E(x, :)
E = E(xc, :)
dx = sum(Ex)
R = R(xc, :)
R = R− E[ET

xEx − diag(dx)]
s = (R == 2)1
x = find(s < k − 2)

end
return E

Algorithm 1: Algorithm to compute k-truss using
linear algebra. 1 refers to an array of 1s

As an example of computing the k-truss using the
algorithm described, consider the task of finding the
3-truss of the graph in Fig. 1.

The incidence matrix for the graph shown in Fig-

Fig. 1: Example 5-vertex graph

ure 1 is

E =


1 1 0 0 0
0 1 1 0 0
1 0 0 1 0
0 0 1 1 0
1 0 1 0 0
0 1 0 0 1

 .

From E, we can compute A using the relation
A = ETE − diag(d) to be:

A =


3 1 1 1 0
1 3 1 0 1
1 1 3 1 0
1 0 1 2 0
0 1 0 0 1

−

3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

 .
To get the support, we first compute

R =


1 1 0 0 0
0 1 1 0 0
1 0 0 1 0
0 0 1 1 0
1 0 1 0 0
0 1 0 0 1




0 1 1 1 0
1 0 1 0 1
1 1 0 1 0
1 0 1 0 0
0 1 0 0 0



=


1 1 2 1 1
2 1 1 1 1
1 1 2 1 0
2 1 1 1 0
1 2 1 2 0
1 1 1 0 1

 .

The support is then given by

s = (R == 2)1 =


0 0 1 0 0
1 0 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1 0 1 0
0 0 0 0 0




1
1
1
1
1

 =


1
1
1
2
0

 .



Since k = 3, x will be the set of edges where the
support is less than 1, i.e., x = {6} and xc =
{1, 2, 3, 4, 5}. Thus, R and E will be set to their first
5 rows, and the update will be computed as follows:

R =


1 1 2 1 1
2 1 1 1 1
1 1 2 1 0
2 1 1 1 0
1 2 1 2 0



−


1 1 0 0 0
0 1 1 0 0
1 0 0 1 0
0 0 1 1 0
1 0 1 0 0



0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0



=


1 1 2 1 0
2 1 1 1 0
1 1 2 1 0
2 1 1 1 0
1 2 1 2 0

 .
The pattern of 2s in R did not change with the removal
of edge 6, so the support will not change. Therefore,
the graph represented by the new incidence matrix is
a 3-truss.

C. Similarity

Computing vertex similarity is important in appli-
cations such as link prediction [14]. One common
method for determining the similarity of two vertices
is to compute the Jaccard coefficient. This quantity
measures the overlap of the neighborhoods of two ver-
tices in an unweighted, undirected graph. For vertices
vi and vj where N(v) denotes the neighbors of vertex
v, the Jaccard coefficient is defined as

Jij =
| N(vi)

⋂
N(vj) |

| N(vi)
⋃
N(vj) |

. (1)

Given the connection vectors (a column or row in the
adjacency matrix A) for vertices vi and vj (denoted
as ai and aj) the numerator and denominator of
Equation 1 can be expressed as aTi aj where we
replace multiplication with the AND operator in the
numerator and the OR operator in the denominator.
This gives us

Jij = (aTi ∧ aj)./(aTi ∨ aj)
Jij = A2

AND./A
2
OR.

This, however, would involve computing a dense
matrix, and we are primarily interested in cases where
this is impossible. Two phenomena can be exploited
that will help provide an efficient implementation: the
symmetry of J and sparseness of A2

AND. Since J is

symmetric, we can compute only the upper triangular
part and then add the transpose. First we compute the
upper triangular part of the numerator in the entry
wise division. The numerator is A2

AND, which in an
unweighted graph is the same as computing a standard
matrix multiplication. We can represent A as L+ U ,
where L is strictly lower triangular and U is strictly
upper triangular. Since A is symmetric, L = UT.
Thus, we have

A2 = (L+ U)2 = L2 + LU + UL+ U2

= (U2)T + U2 + UTU + UUT

It can be verified that U2 is strictly upper triangular
and, therefore (U2)T is strictly lower triangular. After
we compute the upper triangular part of A2, we can
divide each nonzero value by the number of total
neighbors of the associated vertices. Exploiting these
properties, we can compute the Jaccard coefficient as
described in Algorithm 2. The triu operation extracts
the upper triangular part of the graph, as in MATLAB.
Algorithm 2 can be computed using the GraphBLAS
kernels SpGEMM, SpMV, and SpEWiseX. Comput-
ing the upper triangular part of a graph can be done
through a user-defined function that implements the
Hadamard product. For example, if ⊗ = f(i, j),
triu(A) = A ⊗ 1 where f(i, j) = {A(i, j) : i ≤
j, 0 otherwise}. An example of the computation on
the graph in Fig. 1 is provided in Fig. 2.

