
Performance Models for Split-execution Computing Systems

Travis S. Humble∗†, Alexander J. McCaskey∗, Jonathan Schrock∗,
Hadayat Seddiqi∗, Keith A. Britt∗† and Neena Imam∗‡

∗Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
†Bredesen Center, University of Tennessee, Knoxville, Tennessee, 37996

‡Computational Research and Development Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831

Abstract—Split-execution computing leverages the capabilities
of multiple computational models to solve problems, but split-
ting program execution across different computational models
incurs costs associated with the translation between domains.
We analyze the performance of a split-execution computing
system developed from conventional and quantum processing
units (QPUs) by using behavioral models that track resource
usage. We focus on asymmetric processing models built using
conventional CPUs and a family of special-purpose QPUs
that employ quantum computing principles. Our performance
models account for the translation of a classical optimization
problem into the physical representation required by the quan-
tum processor while also accounting for hardware limitations
and conventional processor speed and memory. We conclude
that the bottleneck in this split-execution computing system
lies at the quantum-classical interface and that the primary
time cost is independent of quantum processor behavior.

1. Introduction

The discovery of quantum algorithms showing expo-
nential speed ups in the limit of large problem sizes sug-
gests that this computational model may have a profound
impact on the performance of future computing systems
[1]. This has led to the fast-paced development of devices
that implement the principles of quantum computing and
can ultimately test algorithmic implementations [2]. Despite
theoretical expectations for quantum algorithms, the actual
computational performance expected from quantum process-
ing units (QPUs) remains unclear. This is due, in part, to the
poorly explored interface between QPUs and conventional
computing systems. In addition, much of quantum comput-
ing has remained a theoretical exercise supported by modest
experiments to demonstrate proof of principle behavior as
opposed to practical performance. An important point not
examined by current experimental studies is that a com-
puting system comprising both quantum and conventional
models must support a split-execution environment. This
means that the system and the application operate within
the context of two distinct computational paradigms, e.g.,
quantum and classical.

Recently, a complete QPU has been realized as a special-
purpose variant of a quantum computing system. The family

of processors from D-Wave Systems, Inc. has been used
for remarkable demonstrations of how a different compu-
tational paradigm can correctly solve difficult mathematical
problems using the principles of quantum computing [3],
[4]. The D-Wave QPUs are special-purpose processors in
the sense that they solve a specific discrete optimization
problems, and they use only a limited subset of quantum
computing principles. Notwithstanding these restrictions, a
variety of interesting problems have been shown to map into
the D-Wave processor, including including classification [5],
[6], machine learning [7], graph theory [8]–[11], and protein
folding [12], [13] among others [14]–[19]. In addition, gen-
uine quantum behavior has been observed in these devices
[20], [21].

The availability of the D-Wave QPU has forced the
question of how quantum computing devices can be used
within actual computing systems. Although performance
of the existing processor has been analyzed with respect
to isolated computational time [19], [22], [23], the overall
performance of the processor integrated into a larger host
system has not yet been examined. In particular, the relative
computational complexities facing the translation between
computational domains have not been compared, and there
is good reason to believe that these steps may represent
significant hurdles to practical performance gains. These
complexities of translating data need not exhibit the same
performance as the underlying algorithm and, in the limit
of large input data, domain translation poses the potential
to remove any advantage offered by algorithm performance
within a different computational model.

As shown in Fig. 1, there are several architectures
amenable to split-execution computing differentiated by how
the host system supports the QPU. A comparision across
all three architectures has been recently made by Britt and
Humble [24], and we will limit the subsequent discussion
to the asymmetric multi-processor model represented by
Fig. 1(a). Our choice is motivated by current infrastructure
constraints on the existing D-Wave QPU that prevent it from
being more tightly integrated. Consequently, the loosely
integrated architecture in Fig. 1(a) is indicative of our near-
term expectations for coupling a D-Wave quantum processor
with existing conventional computing systems. This loose
architecture may be understood conceptually as a classical
client requesting a response from a quantum server via a

ar
X

iv
:1

60
7.

01
08

4v
1 

 [
cs

.E
T

] 
 5

 J
ul

 2
01

6



(a)

(b)

(c)

Figure 1: Three architectural models for integrating a QPU
into a host HPC system: (a) asymmetric multi-processor, (b)
shared-resource, and (c) a dedicated QPU for each node.

local area network interface.
In this contribution, we examine how the interaction

between the two computing systems influences the overall
run-time performance. We focus on the need to translate
between the classical and quantum computational domains.
This is a unique aspect of split-execution computing systems
that we find to contribute a non-trivial cost to the overall
run-time behavior. In order to explore this question, we
have developed a performance model for the asymmetric
system that addresses translating program statements from a
CPU to QPU and back again. Our implementation builds on
previous efforts to develop software simulators for quantum
devices [25], and the current work extends these ideas to the
performance of integrated systems by tracking the behavior
of both quantum and classical elements. Our approach pro-
vides timing estimates for the different stages of the split-
execution system that are considered to be representative
of the application-level behavior that arises using the D-
Wave family of processors. Our analysis emphasizes how
the quantum and classical paradigms interact and provides
insights into the overall time-to-solution needed for solving
a general application within this programming model.

