
ar
X

iv
:1

51
0.

05
23

7v
1 

 [
cs

.L
G

] 
 1

8 
O

ct
 2

01
5

Enforced Sparse Non-Negative Matrix Factorization

Brendan Gavin∗† Vijay Gadepally† Jeremy Kepner†

September 11, 2018

Abstract

Non-negative matrix factorization (NMF) is a common

method for generating topic models from text data. NMF is

widely accepted for producing good results despite its rela-

tive simplicity of implementation and ease of computation.

One challenge with applying NMF to large datasets is that

intermediate matrix products often become dense, stress-

ing the memory and compute elements of a system. In this

article, we investigate a simple but powerful modification

of a common NMF algorithm that enforces the generation

of sparse intermediate and output matrices. This method

enables the application of NMF to large datasets through

improved memory and compute performance. Further, we

demonstrate empirically that this method of enforcing spar-

sity in the NMF either preserves or improves both the accu-

racy of the resulting topic model and the convergence rate

of the underlying algorithm.

1 Introduction

A common analyst challenge is searching through large
quantities of text documents to find interesting pieces
of information. With limited resources, analysts often
employ automated text-mining tools that highlight com-
mon terms or topics. The machine learning and natu-
ral language processing communities often refer to this
as topic modeling. Topic modeling is a vast field in
which there have been many fundamental contributions.
For example, latent dirichlet allocation (LDA) [2] uses
Bayesian networks to model how a mixture of topics
constitutes a document. Other common methods for
topic modeling include the following: latent semantic
analysis (LSA) [2], probabilistic latent semantic anal-
ysis (PLSA) [8], and term frequency-inverse document
frequency (TF-IDF) [6]. More recently, non-negative
matrix factorization is used as a technique for document
classification and topic modeling.
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Definitions

NMF: Non-negative matrix factorization, i.e., A = UV T

A: Term/document data matrix

U: Term/topic matrix, V: Document/topic matrix

Topic: A cluster of related documents or terms. Columns of U
are term topics and columns of V are document topics.

ALS: Alternating least squares; an algorithm for finding the
NMF.

Residual: Relative norm of the difference between U matrices
at subsequent iterations of ALS.

Error: Relative norm of the difference between data matrix A

and its NMF approximation UV T

NNZ: Number of nonzeros

The non-negative matrix factorization (NMF) [14–
16, 18] is a method of finding a latent variable model
of non-negative data for the purpose of dimensional-
ity reduction. It is frequently used to generate topic
models of text data, which can be used for clustering
related documents and terms from a collection of doc-
uments. While there are many methods for document
clustering and topic modeling, the NMF has evolved
as a popular tool because of its algorithmic simplicity,
implementation ease, and computational benefits. As
described in [5], the NMF can be ideal for systems that
are designed to perform fast matrix operations in order
to support specifications for graph algorithms such as
the GraphBLAS [11, 12].

With the NMF, we have a data matrix A whose
entries are all greater than or equal to zero, and we seek
to factorize it into a product of two matrices U and V
whose entries are all non-negative. Mathematically, this
property can be expressed as

A ≈ UV T(1.1)

A ∈ R
n×m, U ∈ R

n×k, V ∈ R
m×k

A ≥ 0, U ≥ 0, V ≥ 0

The rank k of the decomposition is usually chosen to
be much smaller than the rank of the original data
matrix. In this way, much of the information in the
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original data set is discarded, with the intention that
what remains will capture the most general, abstract
relationships from the original data.

We find the NMF by solving a minimization prob-
lem in order to make the factorization UV T as close to
the original data matrix as possible:

min
U,V

||A− UV T ||, s.t. U ≥ 0, V ≥ 0(1.2)

There are a variety of ways to approach this problem
as described in [1]. Perhaps the most common method
is to use the multiplicative update rules of Lee and Se-
ung [14]. The benefit of these update rules is that they
are simple to implement and that analytical results can
be established about the convergence properties of up-
dates. Other methods include gradient descent algo-
rithms (of which the multiplicative update rules of [14]
are an example) and the alternating non-negativitity
constrained least squares (ANLS) method. In ANLS,
alternating least squares problems are solved by us-
ing optimization methods to enforce the non-negativity
constraint [13] in Equation (1.2). Many of these al-
gorithms have analytical results regarding their conver-
gence properties and have proven to be effective in prac-
tice; however, they tend to be slow to converge.

