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Abstract

Many of the continuing scientific advances achieved through computational biology are predicated 

on the availability of ongoing increases in computational power required for detailed simulation 

and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing 

the development of future exascale supercomputer systems is the development of new computing 

hardware and associated scientific applications that dramatically improve upon the energy 

efficiency of existing solutions, while providing increased simulation, analysis, and visualization 

performance. Mobile computing platforms have recently become powerful enough to support 

interactive molecular visualization tasks that were previously only possible on laptops and 

workstations, creating future opportunities for their convenient use for meetings, remote 

collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe 

early experiences adapting several biomolecular simulation and analysis applications for emerging 

heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs 

with high-performance massively parallel GPUs. We present low-cost power monitoring 

instrumentation that provides sufficient temporal resolution to evaluate the power consumption of 

individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency 

of scientific applications running on emerging platforms with results obtained on traditional 

platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of 

these platforms, and describe avenues for improving both the hardware and applications in pursuit 

of the needs of molecular modeling tasks on mobile devices and future exascale computers.
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I. Introduction

Computer simulations provide a powerful tool for probing the dynamics of cellular 

processes at temporal and spatial resolutions that are not accessible to experimental methods 
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alone. These studies require tremendous computational capabilities for both the simulations 

and the analysis and visualization of the results, made possible through the availability of 

clusters and supercomputers and parallel simulation and analysis software that makes 

efficient use of them. Petascale supercomputers are beginning to stretch the practical limits 

to space, power consumption, and cooling, with leading systems such as ORNL Titan and 

NCSA Blue Waters requiring on the order of 10 MW of electrical power. It is expected that 

many exascale systems may be constrained to power levels on the order of 20 MW, and a 

critical challenge facing the development of these systems is the development of new 

computing hardware and associated scientific applications that dramatically improve upon 

the energy efficiency of existing solutions, while providing increased simulation, analysis, 

and visualization performance. Exascale computing will require reduction of data movement 

and awareness of data locality within operating systems, applications, and algorithms [1].

Graphics processing units (GPUs) have evolved from their origins as fixed-function 

hardware accelerators solely intended for computer graphics and image processing 

workloads into much more flexible massively parallel computing devices that can be 

programmed for use by general purpose scientific applications [2], [3], and for molecular 

modeling in particular [4], [5]. Due to their massively parallel hardware architecture, GPUs 

are capable of substantially outperforming conventional multi-core CPUs on applications 

that contain large amounts of fine-grain parallelism, and in many cases they also 

significantly improve upon the energy efficiency achieved by conventional hardware 

platforms [6]. GPUs have become an effective tool for acceleration of a wide variety of 

computationally demanding molecular modeling applications [4], [7], [8], [9], [3], [10], 

[11], [12], [13], [5], [14], and these successes have contributed to the use of GPUs in the top 

performing supercomputers in the world.

Contemporary GPUs are not entirely self-sufficient; they depend on a host computer to run 

operating system software, and for execution of low-parallelism or latency-sensitive code 

that is poorly suited to execution on massively parallel hardware. The evolution of mobile 

phones into ubiquitous browsing, gaming, and communication devices has created 

tremendous demand for power-efficient system-on-chip (SoC) processor designs that 

integrate GPU hardware on-chip, or that are tightly coupled with external GPUs. ARM® 

processors are currently one of the leading CPU architectures used in mobile phones and 

tablet computers, with billions of ARM processors currently in the field.

The performance of SoCs and mobile computing platforms has steadily increased in recent 

years. In combination with integrated or discrete GPUs, these systems are now capable of 

performing molecular visualization and analysis tasks that have previously required 

conventional laptop or desktop computers. The small physical size and portability of these 

hardware platforms presents unique opportunities for their use as convenient multi-modal 

displays, as client systems for remote visualization of molecular structures, and as self-

contained systems driving head mounted displays (HMDs) for immersive stereoscopic 

viewing of molecular structures.
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We describe early experiences adapting several biomolecular simulation and analysis 

applications for heterogeneous computing platforms based on the combination of multi-core 

ARM SoCs with GPUs. We specifically evaluate emerging heterogeneous computing 

platforms that combine ARM multicore CPUs with both mobile GPUs and state-of-the-art 

discrete GPUs, with the goal of identifying performance and energy efficiency bottlenecks in 

hardware and software on these platforms, and their applicability to key computational 

biology applications.

Lattice Microbes (LM) is a suite of programs for performing stochastic biological 

simulations. Designed from the outset to leverage heterogeneous computing systems that 

combine traditional multi-core CPUs and GPUs, LM simulates well-stirred reactions and 

spatially-resolved reaction-diffusion processes with a focus on complex, realistic biological 

environments [15], [16] and supports single and multi-GPU hardware platforms [17]. Due to 

its focus on heterogeneous computing platforms, LM is an excellent candidate application to 

use in testing emerging energy-efficient computing platforms that combine multi-core ARM 

CPUs with high performance GPU accelerators.

NAMD is a GPU-accelerated parallel molecular dynamics simulation package that 

specializes in simulating large biomolecular complexes [18]. NAMD is based on the Charm

++ runtime system, and is designed for execution on workstations, clusters, and petascale 

computers [4], [11]. We evaluate performance, energy efficiency, and GPU acceleration 

factors for NAMD on the CARMA and KAYLA platforms, and on a conventional Intel x86 

platform.

VMD is a widely used tool for preparation, visualization, and analysis of biomolecular and 

cellular simulations. VMD was one of the very first molecular modeling applications to 

employ GPUs for general purpose scientific computations [4], and it incorporates a broad 

range of GPU-accelerated algorithms. We explore the performance scaling and energy 

efficiency of three of these algorithms and identify bottlenecks that hinder performance and 

limit the potential energy efficiency gains on the CARMA and KAYLA test platforms, and 

we present kernel-level performance results for one of the algorithms on all test platforms, 

including two Intel x86 system configurations.

We compare the performance and energy efficiency of these scientific applications running 

on emerging platforms with results obtained on traditional platforms, identify hardware and 

algorithmic performance bottlenecks that affect the usability of these platforms, and describe 

avenues for improving both the hardware and applications in pursuit of the needs of future 

exascale systems.

II. Hardware and Operating System Overview

We evaluate five heterogeneous computing platforms that combine multi-core CPUs based 

on the ARM architecture with on-chip, on-board, and add-in-board GPUs made by NVIDIA. 

