
Implementing Uniform Reliable Broadcast
in Anonymous Distributed Systems

with Fair Lossy Channels
Jian Tang∗, Mikel Larrea†, Sergio Arévalo‡, and Ernesto Jiménez‡§

∗Distributed Systems Laboratory (LSD), Universidad Politécnica de Madrid, 28031 Madrid, Spain
Email: tjapply@gmail.com

†University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
Email: mikel.larrea@ehu.es

‡Universidad Politécnica de Madrid, 28031 Madrid, Spain
§Prometeo Researcher, EPN, Ecuador

Email: {sergio.arevalo, ernes}@eui.upm.es

Abstract—Uniform Reliable Broadcast (URB) is an important
abstraction in distributed systems, offering delivery guarantee
when spreading messages among processes. Informally, URB
guarantees that if a process (correct or not) delivers a message
m, then all correct processes deliver m. This abstraction has been
extensively investigated in distributed systems where all processes
have different identifiers. Furthermore, the majority of papers in
the literature usually assume that the communication channels
of the system are reliable, which is not always the case in real
systems.

In this paper, the URB abstraction is investigated in anony-
mous asynchronous message passing systems with fair lossy
communication channels. Firstly, a simple algorithm is given
to solve URB in such system model assuming a majority of
correct processes. Then a new failure detector class AΘ is
proposed. With AΘ, URB can be implemented with any number
of correct processes. Due to the message loss caused by fair
lossy communication channels, every correct process in this first
algorithm has to broadcast all URB delivered messages forever,
which makes the algorithm to be non-quiescent. In order to get
a quiescent URB algorithm in anonymous asynchronous systems,
a perfect anonymous failure detector AP ∗ is proposed. Finally,
a quiescent URB algorithm using AΘ and AP ∗ is given.

Index Terms—Fault-tolerance, Uniform Reliable Broadcast,
Message Passing System, Anonymous System, Asynchronous
System, Fair Lossy Channel, Failure Detector, Quiescence.

I. INTRODUCTION

The broadcast communication abstraction plays an impor-
tant role in fault-tolerant distributed systems. It is used to dis-
seminate messages among a set of processes, and it has several
different forms according to its quality of service [1]. Best

This research is partially supported by the Community of Madrid, under
grant CLOUD4BIGDATA (S2013/ICE-2894), the Spanish Research Council,
under grants TIN2013-41123-P and TIN2013-46883-P, the Basque Govern-
ment, under grant IT395-10, the University of the Basque Country UPV/EHU,
under grant UFI11/45, the scholarship of Chinese Scholarship Council, and
SENESCYT, Ecuador.

effort broadcast with two communication operations, namely
send() and receive(), guarantees that all correct processes
will deliver a message if and only if the sender is correct. That
is to say, this abstraction does not offer any delivery guarantee
if the sender crashes, which may lead to an inconsistent
view of the system state by different processes. To avoid
this non-determinism in the delivery when the sender may
crash, Reliable Broadcast (RB) with RB-broadcast() and RB-
deliver() operations was introduced [2], offering some degree
of delivery guarantee. In short, RB is a broadcast service
that requires that all correct processes deliver the same set
of messages, and that all messages sent by correct processes
must be delivered by all correct processes. Note that RB
only requires the correct processes to deliver the same set of
messages, which still may cause inconsistency problems when
a process RB-delivers a message and then crashes. In order to
avoid those inconsistencies, the strongest abstraction Uniform
Reliable Broadcast (URB) was proposed by Hadzilacos and
Toueg ([3], [4], [5]). Uniform Reliable Broadcast, with URB-
broadcast() and URB-deliver() operations, guarantees that if a
process (no matter correct or not) delivers a message m, then
all correct processes deliver m.

The services mentioned above have been extensively studied
in the non-anonymous system model, where each process
has a unique identifier, usually assuming that communication
channels are reliable (if a process p sends a message to a
process q, and q is correct, then q eventually receives m) or
quasi-reliable (if a process p sends a message to a process q,
and the two processes are correct, then q eventually receives
m) [6]. However, real channels are neither always reliable nor
quasi-reliable, most of them are unreliable (e.g., fair lossy,
which means that if a message is sent an arbitrary but finite
number of times, there is no guarantee on its reception, it can
lose an infinite number of messages [7]). In this regard, several
works have addressed the construction of reliable channels

over unreliable channels in non-anonymous systems ([7], [8]).
As far as we know, the first research on anonymous systems

was conducted by Angluin [9], which led to the works of
Yamashita and Kameda ([10], [11]). Then, several papers
appeared in this field, e.g., ring anonymous networks and
shared memory anonymous systems ([12], [13], [14], [15]).
In [16], the reliable broadcast abstraction has been studied in
anonymous systems assuming reliable channels.

In classic message passing distributed systems, processes
communicate with each other by sending and receiving mes-
sages. Because they all have unique identifiers, senders can
choose the recipients of their messages, and recipients are
aware of the identities of the senders of messages they
receive [17]. However, all these rules have to be changed
in anonymous systems. In this paper, each process has a
broadcast() communication primitive, with which a process
can send a message to all processes (including itself).

Our Contributions This work is devoted to the study of the
Uniform Reliable Broadcast (URB) abstraction in anonymous
asynchronous message passing distributed systems where pro-
cesses may crash and communication channels are fair lossy.
There are four main contributions in this paper:
• A simple, non-quiescent uniform reliable broadcast algo-

rithm in such a system model assuming a majority of
correct processes, which proves that URB can be solved
in anonymous asynchronous message passing distributed
systems.