In the method we describe in this article, we have
chosen to solve Equation (1.2) by using the conventional
alternating least squares (ALS) algorithm combined
with a projection step, as described in [1]. In ALS,
we hold one of the matrices U or V constant, and
then solve for the other by using linear least squares.
By repeating this process many times, alternating back
and forth between solving for U and solving for V ,
we hope to converge to a good approximation for the
non-negative matrix factorization. The projection step
enforces the non-negativity constraint of Equation (1.2)
by setting all the negative entries of U and V to zero
at each iteration, rather than by using constrained
optimization methods as ANLS does. Because this is
a projection onto the space of non-negative solutions, it
is sometimes called projected alternating least squares.
This algorithm is described in Algorithm 1.

Because of the ad hoc means by which this algo-
rithm enforces non-negativity, there are currently no
analytic results regarding its convergence properties.
Nonetheless, in practice, the projected ALS algorithm
produces consistently good results.

Our ultimate goal is to use NMF to work with very
large datasets, and our first priority in implementation
is improved performance. We prefer to use projected
ALS because it is the fastest of the available methods
for finding the NMF, and it can be implemented by
using only basic linear algebra operations (specifically
matrix-vector multiplication).

Algorithm 1 Projected Alternating Least Squares

Input: data matrix A ∈ R
n×m, initial guess U0 ∈ R

n×k

Output: Approximation UV T ≈ A, U ∈ R
n×k,

V ∈ R
m×k

START: Set U = U0

Do until convergence:

1. Find V using V = ATU(UTU)−1, and set
negative entries of V to zero.

2. Find U using U = AV (V TV )−1, and set nega-
tive entries of U to zero.

end do

Output U , V
END

Because our goal is to work with very large datasets,
we would also like to use sparse matrix storage formats
for storing U and V . Using sparse matrices offers
significant performance benefits in terms of memory
usage and computation time. The challenge is that,
although the original data matrix A is always very
sparse, Algorithm 1 may produce intermediate U and
V matrices that are dense (see Figure 1 for examples).

Reuters-21578

Matrix Sparsity
A 99.65%
U 61.0%
V 61.0%

UV T 4.15%

Wikipedia

Matrix Sparsity
A 99.6%
U 45.0%
V 41.0%

UV T 11.0%

Figure 1: Tables showing the change in sparsity from
the original data matrix A to the NMF approximation
of it, UV T , using two different data sources. Sparsity is
measured as the fraction of a matrix’s entries that are
exactly equal to zero.

In the following section, we describe our approach
for modifying Algorithm 1 so that we can produce ma-
trices that take advantage of the benefits of sparse
matrix storage. In Section 3, we apply the resulting
enforced sparsity NMF algorithm to several example
datasets. We further show that the modified algorithm
converges at least as well as Algorithm 1 and that it
produces NMF topics that are empirically and quali-
tatively as accurate as those produced by the unmodi-
fied ALS algorithm. We also demonstrate a drawback
of producing NMF matrices that are extremely sparse,
and in Section 4 we discuss a couple of methods that
can be used to alleviate that problem. We conclude in



Section 5.

2 Maintaining Sparsity in NMF

Many studies have looked at producing sparse matri-
ces through the NMF [4, 9, 10, 13, 17]. Some studies
use NMF to produce sparse matrices by adding sparsity
constraints to the minimization problem (Equation 1.2),
and others do so by adding terms to the minimization
problem that penalize having larger numbers of nonze-
ros in the factorization. Some popular methods for
ensuring sparsity include using Hoyer’s sparsity mea-
sure [10] or the L1 norm of U or V [13] as either con-
straints or penalty terms in the minimization problem
(Equation 1.2). These approaches work well, but they
require the use of algorithms for NMF that are slower
than the projected ALS algorithm.