We performed rudimentary evaluation of the NVIDIA Jetson TK1 and Jetson TX1, and the 

AppliedMicro X-Gene. The Jetson TK1 uses an NVIDIA Tegra K1 (32-bit) with an on-chip 

integrated GPU based on the Kepler GPU architecture, the first Tegra that is capable of 
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running CUDA kernels natively in its on-chip GPU. The Jetson TK1 ran Ubuntu 14.04 with 

GCC 4.8.2 and CUDA 6.5. The Jetson TX1 is similar to the TK1, but is based on a newer 

Tegra X1 (64-bit) SoC capable of higher clock rates. The Jetson TX1 ran developmental 

operating system software limited to 32-bit addressing, based on Ubuntu 14.04 with GCC 

4.8.4 and CUDA 7.0. The AppliedMicro X-Gene is also one of the first 64-bit ARM CPUs. 

The X-Gene host system ran an early developmental operating system with 64-bit 

addressing, but which had a number of software limitations relative to the other platforms. 

The X-Gene was paired with an NVIDIA Tesla K20 discrete add-in-board GPU for all tests, 

and used GCC 4.8.1 and the ARM64 version of CUDA 6.5.

We evaluated two of the energy-efficient heterogeneous computing platforms in much 

greater detail, both based on the NVIDIA Tegra 3 system-on-chip (SoC), which utilize 32-

bit ARM Cortex-A9 CPU cores and an NVIDIA GPU accelerator. Both are single-board 

computers produced by SECO: CARMA, a heterogeneous computing development board 

with an on-board NVIDIA Quadro 1000M GPU, and KAYLA, a development board with 

one PCIe ×16 expansion slot supporting a discrete add-in-board GPU accelerator. The 

NVIDIA Tegra 3 SoC includes four high performance CPU cores and a fifth low speed 

energy efficient CPU core for use during idle periods. Tegra 3 supports ARM NEON 4-way 

vector instructions, accessible through GCC compiler intrinsics. Both development boards 

include SATA, ethernet, on-board video, and serial I/O. Both development systems were 

installed with Ubuntu 12.04 running a kernel supporting the ARM hardware floating point 

ABI, and each of the applications described were compiled using an ARM-native compiler 

toolchain based on GCC 4.6.3, and the CUDA 5.5 toolkit for the ARM platform.

One of the key power efficiency features of the Tegra 3, Tegra K1, Tegra X1, and many 

similar SoCs is the inclusion of (one or multiple) CPU cores that are specialized for low-

speed, high-efficiency execution during idle periods. When the system reaches a low 

utilization state, the hardware and operating system cooperate to migrate processes and 

threads off of the four high-performance CPU cores, and move them to the energy-efficient 

CPU core(s). Once processes have been migrated, the four main CPU cores are shut off, 

essentially eliminating associated power consumption and leakage current. This energy 

efficiency feature is particularly valuable for mobile computing scenarios. One unusual 

implementation detail that arises is that the operating system reports varying numbers of 

both available and active CPUs through standard POSIX operating system APIs. This 

behaviour is unusual as compared to traditional HPC hardware platforms, and it can 

confound existing scientific applications and numerical libraries which have been written to 

spawn a number of threads, processes, or MPI ranks equal to the number of available CPUs 

as reported by the operating system during the program’s initialization. We have made 

appropriate modifications to each of the applications we discuss below, thereby enabling 

them to utilize all of the CPU cores, regardless of the system’s power management state at 

the time the application is launched. It seems likely that, as energy efficiency becomes an 

increasing concern, future desktop computers and server platforms will also employ 

mechanisms to shut down entire CPU cores as a means of optimizing energy consumption.
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Since the CARMA and KAYLA systems use the same Tegra 3 SoC, but have different 

GPUs, they have very different performance and power consumption characteristics, as 

shown in Table I. Several performance tests were used to establish basic performance and 

power consumption characteristics for the two test platforms. Idle power consumption was 

measured for both systems after booting into the Linux OS and allowing them to become 

fully quiescent. Interactive VMD sessions were run with and without CUDA GPU 

acceleration support, and idle power consumption was measured. In all three idle power 

consumption tests, the Linux OS shutdown the high-performance CPU cores, migrating all 

threads to the low-power fifth core. The idle power consumption shown for both the “Linux 

idle” test and the non-GPU-accelerated VMD are nearly identical, and these results match 

the minimum power consumption observed from system power-on, prior to booting Linux.

In contrast to the CPU-only idle power results above, a very pronounced increase in idle 

power consumption was observed for the GPU-accelerated VMD-CUDA test case, with the 

idle power increasing by factors of 1.6× (CARMA) and 2.76× (KAYLA) over the “Linux 

idle” and non-GPU-accelerated VMD idle tests. We examined this in detail and determined 

that the significant increase in idle power consumption is associated with the creation of a 

CUDA “context”, and that the idle power consumption remains high even if the associated 

process is stopped in the scheduler or otherwise blocked in kernel wait. We found that idle 

power consumption remains increased for as long as any process holds a CUDA context, 

regardless of whether that process is considered “runnable” by the scheduler or not. This 

behaviour is the result of the GPU device driver initializing the GPU and raising it out of the 

idle power state, presumably as a means of improving responsiveness and overall 

performance in the common scenario where there are a series of CUDA kernel launches or 

host– device memory copies interspersed among very brief periods of GPU inactivity. The 

CUDA runtime system currently lacks a mechanism to allow an application to indicate that 

it is entering an idle phase where the GPU could be placed into a minimum-power idle state. 

If such a mechanism were added to CUDA, the GPU driver would have the opportunity to 

significantly improve the idle power consumption of GPU-accelerated applications that are 

interactive and must sometimes wait for user input, and for applications that only utilize the 

GPU for a subset of algorithms or workloads.

The remaining tests in Table I measured both performance and power consumption 

associated with several CPU and GPU microbenchmarks that measured peak CPU and GPU 

memory bandwidths (STREAMBW-copy, and CUDA-MEMBW), host–GPU PCIe transfer 

bandwidths (CUDA-PCIEBW-pinned), and peak GPU single-precision multiplyadd 
arithmetic throughput (CUDA-MADD). Each of the microbenchmarks used are 

implemented as built-in system benchmarking routines in VMD. Power consumption 

measurements were made for short-running tests, e.g. CUDA-MADD, by running the tests 

continuously in a loop. For each performance test, power consumption is reported in Watts, 

and energy efficiency in terms of work units per Joule.