Data: Adjacency matrix A
Result: Matrix of Jaccard indices J
initialization;
d = sum(A)
U = triu(A)
X = UUT

Y = UTU
J = U2 + triu(X) + triu(Y )
J = J − diag(J)
for each nonzero entry Jij in J do

Jij = Jij/(di + dj − Jij)
end
J = J + JT

Algorithm 2: Algorithm to compute Jaccard index
using linear algebra.

D. Community Detection

Community detection is a class of graph algo-
rithms designed to find community structures within
a graph. Graph communities often contain dense
internal connections and may possibly overlap with



U =


0 1 1 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 U2 =


0 0 1 1 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 UUT =


3 1 1 0 0
1 2 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 0



UTU =


0 0 0 0 0
0 1 1 1 0
0 1 2 1 1
0 1 1 2 0
0 0 1 0 1

 J =


0 1 2 1 1
0 0 1 2 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0



J =


0 1 2 1 1
0 0 1 2 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 ./



0 3 3 3 3
0 0 3 3 3
0 0 0 3 3
0 0 0 0 2
0 0 0 0 0

+


0 3 3 2 1
0 0 3 2 1
0 0 0 2 1
0 0 0 0 1
0 0 0 0 0

−


0 1 2 1 1
0 0 1 2 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0




=


0 1/5 1/2 1/4 1/3
0 0 1/5 2/3 0
0 0 0 1/4 1/3
0 0 0 0 0
0 0 0 0 0


Fig. 2: Computing Jaccard coefficients of the graph in Fig. 1. In line 2, J = U2 + triu (UUT ) + triu (UTU).
In line 3, J = J./(di + dj − J). Computing J = J + JT removes the order dependence. Computation is on
non-zero entries in each matrix.

other communities. Real graphs such as social media
have been shown to exhibit such community struc-
ture on geography, language, age group, etc. [15].
The communities may then be used to suggest or
recommend new information, connections, or even
products as recommender systems do for popular
online marketplaces such as Amazon and Google [16].
One common method used as a basis for such systems
is topic modeling. Topic modeling is a very popular
class of algorithms that provides an intuitive look
into the topics that make up data. As an example,
consider a set of documents made up of various terms.
Application of topic modeling can automatically de-
termine a set of topics, the terms that make up a
topic and the documents that strongly align with these
topics. Techniques such as topic modeling have gained
wide usage for automatic summarization, document
modeling and can provide users with simple and quick
insight into a dataset. Topic modeling is a general
field, and a popular technique for topic modeling is
non-negative matrix factorization [17], [18].

Non-negative matrix factorization (NMF) is a class
of tools used to factorize a given matrix into two
matrices. Multiplying these two matrices produces
an approximation of the original matrix. Consider a

matrix Am×n to be factored into matrices Wm×k and
Hk×n where m corresponds to the number of rows of
A, n corresponds to the number of columns in A, and
k corresponds to the number of topics. Further, NMF
enforces the constraint that none of these matrices
contain any negative elements.

By definition,

A = W ∗H. (2)

In the above factorization, the columns of W can be
considered a basis for the matrix A with the rows of
H being the associated weights needed to reconstruct
A. The property that W and H are nonnegative is
useful because it can have physical significance (as
opposed to negative weights or basis elements). One
way to find the matrices W,H such that A ≈W∗H
is through an iterative technique such as the algorithm
presented in Algorithm 3.

In order to solve the equations in Algorithm 3,
it is necessary to find a least squares solution to a
system of linear equations for W and H. One way
of doing this is by finding the matrix inverse of
WT ∗W and H ∗HT (both are square matrices) and
multiplying with the right hand side of the equations.
One method to find the matrix inverse is typically



done by techniques such as the Singular Value De-
composition (SVD). However, in order to make use of
the GraphBLAS kernels, we present an technique used
by iterative eigenvalue solvers. In such systems, for
iteration k: Xk+1 = Xk ∗ (2I−AXk). The algorithm
used to find the matrix inverse for a square matrix A
is given in Algorithm 4.

Data: Matrix A to invert
Result: X = A−1

initialization;
‖Arow‖ = maxi(

∑
j Aij)

‖Acol‖ = maxj(
∑

iAij)
X1 = AT/(‖Arow‖ ∗ ‖Acol‖)
while ‖Xt+1 −Xt‖F > ε do

Xt+1 = Xt ∗ (2 ∗ In×n −A ∗Xt)
end

Algorithm 4: Matrix inverse through Iteration. At
each iteration, we check if the value of Xt+1 is close
to the previous iteration estimate of X .

