N

N

Mini-NOVA: A Lightweight ARM-based Virtualization
Microkernel Supporting Dynamic Partial
Reconfiguration

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel

» To cite this version:

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel. Mini-NOVA: A Lightweight ARM-based Vir-
tualization Microkernel Supporting Dynamic Partial Reconfiguration. 2015 IEEE International Par-
allel and Distributed Processing Symposium Workshops, May 2015, Hyderabad, India. pp.71-80,
10.1109/ipdpsw.2015.72 . hal-01191910

HAL Id: hal-01191910
https://hal.science/hal-01191910

Submitted on 2 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01191910
https://hal.archives-ouvertes.fr

Mini-NOVA: A Lightweight ARM-based Virtualization Microkernel Supporting
Dynamic Partial Reconfiguration

Tian Xia, Jean-Christophe Prevotet and Fabienne Nouvel
Universite Europe de Bretagne, France
INSA, IETR, UMR 6164, F-35708 RENNES
Email: {tian.xia, jean-christophe.prevotet, fabienne.nouvel} @insa-rennes.fr

Abstract—Today, ARM is becoming the mainstream family
of processors in the high-performance embedded systems do-
main. In this context, adding a run-time reconfigurable FPGA
device to the ARM processor into a single chip makes it possible
to combine high performance and flexibility. In this paper,
we propose a low-complexity design of system virtualization
running on the Zynq platform. Virtualization of software and
hardware resources are managed by a custom microkernel. The
dedicated features to efficiently manage the dynamic partial
reconfiguration (DPR) technology are described in details.
The performance of the DPR management is evaluated and
presented at the end of this paper.

I. INTRODUCTION

The virtualization technology has been under intense
research for the last decade. It has already been demon-
strated that employing such a technique provides users
with increased energy efficiency, shortened development
cycles and other advantages. In the embedded computing
domain, this technology has also gained a lot of interests
and achieved enormous progress. For current devices, such
as mobile phones or automotive electronics, applications
and peripheral drivers are generally reprogrammed for each
operating system (OS). Thanks to virtualization, applications
can be added regardless of the OS, therefore reducing the
development cycle and the time to market [1]. Moreover,
since the real-time characteristic is still critical in a lot
of applications, virtualization may also provide a solution
to simultaneously host real-time OS (RTOS) and high-
level generic OS (e.g. Linux, Android) on a single unified
platform. Furthermore, whereas security issues are often met
in modern mobile devices, applying virtualization makes
it possible to efficiently protect systems from malicious
applications and untrusted users.

In parallel, in the embedded computing domain, a new
architecture based on the combination of ARM cores and
FPGA fabric turned out to be an emerging solution for
higher-performance embedded systems. With the improve-
ment of FPGAs and especially with the dynamic partial
reconfiguration (DPR) technology, an embedded system can
dynamically dispatch and manage hardware accelerators as
flexible software functions. The FPGA is then seen as a full-
featured coprocessor. This emerging technology is especially

suitable for computationally intensive applications in the
digital communication field [2]. With an efficient man-
agement of both hardware and software tasks, the overall
performance can be drastically improved.

In this paper, we present an approach to exploit the
potential of CPU-FPGA systems by proposing a virtualiza-
tion framework taking advantage of both virtualization and
DPR techniques. We will describe and examine a virtual-
ized embedded system in a hybrid ARM-FPGA platform
Xilinx Zynq-7000. This system is based on the Mini-NOVA
microkernel, an adjusted version of the NOVA (x86) mi-
crohypervisor [3]. Our version features custom mechanisms
that enable the management of DPR shared resources.

The remainder of the paper is organized as follows:
Section II presents the background concepts and researches
in both reconfigurable computing and virtualization domain
for embedded systems. In Section III, we describe the
overall architecture and virtualization features of our custom
microkernel named Mini-NOVA. Section IV presents the
mechanisms of the DPR management in a virtualized envi-
ronment. In Section V, we verify and examine the proposed
system with practical hardware/software applications and
analyze the results. Then the conclusion and prospect of our
work will be given in Section VI.

II. BACKGROUNDS
A. Concepts

The motivation of microkernel-based systems is to achieve
the minimized trust computing base (TCB) size by using
a small kernel that implements only a minimal set of ab-
stractions. [4] identifies three key features for microkernels:
address space management, threads control and inter-process
communication. Other functionalities are available as ex-
tensions running at the user level. Microkernels generally
reduce the complexity of kernels and increase security and
flexibility. The principle of a microkernel-based virtualiza-
tion is to establish an abstract layer to host multiple OS(es)
simultaneously on a single processor. Usually, each guest
OS runs in a virtual machine (VM), which consists of an
abstraction of a real system. These virtual machines are
managed by a virtual machine monitor (VMM) that is a
kernel component. The VMM must ensure that each VM

is logically and temporally isolated from the others. While
running multiple VMs, the VMM saves and resumes the
guests’ execution content to share resources among them.

Virtualization systems are built in split privilege-levels.
These levels are used to separate the critical code from the
less critical one. The higher privilege level space is always
of higher authority to resources and forbidden to be accessed
from lower privileges. For instance, the x86 Intel CPU has
4 privilege levels (referred to as Rings), where the critical
software, normally the kernel, uses the highest privilege
level (Ring 0) and the user applications use the lowest level
(Ring 3). Using virtualization, the OS kernel is ported to
the lower privilege level (de-privileged) and its behavior is
limited because the critical resources are kept under the
VMM’s control. The instructions towards these resources
are defined as sensitive instructions and should be detected
by the VMM. On the other hand, several instructions can
only be run in higher privilege level, which are referred to
as privileged instructions. Executing privilege instructions at
lower privilege level will cause CPU exceptions. In this case,
the privilege instruction is trapped and will then be detected
and emulated by the VMM. For sensitive instructions that
do not trap in a lower privilege level, extra mechanisms are
used to force them to trap into the VMM. [5] Currently
there are two main approaches related to the virtualization
technology:

(1) Full virtualization: In this configuration, guest OS(es)
are hosted in VM(s) without any code modification. They
are completely unaware of the virtualized environment in
which they are running. This approach relies on the em-
ulation of low-level drivers by the VMM. Note that these
operations are usually performed by the guest OS kernel,
itself. Unfortunately, to take advantage of this approach, the
processor has to propose hardware mechanisms that are able
to determine which OS have the rights to perform specific
privilege operations, e.g. have access to some hardware
peripherals. Today, a small set of processors implement these
mechanisms, especially in the embedded domain, e.g. ARM
Cortex-Al5 and Intel VT-x.