To better understand the PCIe performance of these systems, Fig. 2 shows the achieved 

transfer bandwidth across a range of payload sizes. An Intel i7-3960X system was used to 

evaluate performance for GPUs connected to a host with PCIe 2.0 or PCIe 3.0 link rates. All 
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of the ARM-based platforms incur substantially higher latencies for initiating small-size 

GPU data transfers than the Intel i7-3960X platform. CARMA, KAYLA, and the X-Gene 

are an order of magnitude less performant for memory transfers than the Intel i7-3960X 

host. The Jetson TK1 and TX1 systems perform considerably better, likely due to their use 

of a unified memory architecture for their CPUs and GPUs. The Jetson TK1 and TX1 are 

able to achieve full bandwidth beginning with transfer sizes just beyond 4 MB.

III. Power Monitoring Approach

We have taken two approaches for measuring power consumption through the use of 

commercial AC power monitoring devices, and with custom-made DC power monitoring 

circuits constructed from low-cost components and commercial analog-to-digital conversion 

interfaces (A/D) or digital storage oscilloscopes (DSOs).

The CARMA board contains an NVIDIA Tegra 3 SoC, on-chip and on-board I/O 

peripherals, and an NVIDIA Quadro 1000M GPU, all powered by main board circuit traces. 

The CARMA board is powered by an external Mean Well switching power supply that 

provides 19.0 V DC at up to 4.74 A (90 W). Due to the lack of circuit diagrams, bus 

extenders, or test probe cards for the custom daughter cards containing the Tegra 3 and 

Quadro 1000M, power measurements monitored system level power at the board-level DC 

input, and at the AC input to the power supply. The CARMA board and associated power 

monitoring instrumentation are shown in the Fig.1 photograph. In the future, we plan to use 

the same power monitoring approach taken for the CARMA board for detailed application 

power profiling on the Jetson TK1, Jetson TX1, and similar single-board systems that 

require only low-voltage DC input power.

The KAYLA development board contains the NVIDIA Tegra 3 SoC, on-chip and on-board 

I/O peripherals, and it provides a single PCIe 2.0 ×16 (physical) slot for discrete GPUs with 

PCIe interfaces. The KAYLA main board obtains power from an external ATX switching 

power supply through a standard ATX motherboard power connector. The discrete PCIe 

GPU installed in the KAYLA board obtains its power from both the PCIe bus itself and 

additional PCIe GPU power cables attached to the ATX power supply. In the present work 

we have obtained measurements of the KAYLA AC power input only. Accurate DC power 

monitoring for KAYLA, conventional Intel x86 systems, the AppliedMicro X-Gene system, 

and similar platforms would require multiple current sensors, multi-channel A/D, and post-

processing and calibration of per-channel measurements, which we leave as future work.

Commercially available power monitoring devices provide inexpensive means to measure 

overall system power consumption at AC power supply inputs. AC power consumption 

measurements were performed using a commercially made Kill A Watt® model p4400 

meter, produced by P3 International. The Kill A Watt meter provides readings that are rated 

to 0.2% accuracy and AC measurements reported were obtained by running workloads that 

yielded long-term constant average power consumption readings enabling simple single-

value measurements to be made. Since hardware configurations vary between the systems 

under test, e.g. different models of SSDs, hard drives, and memory capacity, the Kill A Watt 
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provides more than sufficient accuracy to support the low-temporal-resolution parts of the 

power efficiency evaluations and conclusions presented in this work. Many alternative 

commercial AC power monitoring solutions exist, but the Kill A Watt devices are 

inexpensive and widely available, and we have experience using them in previous power 

monitoring of molecular modeling workloads on GPU clusters [6]. We note that these 

approaches provided only coarse temporal resolution on the order of one sample per-second, 

due to limitations in the underlying commercial power monitoring instrumentation itself.

We sought to be able to monitor power consumption with very fine temporal resolution 

sufficient to resolve the power consumption of individual GPU kernel functions. Ge et al. 

constructed sophisticated power monitoring infrastructure using commercially available 

power monitoring components capable of monitoring individual subsystems and components 

within cluster nodes [19]. We note that in the case of platforms based on SoC designs such 

as CARMA and KAYLA, it is difficult or impossible to directly measure power 

consumption of on-chip circuitry with external instrumentation, and that it may only be 

practical to instrument outboard components such as disks, and external GPUs.

To overcome the limitations of existing monitoring devices, we built our own DC power 

monitoring instrumentation combined with commercial A/D instruments and DSOs. Our DC 

power monitoring hardware is composed of an Allegro Microsystems ACS 712 Hall effect 

current sensor, powered by either an LM 7805 voltage regulator driven by a common 9 V 

battery, or a sufficiently low-noise 5 V power supply, as shown in Figs. 3, and 4. The 

reported results were obtained using an Allegro ACS 712 rated for currents of up to 5 A and 

total error below 1.5%. The 5 A model yields the best measurement precision for the input 

voltages and currents required by the SECO CARMA board under test. The 5 A ACS 712 

produces an output voltage signal of 2.500 V plus 185 mV/A of measured current, which is 

measured by external A/D instrumentation or a DSO. The peak frequency response or 

temporal resolution provided by the ACS 712 is roughly 80 kHz, and it can be set to a lower 

frequency by increasing filtering capacitor Cf in Fig. 3. The output voltage of the ACS 712 is 

proportional to its 5 V supply, so low-noise measurements require a low-noise power supply 

to the ACS 712. Our measurements were conducted using a simple battery-driven LM 7805 

voltage regulator to minimize noise and to avoid ground loops or other undesirable coupling 

to the attached DSO or A/D instrumentation, but good results can be achieved using any 

sufficiently low-noise power supply.