The remainder of the presentation is organized as fol-
lows. Sec. 2 presents a definition of the split-execution
model including specifications about the functionality of
the QPU. Sec. 3 describes our performance model for the
combined system, which is based on the ASPEN hardware
modeling language, and includes description of a generic
application for the discrete optimization solver. We also
present the results from using our models to capture timing
estimates at each stage of the split-execution model, while
Sec. 4 offers conclusions on these results.

2. Split-execution Computing System

A simple example of how a host system drives QPU
execution is presented in Fig. 2. In this example, a calling

Figure 2: A sequence diagram describing how a CPU
interacts with a QPU. The calling thread executes in a
conventional computing environment, while the software
(SW) and middleware (MW) perform domain translation to
the quantum computing environment. The latter executes
on quantum hardware (QHW) before returning a result
that must be translated back to the conventional computing
model.

thread cthread running on the host CPU pushes the data
defining an input problem to the QPU. The interface to the
QPU is defined by a software (SW) layer that parses the
incoming problem into the data needed for driving the device
middleware (MW) layer. The MW layer is responsible for
constructing from the data a program that represents the
sequence of operations to be performed by the quantum
hardware (QHW). The program is executed by the QHW
layer, e.g., through the action of an electronic control system
and associated signal generators. The readout data obtained
after QHW execution corresponds with measurement of
the quantum system, which effectively generates a classical
representation of the quantum computation. The readout is
returned to the MW layer, where it may undergo additional
post-processing to construct a solution to the original prob-
lem before returning to the SW layer. These latter stages may
be repeated multiple times, for example, to collect statistical
samples from the execution of a program expected to be
behave probabilistically [25].

The run-time example in Fig. 2 neglects many of the
problems facing a realistic computing scenario, including
resource competition, caching, concurrency, etc., but it does
highlight the fundamental challenge involved in the use of
a QPU. Namely, the context in which computation occurs
changes as the data moves from the SW layer to the QHW
layer. The MW layer is responsible for negotiating this
change within Fig. 2. The specific transformation imposed
by the MW will depend on the underlying computational
models, and the ease with which these transformations may
be implemented will vary. Our analysis will focus on the
the case of transforming between a conventional random-
access memory (RAM) model and the adiabatic quantum
computing (AQC) model that has been partially realized by



the D-Wave QPU.

2.1. The D-Wave QPU

As an example of split-execution computing, we de-
velop a model for an asymmetric multi-processor system
that includes a QPU based on the family of processors
from D-Wave Systems [4], [26]. We briefly summarize the
programming model for the D-Wave QPU, which has been
discussed extensively elsewhere [3], [19], [22]–[25].

The basic principle of adiabatic quantum computing is
to leverage continuous-time quantum dynamics that adiabat-
ically transform an initial quantum register state into a final
computational result [27]–[29]. This is represented formally
by the Schrodinger equation,

i
∂Ψ(t)

∂t
= H(t)Ψ(t), (1)

where Ψ(t) is the quantum state of the register at time t
and H(t) is the Hamiltonian that defines the interactions be-
tween register elements. The role of the dynamics is to affect
computation on the register and change its value, namely,
Ψ(t). Conceptually, this occurs by adiabatically deforming
the Hamiltonian that governs the underlying interactions
betwen register elements. For a register initially prepared in
the lowest energy state of the starting Hamiltonian, i.e., the
ground state, adiabatic dynamics ensure the register remains
a ground state of the instantaneous Hamiltonian throughout
the computation. This basic principle is used to recover the
ground state of a known Hamiltonian. Readout then cor-
responds with collapsing the register elements into definite
classical values that provide a computational solution.

The D-Wave QPU implements a restricted form of the
adiabatic quantum computing model that limits the range
of computations it realizes. These restrictions are enforced
by the processor hardware, which is based on an array of
interacting superconducting Josephson junctions laid out in
a square grid of bipartite graphs know as a Chimera graph
as shown in Fig. 3. For the D-Wave QPU, the Chimera
hardware layout restricts each qubit to interact with 6 neigh-
bors (5 neighbors in the case of edge qubits). This limited
connectivity is one restriction on the computational model,
while another is that the programmable interactions between
qubits must adhere to a Hamiltonian of Ising form, i.e.,

HIsing = −
n∑

i=1

hiẐi −
n∑

i,j=1

Ĵi,jẐiẐj , (2)

where n is the number of qubits, hi is a real-valued bias
on qubit i, Ji,j is a real-valued coupling between qubits
i and j, and Ẑi is the Pauli operator [1]. In order to
completely realize the adiabatic quantum computing mode,
the Hamiltonian would be required to support additional
interaction terms [30].

The limitation to only ẐẐ interactions in Eq. (2) pre-
vents the D-Wave QPU from implementing the full range of
adiabatic quantum computing. However, despite this restric-
tion on the Hamiltonian, there is a wide variety of problems

Figure 3: The hardware connectivity graph describing the D-
Wave processor family, in which nodes represent physical
qubits and edges signify tunable interactions. This diagram
presents 512 qubits, or an 8-by-8 lattice of unit cells. The
most recent processor supports a 12-by-12 lattice and 1152
qubits.

that fall within the purview of the current restrictions. A
definitive example is given in the case of a quadratic un-
constrained binary optimization (QUBO) problem [31], i.e.,
finding

arg min
b
bTQb, (3)

where b is a binary vector of length n and Q is an n-by-n
symmetric real-valued matrix. Solving the QUBO problem
is generally NP-hard, and therefore, it is unlikely that ef-
ficient algorithms for general instances exist even within
models of quantum computation. However, the D-Wave
processors permit the exploration of new efficient heuristics
for solving QUBO problems and other related problems.
These chiefly include optimization problems or reductions
to optimization problems such as MAX-SAT, MIN-COVER,
MAX-CUT and other graph problems as well as binary
classification, integer linear programming, and set packing
problems among many others [15]. In each case, the com-
mon QUBO form can be reduced to the Ising Hamiltonian in
Eq. (2) by a straightforward mapping of one quadratic form
into another [25], [32]–[34]. We discuss these programming
aspects in more detail below.