(2) Para-virtualization: in this configuration, guest OS
should be revised to get de-privileged i.e their internal code
has to be modified. In this approach guest OS kernels
generate hypercalls to the VMM for sensitive operations
instead of the trap & emulate mechanism. This technology
normally results in better performance and a smaller TCB
size, but demands higher design complexity.

B. Related works

The approach of developing efficient embedded CPU-
FPGA based systems has been studied in a lot of re-
searches. Numerous works have focused on providing OS
or VMM support to current reconfigurable FPGA devices.
One successful approach in this domain is ReconOS [6],
which is based on an open-source RTOS (eCos) and sup-

ports multithreaded hardware/software tasks. In [7], another
specific OS, CAP-OS, has been proposed, that is based
on the RAMPSoC architecture to manage resources in a
multiprocessor reconfigurable system.

Those approaches, however, are less likely to be ap-
propriate in scenarios where applications with different
constraints are running concurrently, ranging from the hard
real-time safety system to the less constrained personal
entertainment applications. Within a mixed critical system
like this, microkernel-based virtualization seems to be a
better solution than a conventional generic OS, because of
its small trust computing base, software security, flexibility
and real-time capabilities [8][9]. However, for embedded
systems, especially the ARM processors prior to the AR-
Mv7A architecture, no hardware virtualization extension has
been foreseen. Therefore, numerous researches have been
led to paravirtualize ARM systems. One well-known work
in this domain is the OKIL4 Microvisor [9], based on the
L4 microkernel. Other researches include the Xen-ARM
hypervisor [10] and ARMvisor [11]. Beginning from the
Cortex-A15 processor, hardware virtualization extension has
been added to the ARM architecture, by introducing a new
HYP privileged level. This makes full virtualization possible
for ARM systems. Emerging researches in this domain
include the revised OKL4 kernel [12], CASL hypervisor[13]
and the KVM/ARM[14].

Despite of the wide study for the embedded ARM virtual-
ization, there are still few works considering the combined
ARM-FPGA platforms, especially dealing with DPR fea-
tures. [15] proposed a revised Xen kernel to support DPR in
virtualization environment, based on x86 Intel architecture.
In [16], another approach to support DPR in virtualiza-
tion system was made, focusing on the cloud computing
on servers, rather than in embedded systems. In [8], a
microkernel-based hypervisor is proposed to manage an
ARM-FPGA architecture. However, it did not consider the
DPR technique. Virtualization features are not fully revealed
and discussed in this work, either.

In our former work [17], we proposed a simple ARM
based microkernel without virtualization implementation. In
this paper, we propose a paravirtualization system based on
the Mini-NOVA microkernel, capable of dynamically man-
aging software and DPR hardware tasks. By introducing the
virtualization into original works [17], major modifications
and novel mechanisms are required for efficient coordination
of virtual machines and reconfigurable hardware acceler-
ators, e.g. the paravirtualization extension, the porting of
guest operating systems, and the security issues for teh
shared FPGA resources. In this paper we also evaluate
and analyze in details the virtualization performance of our
microkernel, proving that this approach enables to gain better
performance and enhances the ARM-FPGA architecture
combining higher flexibility, security and reliability.

Dom0 | | DomU | | DomU

e | ==

HW Task |
Manager i | OS Kernel

| Guest (PL0)

MiniNOVA VMM Host (PLD)

‘ Memory management ‘ ‘ Inter-VM Comminucation ‘

‘ Virtual CPU ‘ ‘ Virtual timer ‘ ‘ Scheduler ‘
e

| Cortex-A9 ‘ | Physical memory. ‘ | FPGA ‘

| Timer ‘ | GIC ‘ | 1/0 Interface ‘

Figure 1. Mini-NOVA Architecture Overview

III. MINI-NOVA VIRTUALIZATION ON CORTEX-A9

In this section, we introduce the implementation of
Mini-NOVA virtualization on ARM platform. Mini-NOVA
is a revised and simplified version of the NOVA micro-
hypervisor (x86), and has been ported on the ARM Cortex-
A9 architecture, which is the latest ARM version available
for contemporary ARM-FPGA platforms. The principle of
Mini-NOVA is to reduce complexity to reach lower over-
head, smaller TCB size and higher security, making it more
flexible and portable for embedded devices. Due to the
absence of hardware virtualization support in the Cortex-A9
architecture, paravirtualization is used in Mini-NOVA.

The Cortex-A9 architecture offers 6 main operating
modes, which are divided into two privilege levels: non-
privileged PLO (USR mode) and privileged PL1 (SVC, IRQ,
FIQ, UND and ABT modes). Mini-NOVA is mainly execut-
ing in the supervisor (SVC) mode, occupying the privileged
level, while guest OS(es) are running in the user (USR) mod-
e. Other modes are mainly used to respectively trap different
types of exceptions: interrupt, Undefined Instruction (UND)
and Prefetch/Data Abort (ABT). These exception types are
used to build the virtualized environment. Interrupts are
trapped into the IRQ and fast IRQ modes (IRQ/FIQ). UND
exceptions are mostly caused by unpermitted instructions on
the system registers or coprocessors. They are usually used
to trap privilege instructions. ABT exceptions are caused by
illegal memory access attempts, such as page faults, and
are used for the virtualized memory space management.
Whenever an exception occurs, the CPU leaves the user
mode and enters the corresponding exception mode, which
would later give control back to the SVC mode to handle
this exception.