Because we would like to factorize matrices that
are derived from very large datasets, we prefer to use
a method of producing sparse matrices that prioritizes
performance over other concerns, such as provable op-
timality. To produce sparse intermediate and final ma-
trices, we apply the same logic to sparsity that pro-
jected ALS applies to non-negativity: at each iteration
of ALS, in order to ensure that either U or V has ex-
actly t nonzero entries in it, we set all the entries in that
matrix to zero except for the t largest ones. The result-
ing modification of Algorithm 1 is shown in Algorithm
2.

Algorithm 2 Enforced Sparsity ALS

Input: matrix A ∈ R
n×m, initial guess U0 ∈ R

n×k,
maximum NNZ(U) tu and maximum NNZ(V) tv
Output: Approximation UV T ≈ A, U ∈ R

n×k,
V ∈ R

m×k

START: Set U = U0

Do until convergence:

1. Find V using V = ATU(UTU)−1, and set
negative entries of V to zero.

2. Sort nonzero entries of V , keep only tv largest
nonzeros in V

3. Find U using U = AV (V TV )−1, and set nega-
tive entries of U to zero.

4. Sort nonzero entries of U , keep only tu largest
nonzeros in U .

end do

Output U , V
END

Herein, this algorithm is referred to as the enforced

sparsity ALS, because we are producing sparse matrices
by enforcing sparsity at each iteration of the ALS
algorithm. In this method, we keep the t largest entries
of a given matrix by finding the magnitude of the
tth largest entry and then setting all the entries with
magnitudes lower than that of the tth largest entry to
zero. This method requires slightly more computation
than a simpler method of enforcing sparsity, which is to
set all entries of a matrix that fall below an arbitrary
threshold to zero; however, it has the benefit of allowing
us to consistently set exactly the amount of sparsity that
we want, regardless of the scaling of the matrices that
we are working with.

3 Enforced Sparsity NMF Results

We illustrate the results of using Algorithm 2 by ap-
plying it to data matrices that are derived from several
different real datasets of text documents. For each of
these datasets, we produce a term-document data ma-
trix A, where each column represents a single document,
each row represents a single term, and each entry aij is
the number of times that term i occurs in document j.
We discard terms from each document by using a stop
word list, and we also discard any terms that appear
only once in a particular dataset. We divide each row
of the data matrix by the number of nonzero entries in
that row in order to prevent our results from being bi-
ased by commonly used terms. All of the matrices that
we use to produce our results – including the U and
V matrices – are stored in the MATLAB sparse matrix
storage format.

3.1 Convergence Behavior We examine the effect
of sparsity enforcement on the convergence of ALS by
examining the relative error and the relative residual of
the NMF at each iteration of ALS.

Figure 2 shows some of the results of using projected
ALS, with and without sparsity enforcement, to find
a five-topic NMF of a data matrix derived from the
Reuters-21578 dataset (provided by [3]) using 1,985
documents with 6,424 different terms. Figure 2 shows
the relative residual and the relative approximation
error at each iteration of Algorithm 2. The relative
residual R = ||Ui − Ui−1||/||Ui|| is a measure of the
difference between our current solution for U and our
solution for U at the previous iteration. If R reaches
machine precision, then we know that we have reached
a stable solution. We use the residual as a natural
measure of convergence. The relative approximation
error E = ||A − UV T ||/||A|| is a measure of how close
our NMF is to the original data matrix A that reaches
machine precision when the two are equal. We find that
there is not necessarily a clear relationship between the



approximation error and the quality of the topic model
that our NMF produces, but it is a useful measure to
see if an NMF algorithm is doing what it is supposed to
be doing. If the algorithm is working, the error should
decrease for a bit before reaching a steady value, the
magnitude of which is determined by the rank of the
factorization.

NMF With and Without Sparsity

Enforcement
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Sparsity Enforced U Matrix (55 nonzeros for 5 topics):

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

miles risk coffee repurchase yen
load contracts quotas motors firms
factor paper ico class plaza
revenue proposals crop spending currencies
passenger futures colombia buyback movements

Fully Dense U Matrix:
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

miles paper coffee iran senate
load risk crop crude baker
factor proposals quotas opec legislation
revenue england ico iraq vote
passenger yen producer iranian surplus

Figure 2: Example NMF with and without sparsity
enforcement. The plots on the top show the relative
error and residual at each ALS iteration when using
sparsity enforcement on the term/topic matrix U and
when allowing it to be fully dense. The tables on the
bottom show the five terms with the largest magnitudes
for each resulting topic.