The high sample rate power profiles presented in this paper were obtained using a Labjack 

UE9 analog A/D interface and a Rigol DS2102 100 MHz digital storage oscilloscope. The 

UE9 provides multi-channel A/D conversion and sample rates up to 57,000 samples/s, 

depending on the number of channels sampled and the required precision. We operate the 

UE9 in a streaming mode, continuously sending A/D samples over the network, allowing 

high-frequency power measurements to be recorded for long running applications. The Rigol 

DS2102 DSO provides two input channels, and when set for maximum recording time, can 

record at a rate of 1M samples/s for up to 1.4 s. The extremely high sample rate of the 

DS2102 exceeds the frequency response of the ACS 712 sensor by over a factor of ten, but 

multiple samples can be averaged to reduce noise. The DSO was particularly useful for 
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identifying and eliminating power supplies that generated excessive ripple or noise on their 

DC output.

Both the UE9 and DS2102 can be triggered by external trigger signals or by software, but in 

the current work we used software-based triggering. We developed C++ libraries to drive 

both the Labjack UE9 and the Rigol DS2102, with the aim of linking the software into 

existing CPU and GPU performance profiling tools developed by others. To the best of our 

knowledge, our DC power monitoring instrumentation achieves a sampling rate higher than 

has been reported by recent efforts. In many cases our sample rate is two orders of 

magnitude higher, based on the limitations of the hardware instrumentation described or 

specific sample rates reported in each case [20], [19], [21], [22], [23], [24]. Our approach is 

more limited in scope compared to more general power monitoring frameworks due to the 

minimalistic nature of the SoC-based CARMA and KAYLA hardware platforms we study, 

and the complexities involved in monitoring outboard PCIe GPU power consumption [23], 

[24].

IV. Application Test Cases and Key Algorithms

Test cases were selected for evaluation of the performance and energy efficiency of the 

CARMA and KAYLA platforms as compared with conventional workstation and cluster 

node architectures based on 64-bit Intel and AMD processors. The test cases were selected 

to determine whether particular features of the hardware architecture or algorithms used in 

the science applications exposed strengths or weaknesses in relation to performance and 

energy efficiency.

A. Lattice Microbes

Several Lattice Microbes (LM) [15], [16], [17] test cases were selected to exercise CPU and 

GPU implementations of its stochastic solvers, providing direct comparison of energy 

efficiency on the test architectures.

A serial process at the heart of the CME algorithm consumes a profusion of GPU-generated 

random numbers to determine if a reaction occurs, with a probability determined by the 

“propensity matrix”, R. While algorithm execution is synchronous, random number 

generation and data output occur concurrently.

On the other hand, the lattice-based RDME algorithm enjoys fine-grained parallelism as 

described by:

(1)
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The CME is solved independently on each lattice site (v ∈ V), assuming that only the 

contained particles (α) can interact. Inter-site ( ) diffusion of particles–which 

occurs with probability D–enjoys considerable spatial locality.

A bimolecular reaction, where two particles combine or separate at rates k1 and k2, is a 

quintessential test case with regular, predictable serial execution. To test ranges of 

biologically relevant particle counts, simulations are run varying the number of A and B 

particles at t0 from 1K–250K. Lattice sizes for the bimolecular reactions are varied from 323 

to 2563 (memory use between 256 kB and 512 MB). Each lattice site is 8 bytes in size and 

can store one particle per byte. The first set of simulations begin with 1,000 A and B 

particles over all lattice sizes. A second set of simulations scale the number of A and B with 

the lattice size.

For simulating RDME processes, we employ our multi-particle diffusion algorithm (MPD-

RDME [15], [16]). The algorithm is composed of four CUDA kernels on the GPU: Three 

kernels perform x-, y-, and z-axis particle diffusion and one kernel to perform reactions. The 

host then checks for lattice site overflow events: The GPU overflow buffer must be copied to 

host memory, and then if necessary, the host corrects lattice overflows before beginning the 

next timestep. Beyond overflow handling, the CPU does little more than schedule GPU 

operations.

Figure 5 shows a high-resolution power profile for an RDME timestep annotated with the 

GPU kernel that is being executed. It is interesting to learn that the GPU utilization and 

efficiency of the kernel are evident from examination of power usage. The y- and z-axis 

kernels draw more power than the other two, however their execution time is shorter. This is 

consistent with the predicted GPU occupancy for each kernel. The y- and z-axis kernels have 

an occupancy of 66% whereas the occupancy of the x-axis and reaction kernels is 33%. 

Since they are less able to fully occupy the GPU, the power draw is below peak. One can 

also determine certain execution characteristics, such as the timestep length, solely from 

high-resolution power measurements. This opens the door for “black-box” instrumentation 

where execution profiling can be performed without any source-level or runtime 

modifications.

Table II shows RDME simulation rates, power usage, and resulting efficiency for CARMA 

and KAYLA. Table III compares a computer with an Intel i7-3960X processor and a Tesla 

K20c against the Applied Micro X-Gene system with the same GPU. Each successive lattice 

size requires significantly more work; as the lattice edge length doubles, the lattice volume 

increases by a factor of eight. MPD-RDME workload scales linearly with the number of 

lattice sites and with the number of particles and reactions present in the simulation [17]. 

KAYLA, with the discrete GPU, outperforms CARMA and is more energy efficient in all 

but the 323 lattice models. Lattice Microbes performance is predominantly dependent on the 

GPU, and not the CPU. This is demonstrated clearly with the comparison between the Intel-

based system and the X-Gene system where the GPU is identical. The X-Gene system draws 

considerably less power than the Intel system, but the application performance is similar. An 
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approximate 25% increase in energy efficiency is gained from running on the ARM-based 

X-Gene platform.

For smaller simulations, especially on the CARMA and KAYLA platforms, the PCIe bus 

plays a factor in performance. The overflow buffer, which is 4 kB in size, is examined at the 

end of every timestep to check for any particles that need to be re-inserted into the 

simulation. Figure 2, shows that the performance of the ARM-based systems lags 

considerably behind the Intel i7-3960X for 4 kB transfers, with the X-Gene performing the 

best among the ARM systems for transfers below 64 kB. On CARMA and KAYLA, this 

copy takes approximately 0.2 ms. On the Intel system, it takes 0.03 ms for the copy, and 0.05 

ms on the X-Gene. That is significant overhead from PCIe latency for CARMA and 

KAYLA, especially for the small lattice sizes where the GPU kernel runtimes are very short. 

On KAYLA, 323 lattice with 2, 000 particles runs at 1, 304 steps per second; 23% of that 

runtime is copying the overflow buffer. If ARM platforms supported host-mapped memory, 

this copy could be entirely avoided.

