

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/IPDPSW.2015.46

http://hdl.handle.net/10251/66375

IEEE Computer Society

Sahuquillo Borrás, J.; Petit Martí, SV.; Selfa Oliver, V.; Gómez Requena, ME. (2015). A
Research-Oriented Course on Advanced Multicore Architecture. 5th NSF/TCPP Workshop
on Parallel and Distributed Computing Education (EduPar-15) In conjunction with 29th IEEE
International Parallel & Distributed Processing Symposium. IEEE Computer Society.
doi:10.1109/IPDPSW.2015.46.

A Research-Oriented Course on Advanced
Multicore Architecture

J. Sahuquillo, S. Petit, V. Selfa, M.E. Gómez
Depto. de Informática de Sistemas y Computadores (DISCA)

Universitat Politècnica de València
Valencia (SPAIN)

{jsahuqui,spetit,viselol,megomez}@disca.upv.es

Abstract—Multicore processors have become ubiquitous in
our real life in devices like smartphones, tablets, etc. In fact,
they are present in almost all segments of the computing
market, from supercomputers to embedded devices. The huge
market competence have lead industry and academia to develop
vertiginous technological and architectural advances.

The fast evolution that are still experiencing current multicores
makes difficult for instructors to offer computer architecture
courses with updated contents, preferably showing the industry
and academia research trends. To deal with this shortcoming,
authors consider that a research-oriented course is the most
appropriate solution.

This paper presents an advanced computer architecture course
called Advanced Multicore Architectures, offered in 2015. The
course covers the basic topics of multicore architecture and has
been organized in four main modules regarding multicore basis,
performance evaluation, advanced caching, and main memory
organization.

The course follows a research-oriented approach that covers
theoretical concepts at lectures in which recent research papers
are analyzed to provide students a wide view of current trends.
Moreover, additional teaching methods like lab sessions with a
state-of-the-art multicore simulator or research-oriented exer-
cises have been used with the aim of introducing students to
research in these topics. To achieve this fully research-oriented
methodology, about 40% of the time is devoted to labs and
exercises.

Index Terms—Advanced computer architecture courses; teach-
ing methods; research-oriented method; lab sessions.

I. INTRODUCTION

Computer architecture topics are organized in many univer-
sities all over the world at least in two courses: an introductory
course and an advanced course. Usually, there are several ad-
vanced courses covering different computer architecture topics
(e.g. parallel computer architectures or memory subsystems).

The fast pace of technological and architectural advances
in computer architecture suppose a serious limitation for in-
structors to offer courses addressing up-to-date topics. Because
of this reason, many instructors opt to follow an advanced
computer architecture book for their courses. From our point
of view, offering courses with updated contents is a key issue
to capture the student’s interest. In this regard, some interesting
courses are already being offered. In general, instructors of
these courses present a solid background in research like Pro-
fessor Onur Mutlu at Carnegie Mellon or Professor Christos
Kozyrakis at Stanford. Examples of recent courses offered

by Professor Mutlu are 18–742 Research in Parallel Com-
puter Architecture and 18–740 Computer Architecture. These
courses cover an wide spectrum of computer architecture
topics, mainly hot topics of top top-ranked conferences like
ISCA or MICRO. With the aim of offering updated contents
Professor Mutlu is continuously changing the course’s topics
or offering new courses.

This work presents the contents of the undergraduate course
called Advanced Multicore Architectures (AMA) offered in
2015 at the Universitat Politècnica de València. Multicores
have experienced an evolution without precedent as demon-
strated by the fact that multicores are present in the market
with a wide variety of design choices: in-order versus out-
of-order execution cores, many simple cores versus few but
powerful cores, heterogeneous cores, etc.

The offered AMA course does not try to cover a wide
range of architectural concepts, e.g. transactional memory or
dataflow architectures are not covered. Instead, the course
focuses on key aspects of multicores and is organized in four
main modules. Three of them aimed at studying the working
details of the major components (cores, caches, and memories)
of a typical multicore processor, paying attention to both
architectural and performance aspects; and one of them to
study general performance methodologies used in multicore
design. Instructors highlight for each studied component the
hot research topics, that is, where is the current academia and
industry research interest.