• An impossibility result on solving URB without a major-
ity of correct processes.

• Two new classes of anonymous failure detectors AΘ and
AP ∗.

• A quiescent uniform reliable broadcast algorithm using
AΘ and AP ∗, which does not require a majority of
correct processes.

Roadmap This paper is organized as follows. The system
model and several definitions are presented in Section 2. A
simple and non-quiescent algorithm implementing uniform
reliable broadcast is proposed in Section 3 under the condition
of a majority of correct processes. Then, in Section 4, an
impossibility result on solving uniform reliable broadcast
without the condition of a majority of correct processes is
given. In order to circumvent this impossibility result and make
the algorithm quiescent, two classes of failure detectors AΘ
and AP ∗ are proposed in Section 5. Then, a quiescent uniform
reliable broadcast algorithm with AΘ and AP ∗ is given in the
Section 6. Finally, the conclusions are presented in Section 7.

II. SYSTEM MODEL AND DEFINITIONS

In this paper, the anonymous asynchronous distributed sys-
tem is considered as a system in which processes have no
identifiers and communicate with each other via a completely
connected network with fair lossy communication channels.
Two primitives are used in this system to send and receive mes-
sages: broadcast(m) and receive(m). We say that a process
pi broadcasts a message m when it invokes broadcasti(m).

Similarly, a process pi receives a message m when it invokes
receivei(m).

Process The anonymous asynchronous distributed system is
formed by a set of n anonymous processes, denoted as Π =
{pi}i=1,...,n, such that its size is |Π| = n, i (1 ≤ i ≤ n) is
the index of each process of the system. All processes are
anonymous, that means they have no identifiers and execute
the same algorithm. The index i of process cannot be known
by any process of the system. We just use it as a notation
like p1, · · · , pn to simplify the description of the algorithms.
Furthermore, all processes are asynchronous, that is, there is
no assumption on their respective speeds.

There is a global clock whose values are the positive natural
numbers. Note that this global clock is an auxiliary concept
that we only use it for notation, but processes cannot check
or modify it.

Failure model A process that does not crash in a run is
correct in that run, otherwise it is faulty. We use Correct
to denote the set of correct processes in a run, and Faulty
to denote the set of faulty processes. A process executes its
algorithm correctly until it crashes. A crashed process can not
execute any more statements or recover. We also assume that
at least one correct process exists in the system (i.e., t ≤ n−1).

Communication Each pair of processes are connected by
bidirectional fair lossy communication channels. Processes
communicate among them by sending and receiving messages
through these channels. We assume that these channels neither
duplicate nor create messages, but may lost messages. In
anonymous system, when a process receives a message, it
cannot determine who is the sender of this message.

Fair Lossy Channel A channel between two processes p and
q is called as fair lossy channel if it satisfies the following
properties [18]:

• Fairness: If p sends a message m to q an infinite number
of times and q is correct, then q eventually receives m
from p.

• Uniform Integrity: If q receives a message m from p, then
p previously sent m to q; and if q receives m infinitely
often from p, then p sends m infinitely often to q.

Uniform Reliable Broadcast Uniform Reliable Broadcast
offers complete delivery guarantees when spreading messages
among processes. That is, when a process delivers a message
m, then all correct processes have to deliver it. It is also
defined in terms of two primitives: URB broadcast(m) and
URB deliver(m). They satisfy the following three proper-
ties:

• Validity: If a correct process broadcasts a message m,
then it eventually delivers m.

• Uniform Agreement: If some process delivers a message
m, then all correct processes eventually deliver m.

• Uniform Integrity: For every message m, every process
delivers m at most once, and only if m was previously
broadcast by sender(m).

Failure Detector A failure detector is a module that pro-
vides each process a read-only local variable containing failure
information (may be unreliable) of processes. It can be divided
into different classes according to the quality of the provided
failure information. It was introduced in [19].

Notation The system model is denoted by AAS Fn,t[∅]
or AAS Fn,t[D]. AAS F is an acronym for anonymous
asynchronous message passing distributed systems with fair
lossy communication channels; ∅ means there is no additional
assumption, D means the system is enriched with a failure
detector class of D. The variable n represents the total number
of processes in the system, and t represents the maximum
number of processes that can crash.

III. IMPLEMENTING UNIFORM RELIABLE BROADCAST IN
AAS Fn,t[t < n/2]

In this section, a simple implementation algorithm of uni-
form reliable broadcast under the condition of a majority
of correct processes is proposed. The system model of this
section is denoted by AAS Fn,t[t < n/2].

As far as we know, the implementation of the URB abstrac-
tion in the classic (non-anonymous) asynchronous systems
with a majority of correct processes is simple. In order to
ensure the URB termination property, the construction relies
on one condition: a message m can be locally URB-delivered
to the upper application layer when this m has been received
by at least one non-faulty process. As n > 2t, this means that,
without risking to be blocked forever, a process may URB-
deliver m as soon as it knows that at least t+1 processes have
received a copy of m. Obviously, this condition is also needed
to be satisfied in the anonymous distributed systems. However,
there is no easy way to identify who is the correct process
that has received m in the anonymous asynchronous message
passing distributed systems due to the fact that all processes
have no identifiers. In order to solve this difficulty, the idea
of implementing URB in AAS Fn,t[t < n/2] is as follows:
1) to add a unique label (tag) to each message by its sender
before it to be broadcast; 2) to add a unique label (tag ack)
to each acknowledgment message (denoted by ACK) when a
process receives a message.