The Mini-NOVA kernel is an abstract layer between
the physical resources and software users. For each guest
OS/Application, a virtual machine is initiated, running in
an isolated user domain. A virtual machine monitor is
used to create the virtualized environment for VMs. Based
on the microkernel features [4], the VMM should provide
VMs with four basic properties: CPU virtualization, memory

TABLE I. VIRTUAL CPU CONTENT IN MINI-NOVA

Privilege Switch
Resources
level mechanism
General-Purpose Registers . .
Active switch
Non- Platform-specific timer
privileged Vector Floating-Point (VFP) Lazy switch
Coprocessor Registers(CP14/CP15)
Generic Interrupt Controller (GIC) Active switch
Privileged Memory Management Unit (MMU)
Vector Floating-Point (VFP) .
Lazy switch
L2 Cache Control Registers

management, communication, and scheduling. To minimize
the TCB size of the privileged code, we decompose the
microkernel and implemented parts of its properties at user
level. The overview of Mini-NOVA is illustrated in Fig. 1.

A. CPU virtualization

For each virtual machine, Mini-NOVA instantiates a spe-
cific data structure that holds in kernel memory the states of
hardware resources that are used by the virtual machine. This
structure acts as a virtual CPU (vCPU). A vCPU includes
the registers of necessary resources to build up a virtual
environment. Table I shows the hardware resources involved
in a vCPU, which are divided into two privilege levels.

Mini-NOVA permits the frequently-accessed resources to
be directly programmed by the virtual machine, except
for the hardware states that may affect the microkernel
or other virtual machines. For example, interrupt status
registers can only be accessed by the privileged code of the
microkernel to prevent malicious users disabling interrupts
and monopolizing the CPU. While switching between virtual
machines, Mini-NOVA saves the current virtual machine’s
vCPU state and restores its successor’s state. To reduce the
switch overhead, the vector floating-point (VFP) coprocessor
and cache control registers use the lazy switching, meaning
that their contexts are switched passively, instead of actively
at every virtual machine switch. The reason is that they are
relatively less frequently accessed and quite expensive to
save.

To host the vCPU content and organize the virtual ma-
chine capabilities in the kernel domain, a kernel object
Protection Domain (PD) is applied. A Protection domain
acts as a resource container and a capability interface
between a virtual machine and the microkernel. It holds
the state of a virtual machine (the ID number, the priority
level, etc). To handle sensitive operations in the virtual
machine domain, PD includes an exception interface, which
receives exceptions and hypercalls, and distributes them
to different capability portals according to the exception’s
type. Normally, hypercalls are used to replace frequently-
used sensitive operations in order to avoid frequent traps

R IRQ
i VM PD Pointer <):I ™ |
VM IRQ Entry » IRQ Handler |
vIRQ List /I i
B0l [Ak [
IRQ! State & | 1
Q Local IRQ state |
1RQ2 State |
State
vGIC [Enabled IRQ
| | ‘ | ‘ ‘ ‘ | ‘ ‘ 1 l:l Disabled IRQ
IGIC I:l Unused IRQ

Figure 2. Structure of Virtual Generic Interrupt Controller

during virtual machines’ execution. Such operations include:
(1) general cache/TLB operations, (2) IRQ operations, (3)
memory management: mapping inserting, guest page table
creation, etc, (4) access to privileged registers, (5) access to
shared devices, such as DMA, FPGA, I/O device, etc, (6)
VM inter-communication.

B. Virtual Interrupt

In the ARM architecture, all physical interrupts are
managed by the generic interrupt controller (GIC), which
receives different types of hardware interrupt resources and
generate IRQs to the CPU. For each virtual machine, we
create a virtual GIC object. IRQs are trapped to the kernel,
and then distributed by the virtual GIC (vGIC) of the current
virtual machine. Fig. 2 shows the structure of a vGIC. A
vGIC is associated to its host virtual machine’s protected
domain and keeps a record list of the states of interrupts
which the virtual machine is using. In this list, each entry
corresponds to the IRQ source number, recording the state
of this virtual IRQ. The virtual state of IRQ is programmed
locally in the virtual machine, whose values are read back
to vGIC when exiting the virtual machine.

On each virtual machine switch, the kernel configures the
GIC to mask the interrupts of the previous virtual machine,
according to its virtual IRQ list, and unmasks the successor’s
interrupts (enabled IRQs only). As in Fig.2, the entry address
of the virtual machine’s IRQ handler is registered in vGIC.
Every time a hardware interrupt is received, the system
switches to the kernel space to distribute the interrupt. Mini-
NOVA writes an End of Interrupt (EOI) value to the GIC
interface, then uses the vGIC to inject virtual IRQ into
virtual machine by forcing the virtual machine to jump to
its IRQ entry and passing the IRQ number to it. Note that
because the vGIC only distributes IRQs, it is the guest OS’
responsibility to manage its own vIRQ state, for example, if
the virtual IRQ has been properly handled.

C. Memory management

In virtualized systems, memory management involves the
access control to different privileges: host, guest kernel and
guest user. In the ARM architecture, the virtual memory sys-
tem is controlled by the memory management unit (MMU).
The MMU applies a 2-stage page table system for virtual

TABLE II. ACCESS CONTROL IN GUEST USER (GU), GUEST KERNEL
(GK) AND HoST KERNEL (HK)

. L. DACR | DACR | DACR
Domain Permission
(GU) (GK) (HK)
Guest user client client client
—— 1 Full Access
Guest kernel NA client client
Microkernel Privileged client

addresses translation. Each page table entry can be marked
with the desired access permission ((1) accessible only with
a privilege level; (2) full access; (3) no access.). The MMU
checks access permission to these pages and generates a
page fault exception if the access is not permitted. Obvious-
ly, the 2-level privileges are both used for the Mini-NOVA
kernel and for the virtual machines respectively.