Regarding lectures, this course follows a research-oriented
approach with the aim of providing updated contents and
capture the interest of students. However, unlike the previous
courses, the AMA course pursues a fully research-oriented
approach. With this aim, instructors selectively reduce the
number of the studied topics, which allows them to devote an
important amount of time to train students to research. With
this aim, teaching methods such as research-based exercises,
lab sessions, and a course work have been also used. Research-
based exercises refer to typical research problems that students
will likely face after graduation. Lab sessions are performed
with a state-of-the-art multicore simulator used at academia
and the industry. The course work refers to a relatively
complex implementation in the multicore simulator. The time
devoted by instructors to lectures, exercises, and labs is about
60%, 15%, and 25%, respectively. In addition, extra time is

Fig. 1. Core i7 die and major components. Source: Intel.

required at home to perform the course work.
The remainder of this paper is organized as follows: Sec-

tion II describes the course contents in detail. Section III
explains the methodology used to taught the course. Finally,
Section IV presents some concluding remarks.

II. PROPOSED RESEARCH-ORIENTED ADVANCED
MULTICORE ARCHITECTURE COURSE

This section describes the contents of the AMA course.
Before this course, students have attended to the Computer
Organization course that studies the pipeline of a simple pro-
cessor and the Computer Architecture and Engineering course,
which describes extensions to the previous pipeline to support
speculative execution. The focus in both courses is mainly
educational and their aim is to introduce the basic concepts
and to describe how the distinct computer components (e.g.
superscalar processors, caches, etc.) work.

The contents of the AMA course are aimed to provide the
students with the knowledge about how current multicores
work as well as the industry and academia trends, giving
the students a broader and more insightful view of modern
computers. Moreover, we provide also the skills that allow
students to initiate research in these topics. For this purpose,
the proposed lectures are organized in four main modules. The
course is organized in 16 lectures of 2 1

2 hours each of them.
The course studies the three main components of a typical

multicore processor: the cores, cache structures, and main
memory. Figure 1 illustrates the layout of the Intel Core i7
as example. The course is organized in four main modules as
listed in Figure 2. Module 0 is the typical one where instructors
present the course contents, organization, and grading. In
addition, in this course instructors include a few slides to
explain the key rules to review research papers [1].

Module 1: Core review and multicores

Topic 1.1: Advanced microarchitectural concepts
In Topic 1.1, microarchitectural concepts are reviewed in

order to homogenize the students’ knowledge concerning

MODULE 0. Course Presentation
Topic 0.0. Course Description

Grading policies
How to do paper reviews

MODULE 1. Core review and multicores
Topic 1.1. Advanced Microarchitectural Concepts

(review)
Topic 1.2. Multicore Processors Why
Topic 1.3. Multicore Evolution and Design

MODULE 2. Performance
Topic 2.1. Performance Evaluation Metrics
Topic 2.2. Performance Accounting Architectures

MODULE 3. Caching
Topic 3.1. Advanced Caching:

Concepts and Problems
Topic 3.2. Advanced Caching:

Papers

MODULE 4. Main Memory
Topic 4.1. Main Memory Organization
Topic 4.2. Main Memory Scheduling

Fig. 2. Course contents.

core details. These working details are widely and deeply
studied in another elective course called Advanced Computer
Architectures. The focus of this module is to review and
highlight microarchitectural details of typical commercial pro-
cessors. The studied microarchitecture closely resembles to the
Alpha21264 [2] and most commercial microprocessors. The
pipeline consists of a physical register file, a single instruction
queue, the ROB, and a load/store unit. The microarchitecture
is reviewed detailing what is done at each stage. Emphasis
is given to renaming, dispatching, and issue stages, paying
special attention to why pipeline stalls can appear. In addition
to this architecture, multithreaded processors are also studied,
focusing on simultaneous multithreaded processors that are
dominating an important segment of the market.

The key goal of this topic is twofold. On the one hand,
to summarize the key characteristics of the distinct types of
cores implemented in current multicores. On the other hand, to
enable students to understand (in subsequent lectures) where
performance can be lost during the program execution. At the
end of this topic two papers [3], [4] are assigned to students to
be discussed before introducing he next topic. Students must
deliver at the beginning of the next lecture a brief (less than
one page) review of the paper to the instructor.

Topic 1.2: Multicore processors why
Advances in transistor technology have allowed cramming

more components onto integrated circuits as predicted by
Moore’s law [5]. This fact brings new opportunities for
computer architects. In Topic 1.2, we discuss alternative
architectures to multicores like bigger cores, larger caches,
clustered processors, etc. Instructors present and discuss the
pros and cons of each alternative to provide the students with
a wide perspective on multicore design. Attention is payed to

the analysis of the benefits each alternative provides. Before
starting this topic it is highly recommended that all the students
read the paper The Case for a Single-chip Multiprocessor by
Olukotun et al. [3]. Based on our experience, the discussion
of this paper at classroom really encourages students to the
study of multicore topics.