With the idea mentioned above, the URB deliver condi-
tion can be expressed in an equivalent way: each process can
deliver a message m if it has received a majority of distinct
ACKs of m. Together with the condition of a majority of
correct processes, it is guaranteed that at least one correct
process has received m.
Description of the algorithm: Algorithm 1 is the imple-
mentation algorithm of uniform reliable broadcast abstraction
in AAS Fn,t[t < n/2]. In this algorithm, two types of
messages are transmitted: MSG (a message needs to be
URB delivered) and ACK (reception acknowledgment of a
message). Each process manages a random function random()
and four local sets:
• MSGi, initialized to empty, records all messages that it

has received.

Algorithm 1 Uniform Reliable Broadcast in AAS Fn,t[t <
n/2] (code of pi)

1 Initialization
2 sets MSGi, MY ACKi, ALL ACKi,

URB DELIV EREDi empty
3 activate Task 1

4 When URB broadcasti(m) is executed
5 tag ← randomi()
6 insert (m, tag) into MSGi

7 When receivei(MSG,m, tag) is executed
8 if (m, tag) is not in MSGi then
9 insert (m, tag) into MSGi

10 end if
11 if (m, tag, tag ack) is in MY ACKi then
12 broadcasti(ACK,m, tag, tag ack)
13 else
14 tag ack ← randomi()
15 insert (m, tag, tag ack) into MY ACKi

16 broadcasti(ACK,m, tag, tag ack)
17 end if

18 When receivei(ACK,m, tag, tag ack) is executed
19 if (m, tag, tag ack) is not in ALL ACKi then
20 insert (m, tag, tag ack) into ALL ACKi

21 end if
22 if there is a majority of (m, tag,−) in ALL ACKi

then
23 if (m, tag) is not in URB DELIV EREDi then
24 insert (m, tag) into URB DELIV EREDi

25 URB deliveri(m)
26 end if
27 end if

Task 1:
28 repeat forever
29 for every message (m, tag) in MSGi do
30 broadcasti(MSG,m, tag)
31 end for
32 end repeat

• URB DELIV EREDi, initialized to empty, records all
URB delivered messages.

• MY ACKi, initialized to empty, records all acknowl-
edgment messages of each message generated by itself.

• ALL ACKi, initialized to empty, records all acknowl-
edgment messages of each message it has received (from
any process).

Then, let us consider a process pi to simplify the description.
At the beginning, pi initializes all its sets into empty and
activates Task 1 (lines 1-3).

When pi calls URB broadcast(m), it assigns a unique
random tag to this message m, and inserts this pair of (m, tag)
into MSGi (lines 4-6). Then, this (m, tag) is broadcast forever
in the Task 1 to propagate it to all processes (lines 28-32).

When pi receives a message (MSG,m, tag) (may come
from itself or others process), there are three cases:
• If pi receives (MSG,m, tag) from itself for the first

time (i.e., if this (m, tag) has already existed in MSGi,
but its ACK message (m, tag, tag ack) does not exist
in MY ACKi). This process will go to execute line
14, generates a random tag ack to tag the acknowl-
edgment message of (m, tag). Then, pi inserts this ac-
knowledgment message (m, tag, tag ack) into its sets
MY ACKi, and broadcasts (ACK,m, tag, tag ack) to
all processes to acknowledge the reception of (m, tag)
(lines 15,16). This tag ack is unique for each pair of
(m, tag), which means tag ack cannot be changed for
the same pair of (m, tag) once it is generated. The local
set MY ACKi is used to maintain this uniqueness,
to distinguish the tag ack generated by itself from the
received tag ack from others process.

• If pi receives (MSG,m, tag) from others process for
the first time (i.e., if this (m, tag) does not in MSGi,
neither its ACK message (m, tag, tag ack) does not exist
in MY ACKi). It inserts this message into MSGi (lines
8, 9). Then, like the first case, pi generates a random
tag ack to tag the acknowledgment message of (m, tag)
(line 14). Then, pi inserts this acknowledgment mes-
sage (m, tag, tag ack) into MY ACKi, and broadcasts
(ACK,m, tag, tag ack) to all processes to confirm the
reception of (m, tag) (lines 15,16).

• If pi has received a (m, tag) already (i.e., if this
(m, tag) has already existed in MSGi and its ACK
message (m, tag, tag ack) also exists in MY ACKi),
it re-broadcasts the identical acknowledgment message
(ACK,m, tag, tag ack) to all processes in order to con-
firm the reception of (m, tag) to overcome the message
lost caused by the fair lossy communication channels
(lines 11,12).

When pi receives an acknowledgment message (denoted by
ACK) for the first time, it inserts this ACK message to its set
ALL ACKi (lines 19-21).

When pi receives a majority of acknowledgment mes-
sages (m, tag, tag ack) of (m, tag) (more than n/2 different
tag ack), and this m with tag has not been URB delivered
yet, then pi URB deliver m for one time (lines 22-25).

Theorem 1 The algorithm 1 guarantees the property of URB.
The correct proof of this theorem is straightforward, and it

can be found in [21].