In Figure 2, when the NMF is generated using
the enforced sparsity ALS, the term/topic matrix U is
forced by Algorithm 2 to have only 55 nonzeros (in order
to maintain sparsity); in the dense case, U is allowed
by Algorithm 1 to have any number of nonzeros. In
this example, the run with a sparse U converges more
quickly than the fully dense version (as measured by
the relative residual), and finishes with a higher relative
L2 error. Both runs qualitatively produce coherent
topic terms, although the topics produced by each are
somewhat different.

The results described in Figure 2 are representative

NMF with Sparse U, Sparse V, and Sparse U

and V
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Figure 3: Plots comparing the relative error and relative
residual after 75 ALS iterations when enforcing sparsity
for matrix U , for matrix V , and for both U and V .

of the empirical behavior of Algorithm 2, in producing
solutions that converge. They are also representative of
the algorithm’s behavior in the sense that Algorithm 2
consistently produces results with higher numerical ap-
proximation error than does Algorithm 1. From our
numerous tests, the higher numerical approximation er-
ror does not appear to produce poorer topic quality, as
determined by examining the highest magnitude terms
that belong to each topic.

The rate of convergence of Algorithm 2 depends on
how sparse we enforce each of the matrices U and V to
be. Figure 3 shows the results of enforcing sparsity for
only matrix U , for only matrix V , or for both matrices U
and V , for the same Reuters-21578 matrix. The vertical
axes show the relative L2 residual and relative L2 error
after 75 iterations of ALS, and the horizontal axes show
the number of nonzeros allowed in the matrix that is
forced to be sparse.

The convergence behavior of enforced sparsity ALS
falls broadly into two categories. For a low number
of nonzeros (i.e., very sparse matrices), the algorithm
tends to converge rapidly, and for a large number of
nonzeros, it converges slowly, at the same pace as the
non-modified conventional dense projected ALS. This
result gives some context to the residual plot in Figure 2.
Because limiting the U matrix to have 55 nonzeros puts
its convergence behavior roughly in between the rapid
convergence region and the slow convergence region, the
matrix factorization converges more rapidly than the
dense case but not quickly enough to reach machine
accuracy.



Figure 3 seems to suggest that enforcing sparsity
for just U , for just V , or for both U and V , produces
very similar results from the perspectives of error and
convergence. However,

the distribution of nonzeros amongst the column
vectors of U and V changes depending on which matri-
ces are being made sparse. When we force one or both of
U and V to be sparse (particularly when making them
very sparse), the nonzeros in either matrix tend to end
up unevenly distributed among the matrix’s columns.
As a result, some topics will have more terms or doc-
uments allocated to them, and other topics will have
fewer.

For example, allowing 50 nonzero entries in the
term/topic matrix U of a five-topic NMF typically does
not result in having 10 nonzero entries in each column
of that matrix. Instead, some columns will have very
many nonzeros, and other columns will have very few.
Table 1 shows an example of the topic terms that are
produced in this situation. The dataset used to produce
this table is derived from the first 12,439 pages of the
monthly Wikipedia database dump, with a total of
143,462 unique terms after stop words are filtered out.

Nonzeros Distributed Unevenly from Sparsity

Enforcement

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

government league electrons album jewish

party electron band jews

war atoms albums judaism

elections hydrogen israel

president isotopes hebrew

Table 1: Top five terms in each of five topics produced
by NMF as applied to Wikipedia data, with term/topic
matrix U forced to have only 50 nonzeros. Nonzero
entries are distributed unevenly amongst the columns
of U as a result.

The skew of the distribution of nonzeros in the
column vectors of U or V is most severe when both the
U and the V matrices are made very sparse. In this case,
this skew may result in all of the nonzeros concentrated
in a single column in each matrix. In Section 4, we
discuss two methods for addressing this problem.