Only the 323 lattice with 64, 000 particles simulation exhibits overflows. Copying the lattice 

to host memory and back to the device for overflow correction is costly when PCIe 

bandwidth is low. On both CARMA and KAYLA, an average of 3.5ms is spent on correcting 

overflows, accounting for 65% of the runtime on CARMA and 87% on KAYLA, where the 

GPU is not in use. This inefficiency is reflected in the relatively poor performance reported 

for the 323/64, 000 simulation. The dependence on CPU performance for overflow handling 

is also apparent in comparing the Intel system to X-Gene for this simulation. The Intel 

system is 2.3 times faster, and is the only test model where the Intel system is superior in 

terms of energy efficiency.

CME is primarily implemented on the CPU, and is accelerated by the GPU by offloading 

random number generation. This partitioning keeps a CPU core busy but does not keep the 

GPU consistently busy; as a result multiple independent CME replicas can be 

simultaneously run on multiple CPUs while sharing a single GPU. We initially observed 

very poor performance when multiple replicas shared the GPU on both the CARMA and 

KAYLA platforms. Upon inspection, the majority of the time spent the GPU spent copying 

the random numbers to the host due to the low PCIe bandwidth. Delayed completion of 

memory copies due to bus contention would occasionally make the CME threads stall until 

more random numbers could be produced, even though the actual generation is very quick. 

We reduced the amount of data that needed to be transferred by reducing the batch size for 

the random number generation, which reduced contention. This requires the kernel to be 

called more often, however these calls are fully overlapped with the CPU computation.

The CARMA platform executes the random number kernel in 1.7 ms, and the KAYLA 

platform with the GTX Titan in 252 μs for a batch of 256K double-precision numbers. The 

random number generation kernel produces data at rates of 1.2 GB/s and 7.9 GB/s 

respectively, while the observed bandwidth for device-to-host memory transfers is roughly 

450 MB/s, further demonstrating the imbalance between computation and communication 

efficiency on these hardware platforms.
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B. NAMD

Porting NAMD and the Charm++ runtime system to the ARM architecture initially took 

roughly two days of effort. One limitation of existing ARM platforms with respect to 

support for the NVIDIA CUDA toolkit and driver is the lack of support for host-mapped 

memory, which is normally used to implement a low-latency mechanism to inform the 

Charm++ runtime system running on the host CPUs when GPU work units have completed. 

By having GPU kernels writing work completion status to host-mapped memory, it becomes 

possible for CPU-side operations on GPU output to begin sooner than if they had to wait for 

enqueued GPU kernels to complete. The lack of support for host-mapped memory on the 

ARM platform is the result of limitations in the implementation of PCIe transfers and 

interaction with the ARM CPU caches, and is therefore unlikely to change in the near future.

NAMD decomposes its simulation work across the available CPUs and GPU accelerators, 

moving the most demanding non-bonded force calculations onto the GPU, and performing 

comparatively low-cost bond, angle, dihedral, and improper force terms on the host CPU(s). 

As a result of the decomposition of force computations across both the CPU and GPU 

hardware, NAMD must perform frequent host-device memory transfers to exchange atom 

positions, forces, and energies between the GPU and the host. One of the hardware 

limitations of the CARMA and KAYLA platforms that has a strong impact on the 

performance of these transfers is the PCIe host-device transfer bandwidth, as reported in the 

CUDA-PCIEBW-pinned tests shown in Table I, and plotted in Fig. 2.

We chose to test NAMD on a moderately sized ApoA 1 system because it represents a 

typical per-node workload for GPU-accelerated systems, and it was used as a test case in our 

previous work [11]. Power and performance results are shown in Figs. 6 and 7, and in Table 

IV. For NAMD, driving the GPU with a high-performance CPU maximizes power efficiency 

as well as performance.

C. VMD

VMD is a GPU-accelerated tool for preparing, analyzing, and visualizing molecular 

dynamics simulations [25], [4]. VMD has recently been extended with features for 

visualization and analysis of cellular simulations [16], and has been adapted for parallel 

analysis and visualization of large scale simulation trajectories on petascale computers [26], 

[27], [28], [29], [30], [31].

The main limitation of the CARMA and KAYLA hardware that impacts the performance 

and energy efficiency of the VMD algorithms we evaluate is the PCIe host-GPU transfer 

bandwidth, as reported in the CUDA-PCIEBW-pinned tests shown in Table I, and plotted in 

Fig. 2. Below, we find that this limitation, as with the NAMD benchmarks, has a profound 

impact on the performance scaling of the GPU algorithms in VMD. This is due in part to the 

fact that our algorithm designs assumed high-bandwidth PCIe connectivity, and long-term 

storage of visualization data structures in comparatively large size host memory, thereby 

enabling GPU memory to be used for detailed renderings of petascale trajectories [27]. 

Surveying the attributes of other recently announced and currently available ARM SoCs, we 

find that all of the existing platforms have limitations on PCIe bandwidth, with none 
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providing more than 8-lane PCIe 2.0 bandwidth to our knowledge. This observation leads us 

to conclude that in order to obtain best performance from similar platforms, we must begin 

to adapt our existing visualization and analysis algorithms to reduce dependencies on high-

bandwidth host-GPU transfers. Below we demonstrate the potential performance gains that 

can be achieved by redesigning our molecular orbital visualization algorithm to reduce host-

GPU transfers.

We evaluated the performance of an electrostatics algorithm [32] that has been evaluated 

previously on conventional GPU-accelerated platforms [6], and GPU-accelerated algorithms 

for visualization of molecular orbitals [33], [34] and molecular surfaces [35], [27]. Table V 

lists the performance results and energy efficiency for each of the tests measured on the 

CARMA and KAYLA boards. In all three of the VMD test cases, performance results were 

adversely affected by the very limited PCIe bandwidth.

The “STMV electrostatic potential” test case computed a 3-D electrostatic potential map for 

satellite tobacco mosaic virus, using the multilevel summation method [32]. Performance of 

the electrostatic potential test case was limited by significant 3-D potential interpolation 

work that is not currently GPU-accelerated. The interpolation work was previously an 

inconsequential component of overall runtime, but the high speed of the CARMA and 

KAYLA GPUs relative to Tegra 3 SoC makes this algorithm step a significant performance 

bottleneck.