Topic 1.3: Multicore evolution and design
The last topic of Module 1 is devoted to multicore evolution

and design. We present a representative subset of commer-
cial multicores, ranging from very simple in-order execution
cores (e.g. the Piranha Chip Multiprocessor [6]) to complex
multithreaded out-of-order (e.g. IBM Power 8) cores. The
discussion on these multicores is always done emphasizing the
design objectives and use case of each machine. For instance,
if the goal is to support the execution of many threads in
specific workloads (e.g. web workloads) a good design choice
might be to implement many but simpler cores.

The second part of this topic focuses on the Amdahl’s Law
for multicores. This part is entirely based on the talk by Mark
Hill entitled Amdahl’s Law in the Multicore Era [7] that can
be found on the Internet at https://www.youtube.com/watch?
v=KfgWmQpzD74. We use the Amdahl’s Law to analyze both
asymmetric and symmetric multicores.

Module 2: Performance

Both the industry and the academia have sharply moved
from single cores to multicores. The nature of multicores, dif-
ferent from their single core counterparts, has lead researchers
to define specific performance metrics to evaluate multicore
performance.

In [8], Selfa et al. present a survey on multicore perfor-
mance evaluation metrics that have been defined and used in
recent top computer architecture conferences. Some interesting
readings on this topic are the work by Eyerman and Eeckhout
in [9] and the work by Michaud in [10].

Topic 2.1: Performance evaluation metrics
In Topic 2.1, we discuss the key performance engineering

steps: measurement, analysis, and improvements. Regarding
measurement, this module covers both monitoring/profiling
tools, as well as simulation tools. Special attention is payed
to multicore metrics mainly based on the discussion presented
in [8].

An important set of current research is being done on
real machines (e.g. thread scheduling policies). In this regard,
an interesting reading can be the work by Feliu et al. [11]
where performance counters are used to assist a thread-to-core
allocation policy on the Intel Xeon. We also present distinct
profiling tools related to performance counters (e.g. Perf, PAPI,
Libpfm, etc.).

Finally, practical stats for architects are studied. We present
the basic principles and how to use stats in real systems
to interpret the results. We study confidence intervals as a
statistical tool that is useful to analyze the values of a given
performance metric when they are not deterministic, which is

1 2 3 4 5 6 7 8 9 10 11 12
0%

2%

4%

6%

8%

10%

12%

Mix

P
e
rf
o
rm
a
n
ce

Im
p
ro
ve
m
e
n
t

Fig. 3. Resulting figure from a confidence interval exercise.

the case of measurements performed on real systems. As an
example, Figure 3 shows the confidence intervals that students
obtain for distinct performance metric (e.g. IPC). For this
purpose, we first provide the students with a wide set of values
of that metric, which are gathered on a real machine. To plot
each bar and it associated confidence interval, the results of
20 executions of the same mix (1–12) are used.

Topic 2.2: Performance accounting architectures
Accounting architectures [12]–[14] represent an important

advance that allow researchers to achieve a sound understand-
ing about where performance can be lost. Instructors strongly
recommend their colleagues to include the study of these
architectures on their courses. We start Topic 2.2 with the
concept of CPI stacks [12] for single-threaded processors.
These stacks represent the contribution of the major processor
components to the system’s performance. After that, different
approaches to construct CPI stacks are analyzed, mainly fo-
cusing on that of the IBM Power5 and on the interval analysis
approach. Interval analysis is studied in detail; the performance
penalty is analyzed for both frontend miss events (e.g. I-Cache
and I-TLB misses) and backend miss events (e.g. L2 data
cache). Implementation of the accounting architecture are also
discussed in detail in order to enable students to implement
this architecture in a detailed multicore simulator.

After the study of accounting architectures in single core
processors, we proceed with Topic 2.2 by explaining the
accounting architecture for multicores [13]. The first step in
this study is to understand the sources of interferences, which
depend on the shared resources. The base system presents two
main shared resources, a shared L2 which acts as the LLC
(last level cache) and the main memory resources (memory
controller, memory bus, and memory modules). Two types
of interference at the LLC are studied and estimated, inter-
thread cache misses and intra-thread cache misses. The former
represents extra conflict misses due to threads evicting each
other’s data. The latter refers to misses that also occur in single
core execution but they present longer latency in multicore
execution. Interferences at the main memory are estimated
assuming an open page policy and FR-FCFS (first ready, first
come first served) scheduling policy. Students are provided
with the formulas to calculate all (inter- and intra-thread)

interferences at run time.
These architectures allow to estimate the execution time

that each benchmark would have experienced in isolation.
Therefore, they are of paramount importance to estimate the
individual progress of each benchmark, which can be used as
a powerful tool to investigate on fairness-aware policies for
shared resources.