Remark: The algorithm 1 can fulfill a fast URB deliver()
of a message due to the property of fair lossy communication
channels and the asynchrony of the system. For example, a
process may receive a majority of acknowledgment messages
(ACK,m, tag, tag ack) and URB deliver m (according
to line 22). Hence, this URB deliver is earlier than the
reception of (MSG,m, tag). However, this does not violate
the property of URB, even if this fast deliver process crashes
after URB deliver m. Because this fast deliver process has
received a majority of acknowledgment messages of m before

URB deliver() m, which means a majority of processes have
received this m (different processes generate distinct ACKs to
the same m). Because together with the condition that there is
a majority of correct processes, it is guaranteed that at least one
correct process has received m. Then, this correct process will
broadcast m forever guaranteeing that all correct processes
will receive m. If the fast deliver process is correct, it will
receive m eventually from others correct process.

It is necessary to generate a unique tag to each MSG and
a unique tag ack to each ACK in this algorithm. However,
it is possible that one random value can be shared by two
messages only if one is MSG type and another one is ACK
type.

IV. AN IMPOSSIBILITY RESULT

In this section, it is proved that the assumption of a majority
of correct processes in the algorithm 1 is a necessary condition
to solve URB in AAS Fn,t[∅] if without any other additional
assumption.
Theorem 2 It is impossible to solve URB in AAS Fn,t[∅]
without a majority of correct processes.

Proof: The proof is by contradiction, let us suppose there
exists an algorithm A that solves URB in AAS Fn,t[t ≥ n/2].
Then we divide all processes in the system into two subsets
S1 and S2, such that | S1 |=dn/2e and | S2 |=bn/2c. Now,
we consider two runs: R1 and R2.
• Run R1. In this run, all processes of S2 crash initially,

and all the processes in S1 are non-faulty. Moreover, if
a process in S1 issues URB broadcast(m). Due to the
very existence of the algorithm A, every process of S1

URB delivers m.
• Run R2. In this run, all processes of S2 are non-faulty,

and no process of S2 ever issues URB broadcast().
The processes of S1 behave as in R1: a process issues
URB broadcast(m), and they all URB deliver m.
Moreover, after it has URB delivered m, every process
of S1 crashes, and all messages ever sent by the process
of S1 are lost, neither has been received by a process of
S2. Hence, no process in S2 will URB deliver m.

It is easy to see that all processes of S1 cannot distinguish
run R2 from run R1 before they URB deliver m, as they
did in run R1. Then after that all processes in S1 are crashed,
together with the fair lossy channel, no process in S2 has
received m. This violates the uniform agreement of URB, so
the algorithm A does not exist. We complete the proof of
Theorem 2.

V. TWO FAILURE DETECTOR CLASSES

In this section, two classes of failure detector are proposed.
One is used to circumvent the impossibility mentioned above,
one is used to make the algorithm 1 to be quiescent.

A. Failure Detector AΘ

Following the previous impossibility result, one question
appears naturally, that is, what extra information is needed
if the uniform reliable broadcast abstraction is implemented

under the assumption that any number of processes can crash?
The answer is that the confirmation of a message m has been
received by at least one correct process pj before a process
pi(i 6= j) URB deliver this m. Thanks to the failure detector
that was proposed by S. Toueg, this confirmation can be
guaranteed by the usage of the (unreliable) failure information
provided by it. In this section, we try to circumvent such an
impossibility result by using the failure detector.

In non-anonymous systems, failure detector Θ is considered
as the weakest one to solve URB. It is defined as that
it always trust at least one correct process (accuracy) and
eventually every correct process do not trust any crashed
process (completeness) [18]. The counterpart of this Θ in
anonymous distributed system is named as AΘ. Then, we
try to define AΘ in the anonymous asynchronous distributed
systems.
AΘ provides the same failure information as Θ if each

process has a unique identifier. However, it is impossible to
give such information in anonymous systems because each
process has no identifier. So, the key point to define AΘ is
how to identify every process without breaking the anonymity
of the system. We are inspired by the definition of failure
detector class of AΣ, which was introduced by F. Bonnet and
M. Raynal [20], to define the AΘ. This AΘ provides each
process with a read-only local variable a thetai that contains
several pairs of (label, number), in which one label represents
a temporary identifier of one process and number represents
the number of correct processes who have known this label.
For example, process pj’s local variable a thetaj = {(label1,
number1), ... , (labeli, numberi), ... , (labeln, numbern)}
if there are n processes in the system. A label is assigned
randomly to each process without breaking the anonymity of
the system due to the fact that each process does not know
the mapping relationship between a label and a process (even
itself).

The definition of AΘ is given as follows:
• AΘ-completeness: There is a time after which the output

variable a theta permanently contains pairs of (label,
number) associated to all correct processes.

• AΘ-accuracy: If there is a correct process, then at every
time, all pairs of (label, number) outputted by failure
detector AΘ hold that for all subset T of size number
of processes that know a label contains at least one
correct process (i.e., for each label, there always exists
one correct process in the output set of number processes
that knows this label).

Then we give this definition more formally.
Formal definition of AΘ:

S(label)={i | ∃ τ ∈ N: (label,−) ∈ a thetaτi }. S(label)
is a set of all processes who have known the label.
• AΘ-completeness: ∃ τ ∈ N, ∀ i ∈ Correct, ∀ τ ′ ≥

τ , ∀ (label, number) ∈ a thetaτ
′

i : |S(label) ∩ Correct| =
number.
• AΘ-accuracy: Correct 6= ∅ =⇒ ∀ τ ∈ N, ∀ i ∈ Π, ∀

(label, number) ∈ a thetaτi : ∀ T ⊆ S(label), |T | = number:
T ∩ Correct 6= ∅.