The C60 molecular orbital visualization test case stresses both the CUDA molecular orbital 

kernels, and the subsequent marching cubes stage that extracts the orbital surface and creates 

the triangle mesh for rendering via OpenGL. Two molecular orbital algorithms were tested 

with the C60 case. The C60 “orig. alg.” case presents performance and efficiency data for our 

original GPU-accelerated molecular orbital algorithm [33], [34]. The C60 “new alg.” case 

presents results for a revised algorithm, designed to overcome the extremely limited 

bandwidth of host-GPU PCIe transfers, by moving the marching cubes algorithm from the 

CPU (per the original algorithm), entirely onto the GPU, resulting in a 1.8× increase in 

performance and energy efficiency for the C60 test case on both test platforms.

The “Ankyrin molecular surface” test case computes and visualizes molecular surfaces for 

an Ankyrin unfolding simulation. The VMD molecular surface algorithm used in the 

performance tests already implements the same optimization described for the C60 

molecular orbital test case above, however the final stages of the Ankyrin molecular surface 

test case generate a much larger triangle mesh, demonstrating that even a highly streamlined 

GPU algorithm can succumb to performance bottlenecks caused by low host-GPU transfer 

bandwidth. The final host-GPU transfer could be eliminated from the molecular surface 

algorithm assuming that the GPU had sufficient memory capacity for both intermediate data 

structures and the resulting triangle mesh, but all current GPU hardware falls short in this 

respect.

An exciting development in the field of molecular visualization is the recent availability of 

commodity head mounted displays (HMDs) which are an ideal platform for immersive 

stereoscopic visualization of large biomolecular complexes [36], [37], [38]. The GPU 
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workloads associated with rasterization or ray tracing of very large biomolecular complexes 

are currently beyond the capabilities of the platforms discussed in this paper, but they appear 

to be capable of supporting remote visualization schemes where remote supercomputers 

render omnidirectional stereoscopic projections at very high resolution and stream the 

results to remote clients, which perform local view-dependent reprojection and display for 

the user’s HMD orientation [31], [38]. Rudimentary performance tests were performed on 

the CARMA and Jetson TK1 SoC platforms, which are physically small and have a low 

enough power requirement that they could potentially be self-contained to drive commodity 

HMDs. The performance results for these tests indicate that the CARMA and Jetson TK1 

can easily perform the required omnidirectional image reprojection tasks using OpenGL. 

The test platforms were able to perform omnidirectional texture mapping reprojection and 

HMD lens distortion corrections at frame rates exceeding 150 Hz when driving a display at 

1920 × 1080 resolution, with sufficient performance headroom that we believe that the 

rasterization part of the workload will not impede the use of these platforms for driving 

HMDs for remote rendering. The remaining components of the workload include H.264 

video stream decoding, which could in principle be handled by on-chip video decoding 

hardware present on the NVIDIA Tegra 3 and Tegra K1 SoCs. We leave the evaluation of H.

264 video stream decode performance as future work.

V. Results Discussion and Hardware Outlook

The CARMA and KAYLA test platforms that we have evaluated in detail above combine 

low-power NVIDIA Tegra 3 ARM SoCs which are commonly incorporated into mobile 

phones and tablet computing devices with GPUs that achieve substantially higher aggregate 

performance, albeit with increased power consumption. The net energy efficiency benefits 

obtained from the use of such platforms depends critically on how effectively the high-

performance and high-power consumption parts of the system are utilized.

In the case of the platforms we evaluated, we have shown that it is critical for the GPU 

hardware to be fully utilized in order to achieve best energy efficiency. One of the limitations 

we observed in the performance of the CARMA and KAYLA development boards is that the 

Tegra 3 ARM SoCs on these systems lack full PCIe 2.0 ×16 bus bandwidth, creating a 

performance bottleneck for some algorithms, particularly those that regularly exchange large 

datasets between the CPU and the GPU during the course of execution. In light of these 

observations, we revised the GPU-accelerated molecular orbital algorithm in VMD to avoid 

host-GPU transfers between algorithm stages, thereby achieving a 1.8× performance and 

energy efficiency improvement for the C60 test case on both the CARMA and KAYLA 

platforms.

While the CARMA and KAYLA platforms we study in detail provide relatively low host-

GPU transfer rates, limitations on PCIe bandwidth are also common among several more 

recently announced ARM platforms, including server-oriented processors such as the 

AppliedMicro X-Gene, and the AMD A1100. One potential resolution to PCIe bandwidth 

limitations would be the incorporation of support for GPU I/O buses such NVIDIA’s 

NVLink into ARM SoCs, thereby enabling an alternative data path for host-GPU transfers, 
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but it is unclear if this is economically viable in low-cost mass market SoCs. New on-chip 

and die-stacked memory systems have begun to debut in discrete GPUs from AMD and have 

been announced by NVIDIA, increasing GPU global memory bandwidths by up to 4× 

relative to the GeForce GTX Titan used in the KAYLA and Intel i7-3960X benchmarks 

reported here.

We expect that upcoming 64-bit ARM SoCs will begin to address some of performance 

bottlenecks reported here, making them interesting targets for future evaluation. We have 

recently begun porting and testing efforts on the NVIDIA Jetson TK1 (32-bit Tegra K1 

SoC), Jetson TX1 (64-bit Tegra X1 running 32-bit operating system software), and 

AppliedMicro X-Gene (64-bit). While the ARM SoCs share many of the same design 

attributes and performance issues we have already described based on our testing of the 

CARMA and KAYLA development boards, they have improved CPU clock rates, increased 

PCIe bandwidths, and they support newer versions of the CUDA compiler toolchain and 

drivers. The two models of Jetson boards will provide a new opportunity to evaluate 

heterogeneous platforms that provide a unified memory system that is shared by both the 

CPU and GPU, thereby potentially eliminating the need for explicit data transfers between 

host memory and GPU memory in many cases.

We have performed additional early testing on NVIDIA Jetson TK1 and TX1, and 

AppliedMicro X-Gene test platforms, albeit limited to tests that could be performed on the 

X-Gene system which has no display output and comparatively minimalistic operating 

system software. The results in Table VI (photo of systems shown in Fig. 8) compare 

performance for just the molecular orbital computation phase of the C60 molecular orbital 

visualizations described previously. The best performing ARM platform is the X-Gene 

system, which is limited to PCIe 2.0 ×8 transfer rates, but achieves the best combination of 

GPU kernel performance and low latency for small size CPU-GPU data transfers. We 

compared the performance of the ARM platforms against the Intel i7-3960X CPU, which 

operates at a much higher clock rate than the ARM systems and also benefits from full-

bandwidth PCIe 3.0 ×16 GPU connectivity and substantially lower latency for small CPU-

GPU data transfers.