However, we cannot rely on the privileged access to
separate guest kernels and the user space, since both guest
kernels and users are executing in ARM’s non-privilege
mode. In this case, we use the domain access control register
(DACR) in MMU, which is divided into 16 sections. Each
section can be set to three types: no access (NA), client
and manager, meaning forbidden access, permission checked
access and check-free access respectively. Guest kernel and
guest user are associated to different DACR sections. The
guest kernel’s DACR section content is set as a client when
running in guest kernel space, and changed to NA when
running in the guest user space, so that guest kernel spaces
are protected from the guest users. Mini-NOVA switches the
DACR’s value as the guest privilege level changes. Table II
shows this mechanism.

Mini-NOVA maintains isolation among VMs’ memory
spaces. Each VM has its own page table, which only maps
the memory space that Mini-NOVA allocates to it. A VM
is not allowed to access the microkernel or other guests,
otherwise a permission-denied error will occur. Mini-NOVA
switches memory space by loading the base address of the
page table to the translation table base register (TTBR).

The cache consistency is protected from the switch of
memory space, because in Cortex-A9 architecture both
instruction and data caches are physically-tagged. Thus,
without the duplicate mapping that shares the physical
memory, the memory space switch is spared of the expensive
cache flush. We utilize the address space identifier (ASID)
to simplify the management of TLB. Translations with
different ASIDs are respectively labeled in TLB. Each VM
is associated with one unique ASID value. The microkernel
reloads the ASID register whenever a virtual machine is
switched.

D. Scheduling

Mini-NOVA implements a preemptive priority-based
round-robin scheduler. All guest OSes/applications are or-
ganized into two execution groups: the run queue and the
suspend queue. The run queue is composed of the guest

Run queue | Suspend queue

|
1/O Drivers

HW Task
Manager

Run queue | Suspend queue

Bootloader

|
|
| 1/0 Drivers
|
|
|
|

HW Task R i
Manager

| e |
a) b)
Figure 3. Scheduling Process. a) Guest OSes round-robin sharing CPU. b)

User service bootloader is added to the run queue and preempts lower-
priority VMs

OSes/applications which are ready to execute. The suspend
queue, on the other hand, contains the ones that are not
necessarily schedulable to avoid wasting the CPU resource.
By default, some user service applications of Mini-NOVA
are in the suspend queue because they are only invoked
when necessary. Each virtual machine is created with a
fixed priority level. The applications which have a tighter
time constraint or real-time characteristics are given higher
priority level, so that they can preempt general-purpose guest
OSes and execute immediately. The VM’s priority is held in
its protected domain. When invoked, the scheduler selects
the highest-priority PD in the run queue and dispatches the
vCPU attached to it.

Fig. 3 shows the scheduling process of Mini-NOVA. In
the run queue, VMs at the same priority level are organized
in double-link circles. As in Fig. 8, all guest OSes are linked
in circles at priority level 1, and scheduled in round-robin by
default. Normally guest OSes are sharing the CPU equally.
The same time quantum is provided to guest OSes. Once
activated, a guest OS can run until its time quantum is
consumed, or until it is preempted by a higher priority virtual
machine. At the preemption point, the microkernel saves the
remaining time quantum of the interrupted virtual machine.
When this VM is resumed, its time quantum is also resumed
so that its total execution time slice is constant.

IV. DPR TECHNOLOGY SUPPORT

Mini-NOVA is based on the Zyng-7000 platform, which
includes a dual-core ARM processor and a FPGA logic
programmable cell allowing DPR. Zyng-7000 is the first
and most commonly used SoC platform that integrates ARM
with DPR FPGA device, and offers dedicated features and
peripherals to facilitate the cooperation of CPU and FPGA
logic.

Being designed to manage the coexistence of software
and hardware computing resources, it is necessary for Mini-
NOVA to provide essential support to the DPR hardware
tasks. One major challenge for this approach is to efficiently
coordinate the resources of hardware tasks and the separate
virtual machines. Security is another major concern because
the hardware tasks are shared among guests, and therefore,
attention should be paid to protect the guest OS from

DDR M VM HW task
[l it n Manager
| 1
: [rel: MinNOVA
' | HW task data |: ARM
_____________ | s
[__ PL
—)__PCA AXI_HP AXI_GP !
I
1
DMA : PRR Controller |
: Reg group Reg group Reg group :
1
1
h 1
h 1
1] I I ,
1 v v v |
o N
—T HW HW HW 1
1 Task1 Task2 Task3 !
[N J
! 1
! 1

Partial Reconfiguration Regions (PRR)
Figure 4. Block Diagram of the proposed PS/PL Architecture

a malicious access of hardware tasks. In this section we
introduce Mini-NOVA'’s support to deal with hardware tasks.

A. Programmable Logic Overview

Fig.4 depicts the cooperation of the processing system
(PS) and the programmable logic (PL). While the software
system is running within PS, PL is used to host DPR
hardware tasks. PL is composed of a Xilinx 7-series FPGA
fabric and the interfaces attached to it. As shown in Fig.4,
this fabric is divided into static logic and multiple partially
reconfiguration regions (PRR). Reconfigurable accelerator
modules, or hardware tasks in this paper, are hosted and run
in separate PRRs. Each PRR is run-time reconfigurable by
downloading configuration data through the Processor Con-
figuration Access Port (PCAP). Static logic is pre-defined
and configured at the initialization. It remains unchanged
during the system’s processing. The main part of static logic
consists of the PRR controller, which is in charge of the
hardware tasks’ execution states, the DMA access and events
synchronization. On the PS point of view, the on-chip mem-
ory stores the hardware tasks and the data to be processed.
On top of Mini-NOVA, a specific microkernel service called
the Hardware Task Manager runs in parallel with the guest
OSes. Reconfiguration and allocation of hardware tasks are
separated from guest users and are handled by the Hardware
Task Manager service.

Between PS and PL, different types of AXI interfaces
are employed. The General-purpose (AXI_GP) port offers
the universally-addressed access of PL. Through the GP
port, registers of different PRRs are mapped to different
physical addresses in PS, which can be directly accessed by
software. Therefore, the GP port is used as a main method to
configure and control hardware tasks. The High performance
(AXI_HP) port is a buffered AXI high performance inter-
face, and is used by hardware tasks to access and exchange
data directly with on-chip memory at high speed. Note that,
the AXI Accelerator Coherency Port (AXI_ACP) is also
available to provide cache-coherent access from the PL to

ARM. However, since there is only one AXI_HP port and
its usage may starve accesses from other AXI masters [18],
it is inappropriate and thus aborted in our system, where the
AXI_ACP access interferes other simultaneous tasks.