B. Failure Detector AP ∗

An algorithm is quiescent means that eventually no process
sends or receives messages. Hence, it is obvious that the
algorithm 1 is a non-quiescent algorithm since every correct
process has to broadcast all URB delivered messages for-
ever. However, a quiescent algorithm is more valuable and
practical in the real systems. In this section, we try to solve
this quiescent problem.

The intuitive idea to obtain a quiescent URB algorithm
is to terminate the forever broadcast in the algorithm 1.
According to the property of uniform reliable broadcast, this
forever broadcast can be stopped when a message has been
URB delivered by all correct processes (i.e., delete messages
that have been URB delivered by all correct processes from
the set MSG). In order to realize this idea, another failure
detector AP ∗ is needed to enrich the system model to provide
the information of who are correct processes in the system.

Anonymous perfect failure detector AP ∗ provides each
process with a read-only local variable a p∗ that contains
several pairs of (label, number), which is similar to the failure
detector AΘ.

To be more clearly, the definition of AP ∗ is given as
follows:
• AP ∗-completeness: There is a time after which the

output variable a p∗ permanently contains pairs of (label,
number) associated to all correct processes.

• AP ∗-accuracy: If a process crashes, the label of this
process and the corresponding number to the label will
be eventually and permanently deleted from the output
variable a p∗.

Eventually the number of pairs of (label, number) is equal
to the number of correct processes.

Let us define AP ∗ more formally:
S(label)={i | ∃ τ ∈ N: (label,−) ∈ a p∗τi }, which is

the set of all processes who have known this label at time τ
according to a p∗i .
• AP ∗-completeness: ∃ τ ∈ N, ∀ i ∈ Correct, ∀ τ ′ ≥ τ , ∀

(label, number) ∈ a p∗τ
′

i : |S(label) ∩ Correct| = number.
• AP ∗-accuracy: ∀ i, j ∈ Π, i ∈ Correct, ∃ τ : j ∈ Fault:

∀ τ ′ ≥ τ : (labelj , numberj) /∈ a p∗τ
′

i .

VI. QUIESCENT UNIFORM RELIABLE BROADCAST IN
AAS Fn,t[AΘ, AP ∗]

In this section, the anonymous asynchronous distributed
system model is enriched by both failure detectors AΘ and
AP ∗, denoted by AAS Fn,t[AΘ, AP ∗]. The algorithm 2
is the quiescent implementation algorithm of the uniform
reliable broadcast abstraction in AAS Fn,t[AΘ, AP ∗] under
the assumption of any number of processes can crash. We first
give a detailed description of it as follows:

Each process initializes its four sets: MSGi,
URB DELIV EREDi, MY ACKi, ALL ACKi and
activates the Task 1 (lines 1-3). We take a process pi as
an example to simplify the description. When pi calls
URB broadcast(m), it generates a random tag to this

Algorithm 2 Quiescent Uniform Reliable Broadcast in AAS Fn,t[AΘ, AP ∗] (code of pi)

1 Initialization
2 sets MSGi, URB DELIV EREDi, MY ACKi,

ALL ACKi empty
3 activate Task 1

4 When URB broadcasti(m) is executed
5 tag ← randomi()
6 insert (m, tag) into MSGi

7 When receivei(MSG,m, tag) is executed
8 if (m, tag) is not in MSGi then
9 if (m, tag) is not in URB DELIV EREDi then

10 insert (m, tag) into MSGi
11 end if
12 end if
13 if (m, tag, tag ack) is in MY ACKi then
14 labelsi ← {label | (label, −) ∈ a thetai }
15 broadcasti(ACK,m, tag, tag ack, labelsi)
16 else
17 tag ack ← randomi()
18 insert (m, tag, tag ack) into MY ACKi

19 labelsi ← {label | (label, −) ∈ a thetai }
20 broadcasti(ACK,m, tag, tag ack, labelsi)
21 end if

22 When receivei(ACK,m, tag, tag ack, labelsj) is ex-
ecuted

23 if (m, tag,−,−) is not in ALL ACKi then
24 allocate array label counteri[(m, tag), −]
25 allocate array all labelsi[(m, tag), −]
26 end if
27 if (m, tag, tag ack) is not in ALL ACKi then
28 insert (m, tag, tag ack) into ALL ACKi

29 all labelsi[(m, tag), tag ack] ← labelsj
30 for each label ∈ labelsj do
31 label counteri[(m, tag), label] ← label coun-

teri[(m, tag), label] + 1
32 end for
33 else
34 for each label in labelsj but not in all labelsi[(m,

tag), tag ack] do
35 all labelsi[(m, tag), tag ack]← all labelsi[(m,

tag), tag ack] ∪ {label}
36 label counteri[(m, tag), label] ← label coun-

teri[(m, tag), label] + 1
37 end for
38 for each label in all labelsi[(m, tag), tag ack]

but not in labelsj do
39 all labelsi[(m, tag), tag ack] ←

all labelsi[(m, tag), tag ack] \ {label}
40 delete label counteri[(m, tag), label]
41 for each label in both all labelsi[(m, tag),

tag ack] and labelsj do
42 label counteri[(m, tag), label] ←

label counteri[(m, tag), label] - 1
43 end for
44 end for
45 end if
46 if ∃(label, number) ∈ a thetai: label counteri[(m,

tag), label] = number then
47 if (m, tag) is not in URB DELIV EREDi then
48 insert (m, tag) into URB DELIV EREDi