Finally, Topic 2.2 could be extended by applying interval
analysis to processors including other type of cores like
SMT [14] cores or GPUs. Nevertheless, these studies are
relatively more complex so we leave them as optional readings
for those interested students.

Module 3: Caching

Advanced cache design is of paramount importance for
multicore performance due two main reasons. First, the miss
latency introduces a serious performance penalty when the
accessed data is retrieved from off-chip memory. Second,
shared caches can become contention points that increase
the average memory access time. Solutions to both problems
require advanced techniques beyond classic cache performance
enhancements. Module 3 deals with the most successful
techniques proposed in the literature. In Topic 3.1, advanced
caching concepts are explained highlighting possible short-
comings, while in Topic 3.2, a group of selected papers
tackling several of the studied shortcomings is reviewed.

Topic 3.1: Advanced caching: concepts and problems
In Topic 3.1, basic concepts related to cache performance

such as working set, associativity, and miss ratio are revised.
Special emphasis is given to the fact that simply reducing
the miss ratio may not improve the performance, since miss
latency depends on where the block is located and latency-
hiding mechanisms must be taken into account.

After introducing basic caching concepts, several techniques
to reduce miss rates are overviewed. These techniques go
beyond increasing associativity and cache size, since blindly
doing that will significantly increase access latency while only
providing incremental benefits on the hit ratio. Instead, some
successful proposals are presented, such as victim caches [15]
or skewed associative caches [16]. The goal of these proposals
is to reduce conflict misses without significantly impacting the
access time.

Next, the topic deals with cache enhancements to reduce
miss latencies. Basic approaches, such multi-level cache hi-
erarchies, critical word first, or subblocking are reviewed, but
special attention is payed to techniques aware of memory level
parallelism (MLP). In this regard, non-blocking caches are
used to allow multiple outstanding miss requests. First, the
implementation of non-blocking caches [17] is explained in
detail as well as the role of the miss status handling registers
(MSHRs). Then, to demonstrate the importance of MLP-
aware microarchitectural techniques, an example is presented
where the optimal (regarding miss ratio) Belady’s replacement
algorithm [18] obtains lower performance than a basic MLP-
aware replacement policy.

The last part of Topic 3.1 studies the multicore memory
hierarchy as a shared resource. This part analyzes benefits and
disadvantages of sharing the cache. Disadvantages are mainly
caused by uncontrolled sharing that can produce unfairness
and even starvation of individual threads. This fact difficults
complying with QoS and real-time constraints. Static parti-
tioning of resources is presented as a naive solution to solve
these disadvantages; however, it lowers resource utilization.
Therefore, the best solution should enable resource sharing
but addressing QoS and fairness. This is an ongoing research
area that links with the next topic.

Topic 3.2: Advanced caching: papers
Topic 3.2 presents several recent papers dealing with

caching problems already introduced in Topic 3.1. In par-
ticular, a proposal regarding cache partitioning is explained,
as well as two others addressing insertion and replacement
policies.

Regarding cache partitioning, the Utility-based partitioning
paper [19] by Qureshi and Patt is discussed. This scheme
partitions a shared cache between multiple applications de-
pending on the reduction in the number of cache misses that
each application is likely to experience for a given partition.
For this purpose, the proposal implements an auxiliary tag
directory, a useful mechanism that has been used in some
other papers, and that helps estimate the cache behavior is
stand-alone execution.

With respect to insertion policies, the work by Seshadri et
al. [20], which presents the evicted-address filter mechanism,
is studied. This approach implements a hardware structure that
holds the address of the most recently replaced blocks. This
structure is used to check if a given block belongs to the actual
working set of the workload. The result of this lookup decides
in what position of the LRU queue the block should be inserted
to avoid cache pollution and trashing.

Finally, the work [21] by Qureshi et al. that proposes an
interesting dynamic MLP-Aware cache replacement approach
is discussed. This paper claims that misses that occur in
isolation are more costly on performance than those that occur
in parallel, since the latency of the latter ones can be hidden.
Based on this claim, authors classify misses depending on
a cost metric that takes into account the number of parallel
outstanding memory requests. Simple logic to compute this
metric is implemented in the MSHRs. When the block is
finally retrieved, its associated computed cost is stored in
the cache to assist the replacement policy, with the aim
of replacing those blocks whose miss cost is predicted to
be higher. The proposal also explores a hybrid replacement
policy that dynamically moves to the LRU algorithm when
the estimation accuracy is not good enough.