B. Hardware Tasks Organization

The configuration information of hardware tasks is stored
in memory as bitstreams files (.bit). Mini-NOVA exclusively
maps these .bit files to the memory space of the Hardware
Task Manager, which is separated from other VMs. Each
hardware task is associated to one or several PRRs that
are predefined containers, managed by the PRR controller
block. As shown in Fig. 4, the PRR controller provides each
PRR with a group of registers, that configures and controls
the behavior of the hardware task that is located inside
the region. Each PRR’s register group is mapped into the
universal physical address space and software can directly
program the task’s configurations by accessing its PRR’s
physical address.

On the other hand, hardware tasks are allowed to launch
DMA access to the on-chip memory to fetch data and put the
processed data back, through the AXI_HP port. Guest OSes
can open up a special memory section for the hardware task
to exchange data. This section is shown in Fig.4 and denoted
as the hardware task data section. Note that each guest OS
can define its own hardware task data section within its own
memory space.

Hardware tasks are organized by the Hardware Task
Manager in a look-up table that is indexed with unique ID
numbers. For each task, the address and size of its .bit file,
the reconfiguration latency and the list of predefined PRRs
are stored. When a specific hardware task is required by
a virtual machine, the Hardware Task Manager reads its
PRR list and selects the appropriate PRR to host the target
hardware task. Then the caller guest is allowed to use this
hardware task as its client.

C. Security mechanism

The application of hardware tasks brings up new security
issues. As in classic virtualization systems, the separate exe-
cution environment relies on the MMU, which automatically
controls accesses from different privilege levels and blocks
illegal access. Separating the memory spaces are ensured
by switching the page tables. In the Zyng-7000 platform,
however, the FPGA accesses directly the physical memory
space, without using the MMU. This makes it impossible
to monitor and control the hardware tasks’ access via the
page table access permission. In this case, an extra security
mechanism must be introduced, following two principles:
first, one hardware task can be shared by any VM, but
should be exclusively used once it is dispatched to a specific
guest OS. Second, the hardware task should only access the
hardware task data section of the VM which is currently

VM1 VM2 VM1 VM2

Virtual space N
S1 |SZ |

mmmm e e e e Ao

iPL

Physical spacg -|
P
-
-

1 A4

| hwMMU | | Reg group | | hwMMU | | Reg group |
A | A
| v PRR | v

Controller
HW TI1 PPR1 HW T1 PRRI1

Figure 5. Hardware task allocation between VM1/VM2

I:I Hw task interface

using it, and accessing a memory space outside the specific
section is forbidden.

As a solution, the security mechanism is shown in Fig.5.
To deal with the first consideration, we manage the VM’s
access to hardware task via updating the page tables. As
previously described, the hardware task’s behavior is con-
trolled by its PRR register group. To exclusively allocate
one hardware task, the PRR register group should only
be mapped to its current VM client as the hardware task
interface. During the creation of PRRs, we configure each
PRR register group to be mapped to the edge of separate
physical small-size pages (4KB), so that each PRR can be
mapped to a virtual 4KB page independently in a 2-stage
page table. As shown in Fig.5, when a hardware task is
allocated to one VM client, the corresponding page table
is updated to map the hardware task interface, so that the
hardware task can be controlled by its client and remain
invisible to other guests.

Focusing on the second consideration, we apply a custom
component which is called the hardware memory man-
agement unit (hwMMU) to control the FPGA’s access to
the system memory. hwMMU is implemented in the PRR
controller and is in charge of monitoring any access to the
PS side. When a hardware task is allocated to one VM,
the hwMMU is loaded with the physical address of the
VM’s hardware task data section. So, any access from this
hardware task is checked by the hwMMU, which forbids
the access outside the determined section. Following this
mechanism, the rest of the memory space is protected from
the hardware tasks.

As shown in Fig.5, when a hardware task is not used
by a VM anymore, it can be dispatched to another VM.
In this case, the page table of the former VM should be
updated to eliminate the mapping of the hardware task, and
the hwMMU should also be reloaded with the successor’s
address. This guarantees that a hardware task can only be
accessed by no more than one VM at a time.

Besides the access security, the consistency of hardware
tasks should also be considered. While PRR can be detached
from one client and claimed by another when necessary,
VMs should be acknowledged whether its hardware task
is consistent or not. In the hardware task data section, we

[Hw task data section

PL_IRQ[15:0]
Tl N

T2

T3 /

T4

ID= D=1

VvGIC —>| VMI |
GIC —>| VvGIC |—>| VM2 |

ID=2 D=2

YVYV VY

PRR Controller
Figure 6. PL interrupt management

allocate a reserved data structure to hold the state of a
hardware task, the state flag and the hardware task interface
registers. As in Fig.5, when T1 is reclaimed to VM2, the
register group content of T1 is saved to the VM1 hardware
task data section, with a state flag indicating to VM1 that
T1 has been used by other clients.

D. Interrupt Organization

Normally, hardware and software tasks are executing
simultaneously, and their synchronization can be achieved
by checking the status of hardware tasks, or by allowing
the hardware task to generate IRQs to acknowledge certain
events. In our system, FPGA IRQ sources are reserved for
the PL side, and are governed by the PRR controller. The
interrupt sources (PL_IRQ) are organized by the General
Interrupt Controller, and support up to 16 different IRQ
sources generated from the FPGA side. To efficiently man-
age the IRQs, the PRR controller needs to allocate those
resources to hardware tasks and also to register them in the
corresponding VM’s vGIC table. When a VM requires an
IRQ from its hardware task, the Hardware Task Manager
asks the PRR controller to allocate an available IRQ source
to the hardware task, and updates the VM’s vGIC table to
register the IRQ source.