49 URB deliveri(m)
50 end if
51 end if

Task 1:
52 repeat forever
53 for every message (m, tag) in MSGi do
54 broadcasti(MSG,m, tag)
55 if each pair of (label, number) ∈ a p∗i :

label counteri[(m, tag), label] = number ∧
all labelsi[(m, tag), −] = {label | (label, −)
∈ a p∗i } then

56 if (m, tag) is in URB DELIV EREDi then
57 delete (m, tag) from MSGi
58 end if
59 end if
60 end for
61 end repeat

message m and inserts (m, tag) into set MSGi (lines 4-6).
Then, this m is broadcast to all processes forever in the Task
1 in the form of (MSG,m, tag) (lines 52-54).

When pi receives a message (MSG,m, tag), it first checks
if this (m, tag) has already existed in its MSGi. If not, then
it checks if (m, tag) has already been URB delivered (lines
8, 9). If not, pi inserts this message to MSGi (line 10).
Otherwise, pi overlook this reception. Then, there are three
cases as in the algorithm 1:
• If pi receives (MSG,m, tag) from itself for the first

time (i.e., if this (m, tag) has already existed in MSGi,
but its ACK message (m, tag, tag ack) does not ex-

ist in MY ACKi). Then, pi goes to execute the line
17 that generates a random tag ack to tag the ac-
knowledgment message of (m, tag). Then, pi inserts
this acknowledgment message (m, tag, tag ack) into
its sets MY ACKi, and reads the label information
from its failure detector AΘi. Then, pi broadcasts
(ACK,m, tag, tag ack, labelsi) to all processes to ac-
knowledge the reception of (m, tag) (lines 17-20).

• If pi receives (MSG,m, tag) from others process for
the first time (i.e., if this (m, tag) does not exist in
MSGi or URB DELIV EREDi, neither its ACK mes-
sage (m, tag, tag ack) does not exist in MY ACKi). It

inserts this message into MSGi (line 10). Then, pi does
the same as the case 1 (lines 17-20).

• If pi has received this (m, tag) already (i.e., if
this (m, tag) has already existed in MSGi or
URB DELIV EREDi and its ACK message (m, tag,
tag ack) also exists in MY ACKi), it re-broadcasts the
identical acknowledgment message but with the updated
label information (ACK, m, tag, tag ack, labelsi) to all
processes in order to confirm the reception of (m, tag)
to overcome the message lost caused by the fair lossy
communication channels (lines 13-15).

When pi receives an acknowledgment message (ACK, m,
tag, tag ack, labelsj) from pj (could be itself), there are three
cases as follows:

• pi receives the very first ACK message of (m, tag), which
also means this is the first time receives an ACK message
with tag ack (by checking (m, tag) exists in the set
ALL ACKi or not), which also means this is the first
ACK message from one process (tag ack represents a
process).
pi allocates an array label counteri[(m, tag), −]

(used to record the number of every label that received
together with (m, tag)), and an array all labelsi[(m,
tag), −] (used to records all label in each ACK message
of (m, tag) (lines 23-25).

• pi receives an ACK message coming from a new process
(by checking (m, tag, tag ack) exists in ALL ACKi

or not). (Case 1 is naturally included in case 2, but case
2 considers not only the very first ACK but more later
ACKs from others process).
pi firstly insert (m, tag, tag ack) into the set

ALL ACKi, and labelsj into the array all labelsi[(m,
tag), tag ack]. After that, for each received label in
labelsj , pi increases its count number by 1(lines 30-32)
(1 means that every label is known by the process who
generates this ACK with tag ack).

• pi receives a repeated ACK message (with the same
tag ack) (i.e., one process re-broadcast an ACK due to
the fair lossy channel).

There are two mutually exclusive cases: 1) repeated
ACK with more (new) label information (lines 34-37);
2) repeated ACK with less label information (due to the
completeness property of AΘ that it needs some time to
delete a label of crashed process) (lines 38-44). In one
instance of algorithm 2, only one of these two cases can
happen. In case 1, for each new label, pi inserts it into
all labelsi[(m, tag), tag ack] and increases its count
number by 1. In case 2, for each disappeared label, pi
deletes it from all labelsi[(m, tag), tag ack] and its
corresponding label counter. Then, decreases the count
number of repeatedly received label by 1 (miscount this
label by 1 due to the ACK from the crashed process).

After counting the number of each label, if there exists one
pair of (label, number) outputted by AΘi satisfies the condi-
tion that the counted number of this label label counteri[(m,

tag), label] is equal to the outputted number, then pi
checks this m has been URB delivered or not. If not, pi
URB deliver m for one time.

In task 1, for each pair of (label, number) in the output
of AP ∗i , if the condition that the counted number of each
label label counteri[(m, tag), label] is equal to the corre-
sponding number (means it has received number different
ACKs(tag ack) of (m, tag)) and the set of received label
related to (m, tag) all labelsi[(m, tag), −] is equal to the
outputted label set of AP ∗i {label | (label, −) ∈ a p∗i } (means
the received ACKs (tag ack) are from the correct processes)
is satisfied (line 55), and together with the fact that (m, tag)
has already been URB delivered, then, pi deletes (m, tag)
from its MSGi set (line 57).
Lemma 1: If a correct process broadcasts a message m, then
it eventually deliver m. (Validity)

Proof: Let us consider a non-fault process pi broadcasts
m. A unique random tag is assigned to this message m (line
5), then inserts (m, tag) into the set MSGi to be broadcast
a bounded but unknown times (until the condition of line 55
is satisfied) in Task 1 (lines 52-54). Together with the fairness
property of fair lossy channel, all correct processes (include
pi) will receive this m eventually.