The results in Table VI show performance that strongly correlates with the speed of the 

attached GPU and the peak host-GPU transfer bandwidth provided by each platform, shown 

in Fig. 2. The Intel i7-3960X system paired with the GeForce GTX Titan gains a significant 

additional performance boost due to its much higher PCIe 3.0 ×16 host-GPU transfer 

bandwidth, combined with low latency for small transfers. We note that the Jetson TK1 

achieved performance comparable to that of CARMA, and the Jetson TX1 was close behind 

the KAYLA platform paired with the GeForce 640, both using only the SoCs on-chip 

integrated GPUs in each case. We expect that future tests with detailed power monitoring of 

the Jetson TK1 and Jetson TX1 may demonstrate significant increases in energy efficiency 

compared with CARMA and KAYLA. The AppliedMicro X-Gene performs competitively 

with the Intel i7-3960X given the substantial host-GPU PCIe transfer bandwidth advantage 

enjoyed by the i7-3960X. At the time of writing, the X-Gene platform and operating system 

don’t support a windowing system or graphics output, but we expect that if it did, that the 
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overall C60 molecular orbital visualization performance would likely track the performance 

ratio we observe for the molecular orbital kernel since the visualization performance is also 

impacted affected by PCIe bandwidth and transfer latency. We look forward to repeating 

tests on the AppliedMicro X-Gene and Jetson TX1 with future operating system software 

that is more mature and robust. It is possible that the relatively large latencies that we 

observed for small-size CPU-GPU transfers will be addressed with improved operating 

system software and CUDA GPU kernel drivers.

VI. Conclusions

We have evaluated the performance of key computational biology applications on several 

emerging heterogeneous computing platforms that combine energy-efficient multi-core 

ARM CPUs with massively parallel GPU accelerators. The 25% energy efficiency increase 

obtained for the Lattice Microbes application running on the AppliedMicro X-Gene and 

NVIDIA Tesla K20c GPU was the most successful among our tests in terms of 

demonstrating the potential for ARM-based heterogeneous computing platforms to achieve 

significant energy efficiency gains for molecular and cellular simulation workloads. Our 

performance tests and analysis have shown areas where existing energy-efficient SoCs have 

architectural limitations that impact performance of molecular modeling applications, and 

we have demonstrated that careful adaptation or redesign of GPU-accelerated application 

kernels can help reduce the impact of such limitations on performance. We have presented 

power monitoring instrumentation that allows highly detailed snapshots of heterogeneous 

computing kernels and their power consumption behavior, correlated with individual GPU 

kernels. We have provided early results from benchmarks of molecular orbital kernels on 

two of the latest ARM SoCs, giving us a perspective of how future systems may evolve and 

the level of performance that we can hope to achieve as the platforms mature.
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Fig. 1. 
Photograph of power monitoring instrumentation attached to the CARMA development 

board, while running VMD molecular orbital benchmark tests described in Sec. IV-C, and 

Table V.
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Fig. 2. 
PCI-Express transfer rates for host to device copies (solid lines), and device to host copies 

(dashed lines) for the ARM SoC platforms tested. Also shown is the transfer rate for a 

conventional Intel i7-3960X system with a Tesla K20c GPU, demonstrating PCIe 2.0 ×16 

transfer rates of approximately 6 000 MB/s, and an Intel i7-3960X system with a GeForce 

GTX TITAN, demonstrating PCIe 3.0 ×16 rates of 12 000 MB/s. CARMA and KAYLA 

obtain a top speed of 450 MB/s, and X-Gene transfers at a maximum rate of 800 MB/s. The 

Jetson TK1 and TX1 systems have unified memory systems that support both the CPU and 
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GPU, so memory copies don’t pass through a PCIe bus. The Jetson TK1 is able to perform 

at speeds equivalent to PCIe 2.0 ×16; the TX1 falls short of full PCIe 3.0 ×16 speed, but is 

the best performer of all of the ARM SoC systems. For small data transfers, performance is 

latency bound for the ARM systems. CARMA, KAYLA, TK1, and TX1 all take over 180 μs 

to perform a 1 kB copy. The X-Gene latency improves upon these results dramatically 

completing the transfer in 12 μs. The Intel i7-3960X has the lowest PCIe overhead, 

completing the transfer in as little as 4 μs.
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Fig. 3. 
Schematic of low-voltage DC power monitoring circuit based on the Allegro Microsystems 

ACS 712 Hall-effect current sensor, and common voltage regulator parts.
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Fig. 4. 
Photograph of our power monitoring circuit, connected to a networked Labjack UE9 high 

speed analog-to-digital conversion interface.
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Fig. 5. 
High-resolution power trace showing the CARMA platform running Lattice Microbes 

RDME timestep on the 643 lattice. The y- and z-axis diffusion kernels exhibit shorter run 

times and higher power usage than x-axis diffusion and reaction kernels due to higher GPU 

occupancy.
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Fig. 6. 
Measured power consumption of NAMD running ApoA 1 benchmark. Timestep boundaries 

are marked by shaded bands. Steps correspond to Fig. 7. Step 0 is preceded by atom 

migration; steps 0, 4, 8, and 12 include PME long-range electrostatics; steps 0 and 12 also 

include pairlist regeneration; all other steps calculate short-range forces only. The GPU 

calculation for each step is divided into two grids, with the boundaries between grids visible 

as brief drops in power usage.
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Fig. 7. 
Execution of NAMD running ApoA 1 benchmark. Top: CARMA (Quadro 1000M). Bottom: 

KAYLA (GeForce GTX Titan). Both figures span 5.5 seconds. CARMA corresponds to Fig. 

6; note PME work indicated in green. GPU execution is indicated by violet bands above P2 

traces. Note that GPU is mostly busy on CARMA (top), mostly idle on KAYLA (bottom). 

Integration (red blocks) is split into two blocks per timestep on CARMA (top), 

corresponding to separate GPU grid completions, while on KAYLA (bottom) these blocks 

appear merged because GPU results are available before CPU is idle. Traces generated with 

Projections tool for Charm++ parallel runtime system.
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Fig. 8. 
Photograph of NVIDIA/SECO CARMA and KAYLA, NVIDIA Jet-son TK1, and 

AppliedMicro X-Gene test platforms used for the performance comparisons in Table VI. 