Module 4: Main memory

The last module covers main memory issues in modern
multicores. This module focuses on two main components of
the system: the DRAM memory organization and the memory
controller. We start the module describing the main memory

Fig. 4. Multidimensional organization of the DRAM memory.

subsystem as a set of off-chip DRAM memory modules
connected to one or more on-chip memory controllers. Then
we describe the major concerns affecting main memory: i)
need for capacity, bandwidth and QoS requirements; ii) energy
consumption; and iii) DRAM technology scaling. This helps
students to know which are the main problems that threaten
nowadays the performance of the main memory subsystem.

Topic 4.1: Main memory organization
In the first topic, the DRAM organization is deeply reviewed

using a bottom-up approach, starting from the DRAM memory
cell. Once the basic cell is introduced, cell arrays and banks
are straightforward. The concept of bank is presented as a
mean to reduce the access time and to increase memory level
parallelism. This abstract concept then is placed in context
by explaining how DRAM memory banks expand across
several chips with a narrower data path in order to reduce
the manufacturing cost of the DRAM memory chips, and how
they work jointly and synchronously to compound the wider
data path of the banks. The internal organization of a memory
chip is deeply analyzed with students explaining the concept of
row buffer and how it acts as a basic prefetcher. Once the bank
and chip structures have been studied, instructors introduce the
basic DRAM commands that the memory controller issues to
control DRAM memory access.

After the study of the chip organization, instructors define
the concept of rank as a set of chips with their respective banks
working in lockstep. Then, DIMMs are described as a set of
ranks, and memory channels are introduced. An example of a
hierarchical DRAM organization is depicted in Figure 4.

Finally, instructors present different DRAM address map-
ping schemes varying the physical address bits used to select
the distinct components (banks, ranks, and channels) of the
multidimensional DRAM organization. This is an interesting
topic to discuss, since the optimal mapping scheme depends
on the main memory access patterns of the executed worload.

Topic 4.2: Main memory scheduling
Finally, Module 4 covers the memory controller and mem-

ory request scheduling topics. Instructors first explain how re-
fresh is done in current DRAM memories and its implications
in performance and energy consumption nowadays and in the
near future.

We then devote some time to the memory controller, de-
scribing all its functions, alternative locations (on-chip versus
off-chip), and its components. Special attention is paid to
memory request queues and scheduling policies. Two main
policies are introduced and compared: FCFS (first come first
served) and FR-FCFS (first ready, first come first served).
Finally, instructors review the two main ways of operation in
current DRAM modules: open page and closed page, analyzing
how they handle the row buffers, as well as their implications
on performance and energy consumption.

III. METHODOLOGY

The offered course pursues three main goals: i) to make
more attractive for students the study and research on computer
architecture topics, ii) to provide the students a sound under-
standing of the studied topics, and iii) to enable the students
in the research of the studied computer architecture topics.

The methodology devised to achieve these goals and to
make the course successful combines four main teaching meth-
ods: research-oriented lectures, practical exercises, realistic lab
sessions, and course work. Below the focus of each one is
discussed.

A. Lectures

Lectures are used to review and present basic theoretical
concepts to enable students to follow the discussion. After
that, current research and industry trends are introduced by
instructors, highlighting the hot topics. For this purpose and
to motivate the students as well, research papers are discussed.
Instructors select papers to be explained at classroom accord-
ing to two main criteria: papers that have had a strong impact
on the industry or research in the past (e.g. [3]), and papers
addressing current hot topics.

B. Exercises

As mentioned above, exercises are designed to train students
to deal with common research problems. Different types of
exercises are proposed (e.g. estimating energy consumption –
static and dynamic– in caches or obtaining confidence intervals
for a given set of performance metrics). The time taken to
solve each of these problems is relatively low (e.g. from half
an hour to one hour), and most of them are solved with the help
of an spreadsheet available at the computer assigned to each
student in the classroom. Because of this short time, exercises
are intermingled with lectures. This way allows the student to
reinforce theoretical concepts.

C. Lab sessions

The main goal of lab sessions is to provide the students with
the skills to work on a typical simulation framework used for
research both in the academia and the industry.