Then, when a correct process receives (MSG, m, tag)
for the first time, it generates a second unique tag ack to
the corresponding acknowledgment message and broadcasts
it to all processes. Due to the bounded but unknown times
of broadcast(MSG, m, tag) in the Task 1 of pi, each
correct process receives it for a bounded but unknown times.
Hence, each process broadcast an acknowledgment message
for a bounded but unknown times too. The same reason of
the fairness property of the communication channels, pi will
receive all acknowledgment messages of (m, tag) from correct
processes. Then, it is obvious that the condition of line 46 is
satisfied, and pi delivers m. We complete the proof of Lemma
1.

Lemma 2: If some process deliver a message m, then all
correct processes eventually deliver m. (Uniform Agreement)

Proof: To prove this Lemma, we consider the following
two cases:
Case 1: A message m is delivered by a correct process.

Suppose this correct process is pi, then according to lines
52-54 of Task 1, pi will broadcast m for a bounded but
unknown times (until the condition of line 55 is satisfied) to
all processes. With the fairness property of the channels, all
correct processes will eventually receive m. Then, all correct
process will do the same as pi to broadcast this m a bounded
but unknown times. Together with the Lemma 1, all correct
processes eventually deliver this m.
Case 2: A message m is delivered by a crashed process.

The condition of line 46 was satisfied before this crashed
process deliver m. Due to the accuracy property of AΘ, at least
one correct process has received this m. Then, this correct
process will broadcast m for a bounded but unknown times
(until the condition of line 55 is satisfied). Together with

Lemma 1, it is obvious that all correct processes will deliver
m.

Following case 1 and 2, we can see that Lemma 2 is correct.

Lemma 3: For every message m, every process delivers m
at most once, and only if m was previously broadcast by
sender(m). (Uniform Integrity)

Proof: It is easy to see that any message m was previously
broadcast by its sender, because each process only forwards
messages it has received and the fair lossy channel does not
create, duplicate, or garble messages.

To prove a message only be delivered for at most one time,
let us observe that two kinds of tags exist in the system:
one is used to label the message itself; one is used to label
the acknowledgment of this message. The set MY ACKi is
used to guarantee that each process broadcasts the identical
acknowledgment message to the same (m, tag) (line 18). The
set URB DELIV EREDi to record all messages that have
delivered (line 48).

Even each message is broadcast for a bounded but unknown
times (until the condition of line 55 is satisfied) and will be
received by every correct process for a bounded but unknown
times (lines 52-54), one message can not be modified or rela-
beled as a new message due to these tags and sets mentioned
above. Moreover, every message is checked whether it has
already existed in its set URB DELIV EREDi (line 47)
before URB deliver it. With those mechanisms, it is certain
that no message m will be delivered more than once. Hence,
the proof is completed.
Theorem 3 Algorithm 2 is a quiescent implementation of
the uniform reliable broadcast communication abstraction in
AAS Fn,t[AΘ, AP ∗].

Proof: From Lemma 1, 2 and 3, it is easy to see that
algorithm 2 is the implementation of the uniform reliable
broadcast. Then, it is only necessary to prove the algorithm 2
satisfies the quiescent property.

An algorithm is quiescent means that eventually no process
sends or receives messages. In algorithm 2, it is obvious that
the broadcast of ACK message is invoked by the reception
of MSG message. Hence, the proof is reduced to show that
the broadcast times of MSG message is finite. Moreover, a
faulty process only broadcast a finite times of MSG message.
Hence, the rest of this proof focus on that each correct process
broadcast a finite times of MSG message.

It is easy to see that the broadcast of MSG only exist in
Task 1. Let us consider two processes p (correct) and q that p
broadcast (MSG,m, tag) to q a bounded but unknown times
(p repeat broadcast (MSG,m, tag) until the condition of line
55 is satisfied).

• If q is correct, then eventually both p and q receive
this MSG for a bounded but unknown times due to the
fairness property of fair lossy communication channels,
then p delivers m only once when the first reception of
m. Since q broadcast (ACK,m, tag, labelq) to p when
each time it receives MSG, q broadcast ACK to p

for the same times as the reception times of MSG.
(p also can receive MSG from itself and broadcast
its ACK. Here, we only take q as an example.) By
the fairness property of channels, p receives a bounded
but unknown times of ACK. According to lines 22-
51, p has to count every label existed in the received
ACK from q and itself, as label counterp[(m, tag),
labelq]=2, label counterp[(m, tag), labelp]=2. Together
by the property of the failure detector AP ∗, the output of
AP ∗p is composed by label and number of correct pro-
cesses that is [(labelq, 2), (labelp, 2)]. Then, the condition
of line 55 is satisfied that (m, tag) is deleted from MSG
and p stops the repeated broadcast of (MSG,m, tag),
which proves this case is quiescent.

• If q is faulty. Then, p only receives ACK from itself
and together with the accuracy property of AP ∗p , the
label and corresponding number of q will eventually and
permanently removed from the output of AP ∗p . Hence, it
is trivial that the condition of line 55 is satisfied, which
proves this case is quiescent too.