The process of handling PL interrupts is shown in Fig.6.
Once a PL interrupt is registered in vGIC, the VM is ready
to receive hardware task IRQs. If the IRQ occurs during
the VM’s execution, then it is handled immediately. If the
IRQ occurs when the VM is not active, then the IRQ state
remains the same until the next time the VM is scheduled
and the IRQ is properly processed.

Besides, the hardware task management also involves the
PCAP completion IRQ, which notifies the completion of the
bitstream download of the PCAP interface. This signal can
be used to acknowledge the VM that the target hardware task
is successfully configured and ready to be used. The PCAP
interrupt is always connected to the VM which launches the
current transfer. The related VM can be configured to receive
the PCAP interrupt if required. Such an usage is explained
in the next section.

E. Implementation

The allocation mechanism of hardware tasks is imple-
mented in the Hardware Task Manager service. This service
runs in an independent memory space and has authority to

dispatch and reconfigure hardware tasks. Whenever a virtual
machine requires hardware tasks, it passes its request to the
service via an hypercall. Then the Hardware Task Manager
service is scheduled to properly handle the requests. Normal-
ly, we consider the hardware task request as a tighter timing
constrained demand that should be given a response as soon
as possible. In this case, the Hardware Task Manager service
is created with a higher priority level than general guests, so
that this service can preempt guests and execute immediately
once it is invoked by the microkernel. After processing the
request, the manager service will remove itself from the
running queue list, resuming the interrupted guest OS with
a return status.

Guest OSes invoke a special hypercall to require hardware
task resources. Three arguments are passed via this hyper-
call: the target hardware task ID number, the virtual address
of the task interface, and the virtual address of the hardware
task data section. To successfully dispatch the target task,
the Hardware Task Manager needs to implement the task
into the PRR and properly set the mapping. In the Manager
service domain, a PRR table is built to record the states of
the PRRs. Its contents include the PRR’s current client, the
hardware task, the execution state (idle or busy), etc. This
table cooperates with the hardware task table to rationally
allocate tasks. In Fig. 7, an example of the Hardware Task
Manager’s processing is demonstrated in six stages:

(1) Because the guest process P1 requires the hardware
task T1, the guest OS generates a hypercall to invoke the
Hradware Task Manager service.

(2) Receiving the VM’s request for hardware task Tl1,
the Manager service first allocates an appropriate PRR for
T1, by checking the states of T1’s suitable PRRs. PRR1 is
chosen to implement T1 since it is currently in Idle state.
Note that if no idle PRR is available, the manager service
would return to the applicant guest OS with a Busy status.

(3) To make PRR1 accessible to the guest OS, the Manag-
er service updates the guest OS’ page table by mapping the
PRR hardware task interface to the desired virtual address
space.

(4) A new hardware task data section address is loaded to
the hwMMU to control T1’s access to the memory space.

(5) If T1 is currently not implemented in PRR1, then the
manager would launch a PCAP transfer to download the T1
bitstream into PRR1.

(6) The Manager Service returns to the calling guest OS
with a status value. If a PCAP reconfiguration is made,
a reconfig. flag is returned, otherwise a success flag is
returned. Note that to overlap the significant reconfiguration
overhead, the manager service does not check the completion
of the PCAP transfer. The guest OS may choose to acknowl-
edge the PCAP completion by two methods: by polling the
completion signal or by receiving the PCAP completion
IRQ.

Note that, as described in Section 4.3, if PRR1 was

Hardware task table

D Bitstream PRR List ERIERER IENERER

- Hardware Task
Tl Addr / Size PRR1,2 —(2)— e 4—(1)—{ VM 1 ‘ ‘ VM 2 ‘
T2 Addr / Size PRR2

o—ns[| || [[«{ [
?2) Virtual space
PRR table
1D Client Task State

PRRI N Idle

PRR2 VM2 T2

Busy
Idle

PRR3 N

I:l Hardware task data section
l:l Hardware task interface
I:I:‘ Updated components

EPCAP (5) >
Bitstream (T1)

Physical space

PRR Controller

PRRI PRR2

PRR3

Figure 7. Hardware Task Manager Processing Routine

previously used by other clients, like VM2, then consistency
must have been maintained in stage (3) and (4). The VM2’s
page table must be updated to demap the PRR1 interface
section. The interface register contents should be saved
into VM2’s hardware task data section, and the state flag
should be marked as inconsistent. The inconsistency state
can be acknowledged by two methods. First, VM2 can
automatically check the state flag in hardware task data
section whenever it uses the T1. Second, if T1 is demapped
from VM2’s memory space, then any access to its interface
is trapped in a page fault exception and handled by the guest
OS’ interrupt service.

V. VERIFICATION & EVALUATION

In this section, we present the methodology and the
experimental results of the Mini-NOVA microkernel. The
measurements were obtained on the 660MHz ARM Cortex-
A9 processor, along with 32KB separate L1 instruction and
data cache, 512KB L2 unified cache, 512MB DDR memory,
and external 4GB SD card memory, on the Zyng-7000 all
programmable SoC. We verified the functionality of Mini-
NOVA, especially the performance of the DPR management
by executing on-time requests and allocations of hardware
tasks. In order to demonstrate the virtualization overhead,
we also measured and compared the performance when
executing the application in the VM and directly on the
native hardware.

A. RTOS implementation

Focusing on the real-time applications in the communica-
tion domain, we found that the real-time OS is more interest-
ing to our system. Compared to the general purpose OS like
Linux, the RTOS can be virtualized with less modification
and lower virtualization latency. It is also an appropriate
object to verify and evaluate our system’s performance in the
real-time domain. In this paper, we paravirtualized uCOS-II
real time kernel as a guest OS. Since uCOS-II was originally
executing in the supervisor mode and cannot be directly

hosted, several modifications have been made to the initial
OS code:

The boot up sequence of uCOS was modified to execute
in the user mode. The configuration of privileged sys-
tem registers should be performed by the microkernel,
since uCOS-II has no longer the full authority. During
the execution, all sensitive operations were manually
replaced by hypercalls.