The latest member in the D-Wave family is a 1152-qubit
processor released in 2015 [23]. Instances of this design
have been installed in several third-party locations including
NASA Ames Research Center and University of Southern
California Information Sciences Institute. In addition to the
processor, management and control electronics as well as
infrastructure to shield and cool the processor are required



Figure 4: A photograph of the latest member of the DW
processor family: the DW2X processor is composed from
1152 physical qubits, whose connectivity graph is shown in
Fig. 3. Credit: D-Wave Systems, Inc.

for QPU operation. Cooling requires a dilution refrigerator,
which is a large, bulky and expensive system capable of
lowering the operating temperature of the processor to 14
mK. An example of the QPU is shown in Fig. 4.

2.2. Programming the D-Wave QPU

Programming the D-Wave QPU requires translation of
an input problem, such as a QUBO or Ising instance, into the
physical Ising Hamiltonian form that satisfies the hardware
layout constraints [25]. An intermediate form of this map-
ping will first construct a logical Ising model of the QUBO
instance in which the hardware constraints are ignored, e.g.,
connectivity. We refer to this intermediate data structure as
the logical Ising model, because it represents an abstraction
of the QUBO in terms of an idealized logical spin system.
Construction of the logical Ising model from the matrix Q
defined in Eq. (3) is a relatively simple process [25], i.e.,
Ising parameters are defined as

hi =
1

2
Qi,i +

1

4

n∑
j=1

Qi,j for i = 1 to n (4)

and
Ji,j =

1

4
Qi,j for i < j = 1 to n. (5)

In total, these steps require O(n3) addition operations.
By contrast, mapping the logical Ising model to the con-

strained Ising hardware is a more computationally difficult
problem. Formally, this process is cast as a minor graph
embedding problem, in which the connectivity graph for
the logical Ising model must be embedded into the physical
hardware graph [32], [34]. Let G denote the input graph that
has the (weighted) adjacency matrix Q and let H denote
the graph expressing the underlying hardware connectivity.
A minor embedding of G into H is defined as a mapping φ
of each vertex in G into H such that 1) every vertex in G
maps to a connected subtree of H , and 2) every edge in G
maps to an edge between corresponding subtrees in H . We
will denote the corresponding graph as φ(G) and we will

call G embeddable in H if the mapping exists. Note that
the graph φ(G) can be substantially larger than the original
graph G. This is the result of constructing large subtrees
within H to ensure the required edges in φ(G) are realized.

For a general input graph G and arbitrary hardware
graph H , the problem of constructing φ(G) is an FNP-
complete problem, the functional variant of an NP-complete
problem. Previous work has identified polynomial heuristics
for the case of embedding complete input graphs into the
Chimera hardware graphs employed in the D-Wave QPU
[32], [34]. For these methods the embedding of an input
graph with n vertices requires a Chimera hardware with n2
qubits. While this is necessary for embedding a complete
graph, input problems are not necessarily fully connected
and the same methods will overestimate the number of hard-
ware qubits required for an embedding and thus limit the
size of problems that can be solved. Consequently, there is a
need to develop methods of embedding into Chimera graphs
that use fewer qubits by taking into account properties of
the input graph.

Alternatives include a brute force approach to minor
embedding that relies on solving the subgraph isomorphism
problem to identify the smallest embedded minor. Although
that approach has a computational complexity that scales
exponentially with hardware size, it may be possible to
precompute these maps offline and store them as lookup
tables. A second alternative is to use a non-deterministic
technique recently proposed by Cai, Macready, and Roy to
reduce the average number of hardware qubits used [35].
Their approach employs Djikstra’s algorithm to construct
the minimum path between randomly distributed subtrees.
Although the worst-case complexity for this algorithm grows
as O(n3), we will use this method in developing our pro-
gramming resource model below as it permits the largest
sized input problems to be programmed on the processor.
Moreover, the average case complexity was observed by Cai
et al. to be significantly less, i.e., O(n) [35]. An important
point for all of the aforementioned algorithms is that they
must take into account the random faults in the hardware
graph that can occur during fabrication. These faulty qubits
and couplers are readily identified during processor calibra-
tion and must be deactivated to avoid unwanted usage. The
loss of a node within the Chimera layout can destroys its un-
derlying symmetry and, consequently, make the embedding
problem more difficult [34].