3.2 Clustering Accuracy An empirical measure of
document clustering accuracy can be used to examine
the effect of sparsity enforcement. To do so, we use a
corpus of documents that consists of the abstracts of pa-
pers from five PubMed academic journals: BioMed Cen-
tral (BMC) Bioinformatics, BMC Genetics, BMC Med-
ical Education, BMC Neurology, and BMC Psychiatry.
The resulting corpus, after stop words are removed, con-

sists of 20,112 unique terms and 7,510 documents.
We can devise a measure of the accuracy of an NMF

topic model for this dataset by considering each journal
as defining an empirical topic, in the sense that an aca-
demic journal is, in fact, a cluster of related documents.
We believe that it is reasonable to presume that a clus-
tering algorithm, when applied to the abstracts of pa-
pers from academic journals, produces accurate clusters
if it groups abstracts from the same journals (provided
that the subject matter of each journal is sufficiently
different from the subject matters of the others). Our
choice of particular journals was made, in part, because
they cover different and distinct topics.

We measure the accuracy of each topic by counting
the number of pairs of documents that belong to a
topic and that are from the same journal, and then by
dividing that number by the total number of possible
pairs of documents. For each topic in the NMF of
this dataset, we consider a document as “belonging”
to a topic if its corresponding entry in the V matrix
is nonzero. We consider a topic from the NMF to be
perfectly accurate if all the documents that belong to
that topic are from the same journal, in which case
the number of same-journal document pairs is equal to
the number of all possible pairs. On the other hand, a
topic has the lowest possible accuracy if the documents
that belong to it are uniformly distributed among the
journals in the dataset. In that case, many of the pairs
of documents belong to different journals, and the ratio
of the number of same-journal pairs to the number of
total possible pairs will be small.

We use the following expression for this measure of
the accuracy of an NMF document topic:

(3.3) Acc =

∑nD−1
i=1

∑nD

k=i+1 Jnl(i, k)

β − α
−

α

β − α

Where α and β are given by

α = ⌊nD/nJ⌋

(

nJ(⌊nD/nJ⌋ − 1)

2
+ nD(mod nJ)

)

β =
nD(nD − 1)

2

(3.4)

The parameter nD is the number of documents that
belong to the topic whose accuracy we are measuring
(i.e., the number of nonzero entries in that column of
the matrix V ), nJ is the number of journals that was
used to make our dataset, and Jnl(i, k) returns 1 if
document i comes from the same journal as document
k and 0 otherwise. The value of α is the number of
same-journal pairs of documents when the documents
belonging to a topic are uniformly distributed amongst



Document Clustering Accuracy vs. NNZ
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Figure 4: Average document clustering accuracy versus
number of nonzeros when using sparsity enforcement
for finding the NMF of a data matrix derived from the
abstracts of papers from PubMed journals. Accuracy
for each individual topic is measured by using equation
(3.3), and averaged over each of the topics in a 5 topic
NMF. We show the results when enforcing sparsity for
just the U matrix, just the V matrix, and both the U
and V matrices.

all of the journals in the dataset; this will be the case
when that topic’s accuracy is the lowest. The value of β
is the maximum possible number of pairs of documents.

The values α and β scale and offset the measure
(3.3) so that it is equal to 1 when all of the documents
in a topic come from the same journal, and it is equal to
0 when they are perfectly uniformly distributed amongst
the journals in the corpus. For cases in which a topic
has only one or zero documents belonging to it, we set
Acc = 1.

Figure 4 shows the results of applying the measure
in Equation (3.3) to the NMF of the PubMed journal
dataset. For these results, we perform 50 iterations of
Algorithm 2 in order to find a five-topic NMF (that
is the largest number of correct topics that the NMF
should find for five journals). As before, we calculate
the NMF when enforcing various levels of sparsity for
either the U matrix, the V matrix, or both the U and
V matrices.

We find that the accuracy is, in general, higher
for sparser U and V matrices, with the accuracy being
the lowest for the fully dense conventional NMF. This
result is not surprising; we consider a document as
“belonging” to a topic if it has any nonzero value in
the corresponding entry of the V matrix, and we don’t
take into account the fact that many of the entries for
each document in a given topic have small magnitudes,
indicating that they probably do not belong to that
topic despite the fact that their value is nonzero.