Hence, according to the description mentioned above, we
complete the proof.

VII. CONCLUSIONS

In this paper, we have studied how to implement the
uniform reliable broadcast abstraction in anonymous asyn-
chronous message passing distributed systems with fair lossy
communication channels. A non-quiescent algorithm with the
assumption of a majority of correct processes is proposed
firstly. Then, in order to obtain a quiescent algorithm and
to circumvent the impossibility result of implementing URB
without the assumption of a majority of correct processes, two
classes of failure detectors are given and used. Finally, the
quiescent uniform reliable broadcast algorithm is proposed.

REFERENCES

[1] C. Cachin, R. Guerraoui, and L. Rodrigues. Reliable and secure
distributed programming. Springer (second edition), 2011.

[2] F. Schneider, D. Gries, and R. Schlichting. Fault-tolerant broadcast.
Science of Computer Programming 4(1), pp. 1–15, 1984.

[3] V. Hadzilacos. Issues of fault tolerance in concurrent computation. Ph.D
thesis, Harvard University, 1984.

[4] V. Hadzilacos, and S. Toueg. Fault tolerant broadcast and related
problems. S.J. Mullender (Ed.), Distributed Systems. New York: ACM
Press & Addison-Wesley, 1993.

[5] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report 94-1425, 83 pages,
Cornell University, Ithaca (USA), 1994.

[6] A. Schiper. Failure detection vs group membership in fault-tolerant
distributed systems: hidden trade-offs. Proceedings of the Second Joint
International Workshop on Process Algebra and Probabilistic Methods,
Performance Modeling and Verification, pp. 1–15, Springer-Verlag,
London, 2002.

[7] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links with
unreliable links in the presence of process crashes. Proceedings of the
10th International Workshop on Distributed Algorithms, pp. 105–122,
Springer-Verlag, London, 1996.

[8] Y. Afek, H. Attiya, A. D. Fekete, M. Fisher, N. Lynch, Y. Mansour, D.
Wang, and L. Zuck. Reliable communication over unreliable channels.
Journal of the ACM, 41(6): pp. 1267–1297, 1994.

[9] D. Angluin. Local and global properties in networks of processors
(extended abstract). Proceedings of the twelfth annual ACM symposium
on Theory of computing (STOC ’80), pp. 82–93, ACM New York, 1980.

[10] M. Yamashita, and T. Kameda. Computing on anonymous networks,
part I: characterizing the solvable cases. IEEE Transactions on Parallel
and Distributed Systems, 7(1): pp. 69–89, 1996.

[11] M. Yamashita, and T. Kameda. Computing on anonymous networks,
part II: decision and membership problems. IEEE Transactions on
Parallel and Distributed Systems, 7(1): pp. 90–96, 1996.

[12] H. Buhrman, A. Panconesi, R. Silvestri, and P. Vityani. On the
importance of having an identity or is consensus really universal?.
Distributed Computing, 18(3), pp. 167–175, 2006.

[13] C. Delporte-Gallet, H. Fauconnier and A. Tielmann. Fault-Tolerant
consensus in unknown and anonymous networks. Proceeding of 29th
IEEE International Conference on Distributed Computing Systems
(ICDCS’09), pp. 368–375, 2009.

[14] R. Guerraoui and E. Ruppert. Anonymous and fault-tolerant shared-
memory computing. Distributed Computing, 20(3), pp. 165–177, 2007.

[15] C. Delporte-Gallet, H. Fauconnier, and H. Tran-the. Homonyms
with forgeable identifiers. Proceedings of the 19th international
conference on Structural Information and Communication Complex-
ity (SIROCCO’12), pp. 171–182. Springer-Verlag Berlin, Heidelberg,
2012.

[16] Sergio Arévalo, Ernesto Jiménez, and Jian Tang. Fault-tolerant broad-
cast in anonymous systems. Technical Report of Deparmento de
Sistemas Informáticos, 21 pages, Universidad Politécnica de Madrid,
Madrid (Spain), 2014.

[17] D. Angluin, J. Aspnes, D. Eisenstat, E. Ruppert. On the power
of anonymous one-way communication. Principles of Distributed
Systems, Lecture Notes in Computer Science Volume 3974, pp. 396–
411,Springer Berlin Heidelberg, 2006.

[18] M. K. Aguilera, S. Toueg, and B. Deianov. Revisiting the weakest
failure detector for uniform reliable broadcast. Proceeding of the 13th
International Symposium on Distributed Computing (DISC’99), pp. 19–
33, Bratislava, Slovak Republic, 1999.

[19] Tushar Deepak Chandra and Sam Toueg Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM, 43:2, pp. 225–
267, March, 1996.

[20] F. Bonnet and M. Raynal. Anonymous asynchronous systems: the case
of failure detectors. Proceedings of the 24th International Symposium
on Distributed Computing (DISC’10), pp. 206–220, Cambridge, MA,
USA, 2010.

[21] Jian Tang, Mikel Larrea, Sergio Arévalo, and Ernesto Jiménez.
Implementing Reliable Broadcast in Anonymous Distributed Sys-
tems with Fair Lossy Channels. Technical Report of University
of the Basque Country UPV/EHU, San Sebastián, Spain, 2014.
http://www.sc.ehu.es/acwlaalm/research/EHU-KAT-IK-03-14.pdf.