After finding a minor embedding of the logical Ising
model into the hardware, the corresponding parameters for
the embedded Ising model must be set. This step is rela-
tively straightforward given the Ising parameters defined by
Eqs. (4) and (5). However, the ability to realize these exact
parameter values is limited by the bits of precision expressed
by the electronic control system and the hardware couplers.
This implies that the final, programmed Ising model may
be substantively different from the intended logical input.
It is not yet clear what errors these differences contribute
to final solutions of the QUBO problem or what methods
may mitigate these errors. Finally, one additional coupling
strength must be introduced to account for the interactions



between qubits forming embedded subtrees within the hard-
ware. In practice, this value is typically chosen to be much
larger than neighboring elements to ensure all qubits within
a subgraph behave collectively [32].

Other programming choices include the schedule for
annealing the system to the final Hamiltonian, e.g., char-
acterized by the temporal waveform and duration. Limi-
tations on the hardware control system do not allow for
arbitrary waveforms and duration but restrict these options
to pre-defined ranges. Execution of the program within the
hardware also requires pre-processing steps to initialize the
electronic control system and construct the analog signals
applied to the quantum chip. These steps include the time
required to initialize the programmable magnetic memory
(PMM) that is used as the control lines into the super-cooled
processor. Technical details about the electronic program-
ming process are available in the relevant literature [26], but
it suffices to note that these steps contribute a near constant
time cost to the total for the execution model.

3. Split-execution Performance Model

The behavior of adiabatic quantum dynamics under the
Hamiltonian in Eq. (2) is a subject of intense scrutiny for
physicists interested in quantum physical properties and now
also computer scientists. The relevant question for these
two communities are related but nonetheless different. For
purposes of performing computation, the performance and
behavior of a QPU relative to other aspects of a computing
system are essential to understanding its ultimate utility.
Recent experiments investigating the time-to-solution for
using a D-Wave QPU offer insights into its isolated behavior
[19], [22], [23], but the question of dependency with other
computing elements requires more elaborate models of the
system. In this section, we present models for the interaction
between a D-Wave QPU and a host CPU that highlight
the dependency on data movement and the critical need
to convert the classical program into a quantum program
representation.

3.1. Machine Models

We have developed a model for the asymmetric design
that includes both classical and quantum hardware using AS-
PEN. ASPEN is a hardware modeling language developed
at ORNL for structured analytical performance modeling
[36]–[38]. It is a formal language that can be used to gen-
erate representations of applications and abstract machine
models and analyze the predicted performance of these
models. ASPEN was used to generate representations of how
QPU’s and quantum-enabled applications will perform. We
have developed machine models that account for a single
node composed from a CPU and a QPU. For the CPU,
we have used existing ASPEN models based on the Intel
Xeon processor while for the QPU we have developed a
model specific to the D-Wave family of quantum processors.
We used the above description of the D-Wave processor

include memory/ddr3_1066.aspen
include sockets/intel_xeon_e5_2680.aspen
include sockets/nvidia_m2090.aspen
include sockets/dwave_vesuvius_20.aspen

machine SimpleNode
{
[1] SIMPLE nodes

}

node SIMPLE
{

[1] intel_xeon_e5_2680 sockets
[1] nvidia_m2090 sockets
[1] DwaveVesuvius20 sockets

}

socket DwaveVesuvius {
[1] Vesuvius cores

gddr5 memory
linked with pcie

}

core Vesuvius20 {
resource QuOps(number) [number * 20/1000000]

}

Figure 5: The ASPEN model for the CPU-QPU node and
the D-Wave Vesuvius hardware socket

programming model to develop a hardware model of the
processor in the ASPEN language.

An example of the ASPEN model for the host system
node is shown in Fig. 5. This represents a SimpleNode that
consists of an Intel Xeon CPU, an NVidia GPU, and a D-
Wave Vesuvius QPU. These are each expressed as sockets
within the machine model. The corresponding model for
the QPU socket is shown in Fig. 5. The model for the
socket declares how many cores the QPU has and, due to
the ASPEN syntax, must also declare a classical memory
element. We do not however make use of these memory
elements in our analysis. Also note that the socket model
includes a PCIe interface, which is used for the movement
of data between the CPU and QPU. The D-Wave QPUs
currently support a client-server interface but we do not
model those aspects of the interface in this work. As shown
below, networking is not expected to be the dominant cost
of hardware model. Figure 5 also models the core of the
QPU. This model converts the number of quantum operation
(QuOps) resources used by the core to an execution time. In
the model shown in Fig. 5, an annealing duration of 20 µs is
shown but as noted previously this duration may be scaled
according to program options (the D-Wave QPUs currently
set the annealing duration to 20 µs in in the absence of user
input).

3.2. Application Models

The machine model is distinct from the application
model that drives program execution. The latter depends on
the implementation details of the application, including the
calculations needed to pre-process and post-process data for
the quantum program as well as any quantum calculations.



There are a variety of problems that can be mapped into the
Ising Hamiltonian that underlies the D-Wave processor, each
with a distinct set of stages needed to manage interactions
with the QPU. In this work, we investigate the generic prob-
lem of embedding an Ising Hamiltonian into the D-Wave
QPU, finding the lowest energy state of that Hamiltonian,
and converting the resulting readout to a solution.