Using this formulation, computing the inverse of a
matrix can be done purely using GraphBLAS kernels.
Combining Algorithms 3 and 4, we can find compute
the NMF of a matrix A using only GraphBLAS
kernels. Where (WT ∗W )−1 and (H ∗HT)−1 are de-
termined by using the relation develop in Algorithm 4.

In fact, computing the NMF of a matrix using Algo-
rithm 5 will require the GraphBLAS SpRef/SpAsgn,
SpGEMM, Scale, SpEWiseX, and Reduce kernels.
The outlined algorithm has been tested against a social
media dataset and provides intuitive results.

For example, Algorithm 5 was applied to a set of
words collected from the popular social media website

Data: Incidence Matrix A (size m× n), number
of topics k

Result: W and H
W = random m x k matrix
while ‖A−W ∗H‖F > ε do

Solve H =(WT ∗W )−1 ∗WT ∗A for H
Set elements in H < 0 to 0
Solve WT = (H ∗HT)−1 ∗H ∗AT for W
Set elements in W < 0 to 0

end

Algorithm 5: NMF and Inverse through Iteration.

Twitter. The algorithm was used to determine common
themes from approximately 20,000 tweets. By setting
the number of topics to 5, we were able to determine
words/tweets that fell into 5 different topics. The
results from this experiment are shown in Fig. 3.
From a graph perspective, this implies that tweets
corresponding to these tweets from a community. For
topic 1, as an example, this community represents
users who tweet in the Turkish language.

IV. DISCUSSION

The algorithms presented in this paper demonstrate
several algorithmic capabilities using the initial set of
GraphBLAS operations, but there are a few inefficien-
cies that could be improved upon with some additional
functions. In Algorithm 1, for example, when EA is
computed, it would be more efficient to only consider
the additions that yield a 2 in the resulting matrix. This
could be achieved by replacing the + operator with
a logical AND, but this would violate the semiring
axioms. Enabling the ability to use linear-algebraic

Data: Incidence Matrix A (size m× n), number
of topics k

Result: Wand H
initialization;
W = random m x k matrix
while ‖A−W ∗H‖F > ε do

Solve WT ∗W ∗H =WT ∗A for H
Set elements in H < 0 to 0
Solve H ∗HT ∗WT = H ∗AT for W
Set elements in W < 0 to 0

end

Algorithm 3: NMF through Iteration. At each step
of the iteration, we check if the Frobenius norm of
the difference between A and W∗H is less than the
acceptable error.



Fig. 3: Application of algorithm 5 to 20k tweets and modeling with 5 topics. Topic 1 represents tweets with
Turkish words; topic 2 represents tweets related to dating; topic 3 relates to an acoustic guitar competition in
Atlanta, GA; topic 4 relates to tweets with Spanish words; and topic 5 represents tweets with English words.

machinery with data operations that do not conform
to the rules for semirings may provide substantial
speedups.

Algorithm 2 leverages the symmetry of the graph
to save some of the unnecessary operations, but some
values under the main diagonal must still be com-
puted in the process. Since it is fairly common to
work with undirected graphs, providing a version of
matrix multiplication that exploits the symmetry, only
stores the upper-triangular part, and only computes
the upper-triangular part of pairwise statistics, would
be a welcome contribution to this effort.

Algorithm 5 computes the NMF of a matrix A
which can represent the adjacency matrix of a graph.
However, calculation of the matrix inverse using this
method can result in dense matrix operations. Since
the aim of this step is to solve a least squares problem,
it would be more efficient to implement this using
a sparse QR factorization or iterative method that
preserves the sparsity of the problem as much as pos-
sible. We would welcome community involvement in
building these methods using the GraphBLAS kernels.

As a next step in the Graphulo effort, we will extend
the sparse matrix implementations of the algorithms
discussed in this article to associative arrays. The
ability to perform the graph algorithms described
directly on associative arrays will allow us to im-
plement efficient GraphBLAS operations directly on
Accumulo data structures. In order to make efficient
implementations, we will use various Accumulo fea-
tures, such as the Accumulo iterator framework, to
quickly scan Accumulo tables over servers in parallel
and perform batch operations such as scaling.

V. CONCLUSIONS

There are a large variety of graph algorithms that
can be used to solve a diverse set of problems.
The Graphulo initiative at the Massachusetts Institute
of Technology is interested in applying the sparse

linear algebra kernels of the GraphBLAS specification
to associative arrays which exactly describe NoSQL
database tables such as those found in the open source
Apache Accumulo. Current ongoing work includes
defining efficient implementations of the algorithms
discussed in this article, extending the classes of sup-
ported algorithms and providing a library that can per-
form basic operations directly in NoSQL databases.
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