The guest timer is implemented by a virtual timer
allocated by Mini-NOVA. Thus the original timer ini-
tialization is modified to register the virtual timer state
to the microkernel, which then configures the virtual
timer according to this timer state.

The interrupt handling process is changed. A local table
is built to record the virtual IRQs states. uCOS-II can
only access to the local table to handle the interrupts.
The utilization of shared I/O devices, such as UART
and SD card, were added with the microkernel’s super-
vision.

Functionalities supporting hardware task access were
added as application program interfaces (API), which
facilitate the guest uCOS-II to require and utilize the
hardware tasks.

Mini-NOVA provides dedicated hypercalls (a total
number of 17) for the guest uCOS-II to fulfill its
sensitive operations, such as cache flush, page table
management, and inter-VM communication.

To minimize the modification to the original source code,
all paravirtualization porting codes are organized as a patch
package, including additional functions and hypercalls. The
size of patch counts to around 200 lines of code (LOC). The
uCOS-II source code were rewritten by only replacing the
involved functions and having them re-implemented in the
porting patch, therefore were slightly modified.

B. Performance Evaluation

Mini-NOVA follows a lightweight implementation, with
a small footprint of 20MB. The complexity of Mini-NOVA

e

uCoS-II |

NE=

uCos-t’

][]

ucos-n

jus}
=
=~
@
2
=z ¥
®
=1
]
[}
<}
Q

FFT/QAM FFT/QAM

Figure 8. Diagram of Performance Evaluation

TABLE III. OVERHEAD OF HARDWARE TASK MANAGEMENT (US)

Guest OS number Native 1 2 3 4
HW Manager entry 0 0.87 1.11 1.26 1.29
HW Manager exit 0 0.72 0.91 0.96 0.99
PL IRQ entry 0 0.23 0.46 0.50 0.51
HW Manager execution 15.01 1546 | 15.83 | 16.11 | 16.31
Total overhead 15.01 17.06 | 17.84 | 1833 | 18.57

is 5,363 lines of code (LOC) for all kernel code and user
services, including the Zynq platform-specific resources, and
compiles to about 40KB size as Executable and Linkable
Format executable (ELF). A total number of 25 hypercalls
are provided to paravirtualized operating systems.

To make our evaluation more realistic and convincing,
we selected a series of communication and data processing
specific software/hardware tasks. The hardware tasks are
computation-intensive IP cores such as FFT and QAM mod-
ules. We ran multiple guest VMs. Each VM is assigned with
a virtualized uC/OS-II, which is executing heavy workload
tasks, for example, GSM encoding, or Adaptive differential
pulse-code modulation (ADPCM) compression. Mini-NOVA
provides each guest OS with a time slice of 33 ms. Since
guest OSes equally share the CPU, when the time slice of a
guest is over, the next guest OS is scheduled. Fig. 8 shows
the performance evaluation. Two hardware task sets, FFT
(ranging from 256 points to 8192 points) and QAM (4, 16,
and 64 constellation sizes), are provided. They are stored in
the DDR memory as .bit files. Four PRRs were defined in the
FPGA fabric to host the hardware tasks. PRRs are allocated
with different FPGA resources. Since FFT blocks are quite
large, only PRR1 and PRR2 are large enough to contain the
FFT tasks. The size and reconfiguration delay of these tasks
are directly related and were described in [17]. On the other
hand, QAM modules have a small size and can be hosted in
all four PRRs. Each guest OS is running multiple tasks, and
particularly a special task (T_hw) programmed to invoke
hardware task requests. This task is used to evaluate the
overhead of the Mini-NOVA’s hardware task management.
Each time it executes, it randomly selects a hardware task
from the hardware task set and generates a hardware task
hypercall for this task. After a sufficient number of iterations,
the average execution time can be calculated.

Table III presents the overhead of the Mini-NOVA hard-

ware task management according to the guest OS number.
The native execution is measured by implementing the
uCOS-II natively on the ARM processor, and implement-
ing the hardware task management service as a uCOS-
II function. Measurement results with different number of
guest OSes are listed to demonstrate how the performance
is influenced according to the number of parallel VMs.
Typically, the HW Manager entry/exit measurements are the
cost of entry and exit of Hardware Task Manager when
VM'’s request. Memory space switches are involved in this
process. The PL IRQ entry latency refers to the cost of
distributing an hardware task IRQ event to its VM client.
This process begins from the exception vector table and
ends when the vGIC injects the virtual interrupt to the VM.
The HW manager execution overhead measures the average
execution time of the Hardware Task Manager to handle the
requests. The overall response delay is also listed, which is
the sum of overheads from the Hardware Task Manager’s
entry to its exit.

Table III native execution represents the shortest latency
since the hardware manager works as a system function
and thus can be directly dispatched without any latency.
The IRQ is directly triggered to uCOS-II. Besides, in native
uCOS-II, the hardware task manager service does not need
to update the page tables since all tasks execute in a unified
memory space. The virtualization evaluation starts from one
guest OS to four OSes. Generally, as the number of OSes
increases, the performance is degraded, which is mainly due
to an increase of miss rate of cache and TLB table, and the
complexity to allocate hardware tasks.

The influence of cache/TLB can be clearly seen in the
overheads of HW Manager entry/exit and PL IRQ entry. As
the number of VM increases, the cache and TLB are updated
more frequently. Thus, the related cache and TLB list of
the Hardware Task Manager hypercall and entry code can
be easily flushed when multiple OSes exist. This is why the
overhead of the HW Manager entry grows significantly with
the OS number. On the other hand, the HW Manager exit
latency is changed much less, since it always executes right
after the Hardware Task Manager’s execution, and thus the
cache/TLB is only modified during the manager’s process,
which results in a higher hit rate. With the same reason,
the PL IRQ entry latency is also less influenced by the
increasing OS number since the IRQ handling process is
frequently called during execution and less affected by the
cache/TLB miss. For example, each timer tick is handled
as a IRQ, thus the IRQ related content is often cached, or
recorded by the TLB, then causing a higher hit rate.