We decompose the application model into three stages.
Stage 1 denotes the pre-processing needed to embed the
logical Hamiltonian into the hardware graph. It also in-
cludes the steps needed to subsequently set the hardware
parameters and initialize the electronic control structures
used during program execution. An ASPEN model for the
first stage is shown in Fig. 6, in which LPS is the logical
problem size defining the number of spins (or vertices) in the
logical Hamiltonian. In the listing of Fig. 6, we have used the
worst-case estimate of the embedding complexity (number
of operations) taken from Cai et al. [35], which uses a non-
deterministic search for finding the embedding in a Chimera
hardware. We further assume that that size of the embedded
graph is the largest possible embedded graph, i.e., LPS2.
Therefore, the resulting ASPEN model for stage 1 includes
a series of resource consumption statements to account for
the calculation of the embedding. We also include stage 1
the constant steps required to initialize the electronic control
system that drives the quantum hardware layer. In this case,
we have used times shown in microseconds that reflect the
average durations required for performing the initializations
within the second generation, DW2 Vesuvius processor, and
we assume these constants are nearly the same within the
latest DW2X processor from D-Wave.

The second stage of the application model captures the
behavior of the adiabatic quantum dynamics performed by
the D-Wave QPU. This model includes the time required to
initialize the processor register and to readout the register
as well as the number of QuOps incurred during program
execution. In particular, we reduce QuOps for the D-Wave
processor into a time cost by accounting for how many
repetitions of the annealing sequence are performed dur-
ing a single call to the QPU. Because the D-Wave QPU
is effectively a probabilistic processor, multiple runs are
required to collect statistics and build confidence that the
lowest observed energy state is likely the global minimum.
In the ASPEN model shown in Fig. 7, we set the number of
required repetitions based on the desired solution accuracy
pa and the characteristic probability ps that any single
run finds the lowest-energy state. The required number of
iterations s is given as

s ≥ log(1 − pa)

log(1 − ps)
, (6)

which sets the number of QuOps needed.
At this point, we should note that the probability ps for

the register to be in the ground state is strongly influenced
by whether the evolution was sufficiently slow relative to
the internal dynamical timescales. In particular, it is known
that the leading order error in adiabatic quantum computing
arises from excitations to higher-lying energy eigenstates,

model Stage1
{
param LPS = 0 // Input Parameter
param Ising = LPSˆ2
param NH = LPS
param EH = NH*(NH-1) / 2
param M = 12
param N = 12
param NG = 8*M*N
param EG = 4*(2*M*N - M - N) + 16*M*N
param EmbeddingOps = (EG+NG*log(NG))*(2*EH)*NH*NG
param ParameterSetting = LPSˆ 3

// Hardware constants for DW2 in microseconds
param StateCon = 252162
param PMMSW = 33095
param PMMElec = 0
param PMMChip = 11264
param PMMTherm = 10000
param SWRun = 4000
param ElecRun = 9052
param ProcessorInitialize = StateCon+PMMSW+PMMElec+

PMMChip+PMMTherm+SWRun+ElecRun

data Input as Array((NH*NH), 4)
data Output as Array((NG* NG), 4)

kernel InitializeData {
execute [1] {
flops [Ising] as sp, fmad, simd
stores [NH*4] to Input

}

execute [1] {
flops [ParameterSetting] as sp, fmad, simd

}
}

kernel EmbedData {
execute embed [1] {
loads [EH*4] from Input
flops [EmbeddingOps] as sp, simd
stores [EG*4] to Output
intracomm [EG*4] as copyout

}
}

kernel InitializeProcessor {
execute [1] {microseconds [ProcessorInitialize]}

}

kernel main
{
InitializeData
EmbedData
InitializeProcessor

}
}

Figure 6: Stage 1 of the split-execution application im-
plements the generation and embedding of a logical Ising
Hamiltonian into the D-Wave processor.

where the transition probability is determined by the min-
imal instantaneous energy gap between the ground and
(first) excited manifolds [28]. The time complexity of this
probabilistic algorithm is thus determined by the shortest
evolutionary period T needed to obtain a probability pe to
be in the ground state. This value is not arbitrary as success
depends on the annealing time T and the shape of the
annealing schedule as well as the internal energy structure of
the Ising Hamiltonian. However, as we will emphasis from
our results, the exact value of the characteristic success has



model Stage2
{
param Success = 0.9999
param Accuracy = 0 // Input parameter
param AnnealReadResults = 320
param AnnealThermalization = 5

kernel Stage2Processing
{
execute mainblock2[1]
{

// Number of QPU calls
QuOps [ceil(log(1-(Accuracy/100))/log(1-Success))]

}
execute mainblock3[1]
{

// Readout time
microseconds [AnnealReadResults]

}
execute mainblock4[1] {

// Initialization time
microseconds [AnnealThermalization]

}
}

kernel main {
Stage2Processing

}
}

Figure 7: Stage 2 of the split-execution application uses the
D-Wave processor as an optimization solver that performs
statistical sampling to recover the lowest energy state.

a relatively small influence of the overall performance of
the integrated application model.

The third and final stage in our application model de-
fines the post-processing behavior. This includes sorting the
ensemble of readout results gathered during multiple runs
of the programs as well as the post-processing required by
the QPU to return these results to the CPU. For the sort,
we assume an underlying heapsort algorithm is used to sort
the readout results according to the value of the computed
energy. Although only the lowest energy state is necessary,
it is useful to first sort the results to identify the multiplicity
for each value and avoid redundant computation.

These three stages represent parameter models for the
split-execution application. In particular, stages 1 and 3
occur within the conventional RAM model while stage 2
is executed within the adiabatic quantum computing model.
The translation between these two models is signified by the
map of the logical Hamiltonian to the physical hardware,
i.e., minor embedding.