The CARMA board is shown in the top center, KAYLA and GeForce 640 in lower left, two 

Jetson TK1s are shown at bottom, the AppliedMicro X-Gene system is shown at right, with 

a Jetson TX1 sitting on top of it.
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TABLE I

BASIC HARDWARE ATTRIBUTES AND POWER CONSUMPTION.

 Test Case CARMA, Quadro 1000M KAYLA, GeForce GTX Titan

Perf. Watts Energy Eff. Perf. Watts Energy Eff.

Linux idle - 11W - - 29W -

VMD text-mode, idle - 11W - - 30W -

VMD-CUDA text-mode, idle - 18W - - 80W -

STREAMBW-copy 1,090 MB/s 13W 84MB/J 1,102 MB/s 32W 34 MB/J

CUDA-PCIEBW-pinned 449 MB/s 20W 22MB/J 451 MB/s 97W 4.6 MB/J

CUDA-MEMBW 24,500 MB/s 34W 720 MB/J 241,000 MB/s 201W 1,199 MB/J

CUDA-MADD 175 GFLOP/s 35W 5.0 GFLOP/J 2,923 GFLOP/s 202W 14.4 GFLOP/J
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TABLE II

LATTICE MICROBES RDME PERFORMANCE AND POWER EFFICIENCY FOR THE CARMA AND KAYLA ARM 

DEVELOPMENT BOARDS. Simulation rate values are in steps per second, power in watts, and efficiency values are 

in timesteps per Joule of energy expended.

Lattice Size Particles CARMA, Quadro 1000M KAYLA, GeForce GTX Titan

Sim. Rate Power Efficiency Sim. Rate Power Efficiency

323 2, 000 726 steps/s 31W 23.4 steps/J 1304 steps/s 137W 9.5 steps/J

323 64, 000 169 steps/s 30W 5.6 steps/J 226 steps/s 143W 1.6 steps/J

643 2, 000 184 steps/s 34W 5.4 steps/J 1000 steps/s 158W 6.3 steps/J

643 128, 000 130 steps/s 34W 3.8 steps/J 863 steps/s 175W 4.9 steps/J

1283 2, 000 27.9 steps/s 34W 0.82 steps/J 301 steps/s 193W 1.6 steps/J

1283 256, 000 21.7 steps/s 34W 0.64 steps/J 253 steps/s 203W 1.2 steps/J

2563 2, 000 3.50 steps/s 34W 0.10 steps/J 45.2 steps/s 205W 0.22 steps/J

2563 512, 000 3.05 steps/s 35W 0.09 steps/J 40.4 steps/s 212W 0.19 steps/J
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TABLE III

LATTICE MICROBES RDME PERFORMANCE AND POWER EFFICIENCY ON INTEL AND X-GENE ARM SYSTEMS, BOTH WITH A 

SINGLE TESLA K20c GPU. Comparable performance is found on both platforms, but the X-GENE IS 25% MORE 

EFFICIENT FOR MANY OF THE TEST SYSTEMS.

Lattice Size Particles Intel i7-3960X, Tesla K20c X-Gene, Tesla K20c

Sim. Rate Power Efficiency Sim. Rate Power Efficiency

323 2, 000 5463 steps/s 226W 24.2 steps/J 4638 steps/s 142W 32.6 steps/J

323 64, 000 1718 steps/s 229W 7.5 steps/J 744 steps/s 139W 5.4 steps/J

643 2, 000 1991 steps/s 247W 8.1 steps/J 1844 steps/s 166W 11.1 steps/J

643 128, 000 1343 steps/s 252W 5.2 steps/J 1265 steps/s 170W 7.4 steps/J

1283 2, 000 417 steps/s 264W 1.6 steps/J 395 steps/s 186W 2.1 steps/J

1283 256, 000 305 steps/s 266W 1.2 steps/J 300 steps/s 189W 1.6 steps/J

2563 2, 000 58.9 steps/s 268W 0.22 steps/J 54.1 steps/s 192W 0.28 steps/J

2563 512, 000 48.3 steps/s 270W 0.18 steps/J 47.7 steps/s 195W 0.24 steps/J
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TABLE IV

NAMD POWER EFFICIENCY ACROSS PLATFORMS.

Platform Time/step Power Steps/kJ Speedup

CARMA (Q 1000M) 0.350 s 34W 84 4.3X

KAYLA (GT 640) 0.267 s 45W 83 6.2X

KAYLA (GTX Titan) 0.283 s 93W 38 5.9X

i7-3960X (GTX Titan) 0.0185 s 444W 122 5.8X
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TABLE V

VMD PERFORMANCE POWER CONSUMPTION MEASUREMENTS.

 Test Case CARMA, Quadro 1000M KAYLA, GeForce GTX Titan

Perf. Watts Energy Eff. Perf. Watts Energy Eff.

C60 orbital calc+viz (orig. alg.) 1.43 frames/s 26W 55 frames/kJ 2.12 frames/s 88W 24 frames/kJ

C60 orbital calc+viz (new alg.) 2.62 frames/s 26W 100 frames/kJ 3.89 frames/s 89W 49 frames/kJ

Ankryin surface calc+viz 0.49 frames/s 22W 22 frames/kJ 0.61 frames/s 86W 7.1 frames/kJ

STMV electrostatic potential map 13.41 s/frame 35W 2.12 frames/kJ 12.05 s/frame 102W 0.81 frames/kJ
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TABLE VI

COMPARISON OF VMD MOLECULAR ORBITAL KERNEL PERFORMANCE.

 Hardware platform, CPU, and GPU
VMD molecular orbital
kernel runtime for C60

CARMA Tegra 3, Quadro 1000M 2.170 s

Jetson TK1 Tegra K1 2.020 s

Jetson TX1 Tegra X1 (beta software) 1.210 s

KAYLA Tegra 3, GeForce 640 0.989 s

KAYLA Tegra 3, GeForce Titan 0.396 s

Applied Micro X-Gene, Tesla K20c 0.243 s

Intel Core i7-3960X, Tesla K20c 0.208 s

Intel Core i7-3960X, GeForce Titan 0.157 s
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