On the other hand, the HW Manger execution cost’s
growth is caused mainly by an increased allocation complex-
ity. In virtualized systems, the manager needs to change the
guest OS’ mapping to guarantee the security. This operation
is performed by switching to the kernel space to update
the target VM’s page table, introducing extra hypercalls.

o
=

1 Tt — 0.
508 K
=]
<
& =—cnrty
£ 06 .
£ == cxit
=
g IRQ entry
4
a

=>é=execution

==Total

e
o

108 208 308
The number of parallel guest OSes

Native 408

Figure 9. Performance degradation ratio of Hardware Task Manager

Second, as more guest OSes are sharing the hardware tasks,
the manager should switch the task’s client more frequently,
which involves declaiming the task from the previous VM,
and reclaiming it to the new one. Also, more PCAP transfers
are required to download different hardware tasks.

To evaluate the influence of performance caused by vir-
tualization, we introduce the degradation ratio Rp:

RD _ tVirtualization (1)
tNative

, where yqtive 1S the overhead measured when OS running
on native machine, and tv ;tualization 1S the overhead with
virtualization implementation. Fig. 9 gives the degradation
ratios of the characteristic overheads of Hardware Task
Manager listed in Table III, with different number of parallel
virtual machines. For HW Manager entry/exit and PL IRQ
entry overheads, which are measured as zero when running
natively, the performances with one virtual machine are
used instead of ¢ngsipe in (1), to present the tendency of
overhead along with increasing virtual machines. As Fig. 9
shows, it is obvious that the ratios are declining with the OS
number, while the trend is slowing down, indicating that the
system is getting a constant overhead, when the worst case
is approached. Compared to the total execution time, the
Mini-NOVA virtualization brings acceptable limited impact
to the overall performance of the hardware task management,
and is a suitable solution to support the dynamic partial
reconfiguration technology in the virtualization domain. This
is due to the lightweight implementation of Mini-NOVA.

VI. CONCLUSION

In this paper, we have proposed the Mini-NOVA microker-
nel, which is designed to provide a virtualization approach
for the ARM-FPGA platform. Mini-NOVA is built to host
paravirtualized operating systems with lower complexity and
has the ability to dispatch hardware tasks to virtual machines
by supporting the dynamic partial reconfiguration technol-
ogy. Our evaluations have demonstrated that the hardware
tasks are efficiently managed with a short response latency,
and that the virtualization overhead only has a slight impact
on the overall performance.

(1]

(2]

(3]

[4]

(6]

[7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES
G. Heiser, “The role of virtualization in embedded systems,”
in IIES. ACM, 2008, pp. 11-16.

M. Liu, M. Crussiere, and J.-F. Helard, “A novel data-aided
channel estimation with reduced complexity for tds-ofdm
systems,” Broadcasting, IEEE Transactions on, vol. 58, no. 2,
pp. 247-260, 2012.

U. Steinberg and B. Kauer, “Nova: a microhypervisor-based

secure virtualization architecture,” in Eurosys. ACM, 2010,
pp- 209-222.
J. Liedtke, On micro-kernel construction. ACM, 1995,
vol. 29, no. 5.

M. Aichouch, J. C. Prevotet, and F. Nouvel, “Evaluation of
the overheads and latencies of a virtualized rtos,” in SIES.
IEEE, 2013, pp. 81-84.

E. Lubbers and M. Platzner, “Reconos: An rtos supporting
hard-and software threads,” in FPL. IEEE, 2007, pp. 441—
446.

D. Gohringer, M. Hubner, E. N. Zeutebouo, and J. Beck-
er, “Cap-os: Operating system for runtime scheduling, task
mapping and resource management on reconfigurable multi-
processor architectures,” in /PDPSW. 1EEE, 2010, pp. 1-8.
A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L.
Maskell, “Virtualized execution and management of hardware
tasks on a hybrid arm-fpga platform,” Journal of Signal
Processing Systems, vol. 77, no. 1-2, pp. 61-76, 2014.

G. Heiser and B. Leslie, “The okl4 microvisor: Convergence
point of microkernels and hypervisors,” in APSYS. ACM,
2010, pp. 19-24.

J. Y. Hwang, S. B. Suh, S. K. Heo, C. J. Park, J. M. Ryu,
S. Y. Park et al., “Xen on arm: System virtualization using xen
hypervisor for arm-based secure mobile phones,” in CCNC.
IEEE, 2008, pp. 257-261.

J. H. Ding, C. J. Lin, P. H. Chang, C. H. Tsang, W. C. Hsu,
and Y. C. Chung, “Armvisor: System virtualization for arm,”
in OLS, 2012, pp. 93-107.

P. Varanasi and G. Heiser, “Hardware-supported virtualization
on arm,” in Proceedings of the Second Asia-Pacific Workshop
on Systems. ACM, 2011, p. 11.

C. T. Liu, K. C. Chen, and C. H. Chen, “Casl hypervisor
and its virtualization platform,” in ISCAS. IEEE, 2013, pp.
1224-1227.

C. Dall and J. Nieh, “Kvm/arm: The design and implementa-
tion of the linux arm hypervisor,” in ASPLOS. ACM, 2014,
pp. 333-348.

W. Wang, M. Bolic, and J. Parri, “pvfpga: accessing an fpga-
based hardware accelerator in a paravirtualized environment,”
in CODES+ ISSS. 1EEE, 2013, pp. 1-9.

S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and
P. Chow, “Fpgas in the cloud: Booting virtualized hardware
accelerators with openstack,” in FCCM. IEEE, 2014, pp.
109-116.

T. Xia, J. C. Prevotet, and F. Nouvel, “Microkernel dedicated
for dynamic partial reconfiguration on arm-fpga platform,”
SIGBED Rev.(EWiLi 2014), vol. 11, no. 4, pp. 31-36, 2015.
Ug585: Zyng-7000 all programmable soc technical reference
manual, Xilinx Inc., 2013.