3.3. Timing Results

There are several key characteristics that must be mea-
sured when analyzing the split-execution performance. We
have chosen to focus on those highlighted metrics, namely,
performance and scaling. In particular, we measure perfor-
mance in terms of the total execution time required by
the system to return a solution. This includes both the
programming and execution steps of the application. We also
focus on scaling as a measure of how the time-to-solution
varies with the size of the problem.

model Stage3
{
param LPS = 0
param Success = 0.75
param Accuracy = 0.99
param Results = ceil(log(1-(Accuracy))/log(1-Success))
param Length = LPS
param SortOps = log(Results) * Results

data R as Array(Results, LPS)

kernel FindSolution {
execute sort [1] {

loads [Results] of size [4*Length]
flops [SortOps] as sp
stores [Results] to R

}
}

kernel main {
FindSolution

}
}

Figure 8: Stage 3 of the split-execution application parses
the readout results and sorts the solutions to recover the
optimization result.

The measure of what dominates the performance cost
is found by looking at the timing plots for each stage of
the application model. These are shown in Fig. 9(a)-(c).
In Fig. 9(a), the stage 1 timing is shown on a logarithmic
scale with respect to the size n of a complete input graph.
The solid line represents the results from the ASPEN model
over the range of 1 to 100, while the dashed line represents
experimentally measured timings for the Cai, Macready, and
Roy algorithm taken from Ref. [35] for inputs from 1 to
30. Over the latter region, the ASPEN models is within a
factor of 4 of the experimentally observed timing except
in the region n < 10, which it overestimates. Our analysis
has assumed the worst-case behavior for the embedding,
whereas Cai et al. reported that the average case behavior
scales appears to scale linearly for a fixed hardware graph.

By comparison, Fig. 9(b) shows the timing for stage 2 in
the application model with respect to the desired accuracy
pa in the computed solution. The plotted results correspond
to a value of ps = 0.7. However, we have found that this
performance curve is approximately the same for all values
of ps > 0.6. In each of these instances, the number of
iterations necessary to realize over an accuracy pa > 0.99
is so few that the overall timing for stage 2 is well below
the time of stage 1. Finally, the stage 3 performance is
presented in Fig. 9(c) as the timing of the linear sort routine
with respect to the input problem size. The nearly linear
dependence provides a very small contribution to the overall
timing for the program.

It is apparent from these results that the stage 1 timing
increases dramatically with input graph size and dominates
the costs for this application model. The relatively steep
increase in timing traces back to the graph minor embed-
ding calculation that is required to program the D-Wave
processor. Whereas our analysis has assumed the worst-case
behavior for the probabilistic algorithm from Cai et al., the



(a)

(b)

(c)

Figure 9: The performance scaling for the 3 stages of the
split-execution program. (a) Stage 1 timing in seconds with
respect to input problem size n = LPS from ASPEN model
(solid line) and experimentally observed timing (dashed
line); (b) Stage 2 timing with respect to desired accuracy;
(c) Stage 3 timing with respect to input size.

stark discrepancy in the timings between stages would seem
to be true for any embedding algorithm that scales with
problem size. The significance of this conclusion is that
the application bottleneck does not lie in quantum program
execution (stage 2) but rather in the purely classical pre-
processing state. This computational complexity expresses
the difficulty in translation from the conventional QUBO
problem instance into the hardware constrained quantum
program.

The three-staged application model described here is
very common for early descriptions of the using the D-
Wave processor. However, as these results indicate, the bot-
tleneck that arises from inlining the embedding calculation
with the run-time environment is a consequence of a poor
programming decision. Rather it may be beneficial to use
some variant of off-line embedding, in which specific input
graphs are pre-embedded and stored in a graph lookup

table. The difficulty of these off-line calculations would not
impact the performance of the application model, but use
of the lookup table would require some variant of graph
isomorphism to identify which embedding to apply. The
graph isomorphism problem has recently been shown to
be solvable using adiabatic quantum computing [11], [39],
raising the prospects the D-Wave processor could be used
to program the D-Wave processor!

4. Conclusion

We have presented an executable model of a split-
execution computing environment. We have defined both
machine and programming models for a mixed computation
that offloads an optimization task to a QPU. Our approach
has been based on using the ASPEN modeling language
to develop representations of the CPU and QPU hardware
as well as a generic application that makes use of both
quantum and classical resource. We have also presented an
analysis of the performance and scaling of this program
on the devised architecture and we have shown that the
embedding step grows quickly as the size of the input graph
increases linearly. Compared to the execution time needed
to collect sufficient samples from the QPU, these results
indicate that the pre-processing required for the application
greatly exceeds quantum execution time. Ultimately, these
pre-processing costs trace back to the minor graph embed-
ding problem.

We believe these results suggest two important aspects
of split-execution computing. First, the pre-processing over-
head for split-execution must be reduced by many orders
of magnitude in order to become processor limited. It is
not immediately clear if this is possible, but research into
fast minor embedding will be essential for this purpose.
However, it must also be considered that our models have
not exploited more sophisticated host systems, e.g., HPC, or
more sophisticated algorithms, and there may be additional
parallel strategies that can accelerate the pre-processing
stage.