In the lab sessions students are trained in the use of the
Multi2Sim multicore simulation framework [22]. This tool is a
state-of-the-art simulator used for research in the academia and
the industry. Multi2Sim allows modeling the distinct system
components (memory hierarchy, cores, and main memory)
and study their impact on the multicore performance. Results
obtained with the simulator are plotted and analyzed with the
help of a spreadsheet. Just as with exercises, lab sessions are
also carried out using the computers available at the classroom.
The main differences between labs and exercises lie on the
time needed to complete them and the used tools. A lab session
requires relatively more work so it takes an entire 2.5-hour
session.

D. Course work
Students must do a final course work when the course is

approaching to its end. The course work consists on perform-
ing an implementation in the multicore simulator that is more
complex than those done at lab sessions. Moreover, unlike lab
sessions, the course work is not guided by instructors.

The main goal of this teaching method is that students
demonstrate that they have acquired a certain degree of au-
tonomy to work alone with a relatively complex simulation
framework. This way will make students more self confident to
work on research. For this purpose, the course work is carried
out individually by each student at home.

As an example, one of the offered works is the extension
of a lab session where students estimate hit ratio decrease
in mixed workloads to implement an accounting architec-
ture [13].

IV. CONCLUSIONS

This paper has presented the contents of the course
Advanced Multicore Architectures offered at Universitat
Politècnica de València. The course is organized in four
modules, three of them devoted to the study of the three
main components of a current multicore (core, caches, and
main memory) and the other tackling multicore performance
evaluation. The course has been designed to motivate students
on the study of advanced computer architecture topics and to
enable them to research on these topics. For this purpose, the
course includes cutting-edge contents at lectures, highlighting
current research trends on the academia and the industry.

In addition, this paper presents an overview of the pillars of
the teaching methodology where the course relies on in order
to fulfill its objectives. These pillars are lectures, exercises,
labs, and course work; all of them with the aim of providing
students the skills to enable them to research on the studied
computer architecture topics.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and by FEDER funds
under Grant TIN2012–38341–C04–01, and by the Intel Early
Career Faculty Honor Program Award. Authors also would like
to thank Onur Mutlu for making available online his valuable
teaching material.

REFERENCES

[1] A. J. Smith, “The task of the referee,” Computer, vol. 23, no. 4, pp.
65–71, Apr. 1990.

[2] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, Mar. 1999.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” in ASPLOS, 1996, pp. 2–11.

[4] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” in ISCA, 1997, pp. 206–218.

[5] R. R. Schaller, “Moore’s law: Past, present, and future,” IEEE Spectr.,
vol. 34, no. 6, pp. 52–59, Jun. 1997.

[6] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A scalable
architecture based on single-chip multiprocessing,” in ISCA, 2000, pp.
282–293.

[7] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008.

[8] V. Selfa, J. Sahuquillo, C. Gómez, and M. E. Gómez, “Methodologies
and performance metrics to evaluate multiprogram workloads,” in PDP,
2015.

[9] S. Eyerman and L. Eeckhout, “Restating the case for weighted-ipc
metrics to evaluate multiprogram workload performance,” IEEE Comput.
Archit. Lett., vol. 99, p. 1, 2013.

[10] P. Michaud, “Demystifying multicore throughput metrics,” IEEE Com-
put. Archit. Lett., vol. 12, no. 2, pp. 63–66, 2013.

[11] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “L1-bandwidth aware
thread allocation in multicore SMT processors,” in PACT, 2013, pp.
123–132.

[12] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A perfor-
mance counter architecture for computing accurate cpi components,” in
ASPLOS, 2006, pp. 175–184.

[13] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-thread cycle accounting
in multicore processors,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,
pp. 29:1–29:22, Jan. 2013.

[14] S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in smt
processors,” in ASPLOS, 2009, pp. 133–144.

[15] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in ISCA,
1990, pp. 364–373.

[16] A. Seznec, “A case for two-way skewed-associative caches,” in ISCA,
1993, pp. 169–178.

[17] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in
ISCA, 1981, pp. 81–87.

[18] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Syst. J., vol. 5, no. 2, pp. 78–101, Jun. 1966.

[19] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423–432.

[20] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-
address filter: A unified mechanism to address both cache pollution and
thrashing,” in PACT, 2012, pp. 355–366.

[21] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
mlp-aware cache replacement,” in ISCA, 2006, pp. 167–178.

[22] R. Ubal, J. Sahuquillo, S. Petit, and P. López, “Multi2sim: A simulation
framework to evaluate multicore-multithread processors,” in SBAC-PAD,
2007, pp. 62–68.