Acknowledgments

This work was supported by the United States De-
partment of Defense (DoD) and used resources of the
Computational Research and Development Programs at
Oak Ridge National Laboratory. This manuscript has been
authored by UT-Battelle, LLC, under Contract No. DE-
AC0500OR22725 with the U.S. Department of Energy.

References

[1] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge University Press, 2000.

[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and
J. L. O/’Brien, “Quantum computers,” Nature, vol. 464, pp. 45–53,
2010.



[3] R. Harris, M. Johnson, T. Lanting, A. Berkley, J. Johansson, P. Bunyk,
E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata,
I. Perminov, P. Spear, C. Enderud, C. Rich, S. Uchaikin, M. Thom,
E. Chapple, J. Wang, B. Wilson, M. Amin, N. Dickson, K. Karimi,
B. Macready, C. Truncik, , and G. Rose, “Experimental investigation
of an eight qubit unit cell in a superconducting optimization proces-
sor,” Phys. Rev. B, vol. 82, pp. 024 511–024 526, 2010.

[4] M. W. Johnson et al., “Quantum annealing with manufactured spins,”
Nature, vol. 473, no. 7346, p. 194198, 2011.

[5] H. Neven, G. Rose, and W. G. Macready, “Image recognition with an
adiabatic quantum computer I. Mapping to quadratic unconstrained
binary optimization,” 2008.

[6] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, “Training
a binary classifier with the quantum adiabatic algorithm,” 2008.

[7] K. Pudenz and D. Lidar, “Quantum adiabatic machine
learning,” Quantum Information Processing, vol. 12, no. 5,
pp. 2027–2070, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s11128-012-0506-4

[8] F. Gaitan and L. Clark, “Ramsey numbers and adiabatic quantum
computing,” Phys. Rev. Lett., vol. 108, p. 010501, Jan 2012.

[9] I. Hen and A. P. Young, “Solving the graph-isomorphism problem
with a quantum annealer,” Phys. Rev. A, vol. 86, p. 042310, Oct
2012. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevA.
86.042310

[10] Z. Bian, F. Chudak, W. G. Macready, L. Clark, and F. Gaitan,
“Experimental determination of ramsey numbers,” Phys. Rev.
Lett., vol. 111, p. 130505, Sep 2013. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.111.130505

[11] F. Gaitan and L. Clark, “Graph isomorphism and adiabatic quantum
computing,” Phys. Rev. A, vol. 89, p. 022342, Feb 2014. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevA.89.022342

[12] A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, and
A. Aspuru-Guzik, “Construction of model hamiltonians for adiabatic
quantum computation and its application to finding low-energy
conformations of lattice protein models,” Phys. Rev. A, vol. 78,
p. 012320, Jul 2008. [Online]. Available: http://link.aps.org/doi/10.
1103/PhysRevA.78.012320

[13] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, and
A. Aspuru-Guzik, “Finding low-energy conformations of lattice pro-
tein models by quantum annealing,” Nature Scientific Reports, vol. 2,
Aug. 2012.

[14] V. N. Smelyanskiy et al., “A Near-Term Quantum Computing Ap-
proach for Hard Computational Problems in Space Exploration,”
2012.

[15] A. Lucas, “Ising formulations of many NP problems,” Frontiers in
Physics, vol. 2, no. 5, 2014.

[16] W. Vinci, K. Markström, S. Boixo, A. Roy, F. M. Spedalieri,
P. A. Warburton, and S. Severini, “Hearing the shape of the ising
model with a programmable superconducting-flux annealer,” Sci.
Rep., vol. 4, 07 2014. [Online]. Available: http://dx.doi.org/10.1038/
srep05703

[17] A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, and
V. N. Smelyanskiy, “A quantum annealing approach for fault
detection and diagnosis of graph-based systems,” arXiv preprint
arXiv:1406.7601 [quant-ph], 2014.

[18] B. O’Gorman, A. Perdomo-Ortiz, R. Babbush, A. Aspuru-Guzik, and
V. Smelyanskiy, “Bayesian network structure learning using quantum
annealing,” arXiv preprint arXiv:1407.3897, 2014.

[19] E. Rieffel, D. Venturelli, B. O’Gorman, M. Do, E. Prystay, and
V. Smelyanskiy, “A case study in programming a quantum annealer
for hard operational planning problems,” Quantum Information
Processing, vol. 14, no. 1, pp. 1–36, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11128-014-0892-x

[20] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker,
J. M. Martinis, D. A. Lidar, and M. Troyer, “Defining and detecting
quantum speedup,” 2014.

[21] T. Lanting, A. J. Przybysz, A. Y. Smirnov, F. M. Spedalieri, M. H.
Amin, A. J. Berkley, R. Harris, F. Altomare, S. Boixo, P. Bunyk,
N. Dickson, C. Enderud, J. P. Hilton, E. Hoskinson, M. W. Johnson,
E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov,
C. Rich, M. C. Thom, E. Tolkacheva, S. Uchaikin, A. B. Wilson,
and G. Rose, “Entanglement in a quantum annealing processor,”
Phys. Rev. X, vol. 4, p. 021041, May 2014. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevX.4.021041

[22] C. C. McGeoch and C. Wang, “Experimental evaluation of an adiabi-
atic quantum system for combinatorial optimization,” in Proceedings
of the ACM International Conference on Computing Frontiers, ser.
CF ’13. ACM, 2013, pp. 23:1–23:11.

[23] J. King, , S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch,
“Benchmarking a quantum annealing processor with the time-to-
target metric,” 2015.

[24] K. A. Britt and T. S. Humble, “High-performance computing with
quantum processing units,” preprint, 2015.

[25] T. S. Humble, A. J. McCaskey, R. S. Bennink, J. J. Billings,
E. F. DAzevedo, B. D. Sullivan, C. F. Klymko, and H. Seddiqi,
“An integrated programming and development environment for
adiabatic quantum optimization,” Computational Science and
Discovery, vol. 7, no. 1, p. 015006, 2014. [Online]. Available:
http://stacks.iop.org/1749-4699/7/i=1/a=015006

[26] M. W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A. J. Berkley,
E. M. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov,
E. Ladizinsky, T. Oh, and G. Rose, “A scalable control system
for a superconducting adiabatic quantum optimization processor,”
Superconductor Science and Technology, vol. 23, no. 6, p. 065004,
2010. [Online]. Available: http://stacks.iop.org/0953-2048/23/i=6/a=
065004

[27] T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse
ising model,” Phys. Rev. E, vol. 58, pp. 5355–5363, 1998.

[28] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum com-
putation by adiabatic evolution,” 2000.

[29] E. Farhi, J. Goldstone, and S. Gutmann, “A numerical study of
the performance of a quantum adiabatic evolution algorithm for
satisfiability,” 2000.

[30] J. D. Biamonte and P. J. Love, “Realizable hamiltonians for universal
adiabatic quantum computers,” Phys. Rev. A, vol. 78, p. 012352, Jul
2008.

[31] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,”
Discrete Applied Mathematics, vol. 123, no. 13, pp. 155 – 225, 2002.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0166218X01003419

[32] V. Choi, “Minor-embedding in adiabatic quantum computation: I.
the parameter setting problem,” Quantum Information Processing,
vol. 7, no. 5, pp. 193–209, 2008. [Online]. Available: http:
//dx.doi.org/10.1007/s11128-008-0082-9

[33] ——, “Minor-embedding in adiabatic quantum computation: Ii.
minor-universal graph design,” Quantum Information Processing,
vol. 10, no. 3, pp. 343–353, 2011. [Online]. Available: http:
//dx.doi.org/10.1007/s11128-010-0200-3

[34] C. Klymko, B. D. Sullivan, and T. S. Humble, “Adiabatic quantum
programming: minor embedding with hard faults,” Quantum
Information Processing, vol. 13, no. 3, pp. 709–729, 2014. [Online].
Available: http://dx.doi.org/10.1007/s11128-013-0683-9

[35] J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding
graph minors,” arXiv preprint arXiv:1406.2741, 2014.

[36] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language
for performance modeling,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 84:1–84:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389110

http://dx.doi.org/10.1007/s11128-012-0506-4
http://dx.doi.org/10.1007/s11128-012-0506-4
http://link.aps.org/doi/10.1103/PhysRevA.86.042310
http://link.aps.org/doi/10.1103/PhysRevA.86.042310
http://link.aps.org/doi/10.1103/PhysRevLett.111.130505
http://link.aps.org/doi/10.1103/PhysRevA.89.022342
http://link.aps.org/doi/10.1103/PhysRevA.78.012320
http://link.aps.org/doi/10.1103/PhysRevA.78.012320
http://dx.doi.org/10.1038/srep05703
http://dx.doi.org/10.1038/srep05703
http://dx.doi.org/10.1007/s11128-014-0892-x
http://link.aps.org/doi/10.1103/PhysRevX.4.021041
http://stacks.iop.org/1749-4699/7/i=1/a=015006
http://stacks.iop.org/0953-2048/23/i=6/a=065004
http://stacks.iop.org/0953-2048/23/i=6/a=065004
http://www.sciencedirect.com/science/article/pii/S0166218X01003419
http://www.sciencedirect.com/science/article/pii/S0166218X01003419
http://dx.doi.org/10.1007/s11128-008-0082-9
http://dx.doi.org/10.1007/s11128-008-0082-9
http://dx.doi.org/10.1007/s11128-010-0200-3
http://dx.doi.org/10.1007/s11128-010-0200-3
http://dx.doi.org/10.1007/s11128-013-0683-9
http://dl.acm.org/citation.cfm?id=2388996.2389110


[37] ——, “Automated design space exploration with aspen,” Sci.
Program., vol. 2015, pp. 7:7–7:7, Jan. 2015. [Online]. Available:
http://dx.doi.org/10.1155/2015/157305

[38] Oak Ridge National Laboratory Future Technologies Group. (2016)
ASPEN. [Online]. Available: http://ft.ornl.gov/research/aspen

[39] K. Zick, O. Shehab, and M. French, “Experimental quantum anneal-
ing: case study involving the graph isomorphism problem,” SCIEN-
TIFIC REPORTS, vol. 5, 2015.

http://dx.doi.org/10.1155/2015/157305
http://ft.ornl.gov/research/aspen

	1 Introduction
	2 Split-execution Computing System
	2.1 The D-Wave QPU
	2.2 Programming the D-Wave QPU

	3 Split-execution Performance Model
	3.1 Machine Models
	3.2 Application Models
	3.3 Timing Results

	4 Conclusion
	References