This measure is still useful, though, in allowing us
to compare the accuracy of dense NMF to the accuracy
of the proposed enforced sparse NMF. We can measure
the accuracy of a topic from dense NMF by defining
some threshold value below which we would consider the

Document Clustering Accuracy: Dense NMF

vs. Enforced Sparsity NMF
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Figure 5: Average document clustering accuracy, as
measured by using Equation (3.3), versus the number
of nonzeros in the U and V matrices. The plot
curve labeled “Enforce Sparsity during ALS” shows the
accuracy of the NMF produced by using Algorithm
2, and the plot curve labeled “Enforce Sparsity after
ALS” shows the accuracy of the NMF produced by
using Algorithm 1, where we have made the final NMF
matrices sparse by enforcing sparsity only after the
NMF has been calculated. By this measure, Algorithm
2 typically produces NMF document clusters that are
at least as accurate as those produced by Algorithm 1.

entries of V to be zero, and then applying the accuracy
measure in Equation (3.3) to the newly sparse V . To use
Equation (3.3) with dense matrices, we enforce sparsity
after completing ALS iterations when finding the NMF,
instead of enforcing sparsity during each ALS iteration.
Figure 5 shows the result of measuring the document
clustering accuracy for the NMF of the PubMed dataset
when we enforce sparsity during each iteration of ALS,
as is done in Algorithm 2, and when we enforce sparsity
only after we have finished all our ALS iterations using
Algorithm 1.

The accuracy of the document clustering is approxi-
mately the same, regardless of whether we enforce spar-
sity during ALS or after finishing ALS. This result is
encouraging because it suggests that we are producing
equally good topics by enforcing sparsity at each itera-
tion, but it raises an additional question: if we can make
our final NMF just as sparse, and just as accurate, by
enforcing sparsity only once after we have already cal-
culated the NMF, why do it at each iteration?

The reason for enforcing sparsity at each iteration
is that we would like to keep our matrices as sparse
as possible at all times when computing the NMF, in
order to reduce the memory footprint of both the final
result matrices and the intermediate matrices that are
generated during the iterations that we use to calculate
NMF. By enforcing sparsity at each iteration, we can
reduce our memory footprint considerably throughout
the calculation. Exactly how much we are able to
reduce the memory footprint throughout our calculation



depends on the level of sparsity that we enforce, and
the on the level of sparsity in our initial guess. Figure 6
shows the maxmimum number of nonzeros in U and V
combined when we enforce sparsity for both matrices
during the calculation of the NMF for the PubMed
dataset. We show the results for various levels of
sparsity in the initial guess U0. Unsurprisingly, the
maximum number of nonzeros that we need to store
during our calculations is determined by the sparsity of
the initial guess when we are forcing U and V to have
very small numbers of nonzeros, and it is determined by
the level of sparsity that we enforce in U and V when
they are allowed to be more dense than the initial guess.

This example demonstrates the memory benefits of
using sparsity enforcement at each iteration: we can
reduce the amount of memory that we need to use to
store U and V by more than an order of magnitude.

Maximum NNZ Stored When Calculating

Sparse NMF
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Figure 6: Plot curves showing the maximum number
of nonzeros that need to be stored for the U and V
matrices combined when using Algorithm 2 to calculate
the NMF of the PubMed dataset. Results are shown for
several initial guesses with varying numbers of nonzeros.

4 Improving Clustering and Sequential ALS

NMF

In Section 3.1 we showed that, when using Algorithm 2,
we may produce an NMF that has unevenly distributed
terms and documents among its topics. This problem
is typically only as severe as it is in the results in
Table 1 when forcing our matrices to be very sparse
but, in our opinion, the fact that Algorithm 2 can be
used to produce matrices of such extreme sparsity is one
of its benefits, and so we have considered two ways of
alleviating this problem.

One particularly straightforward method to ensure
even distribution of nonzeros among columns of our ma-
trices is to enforce sparsity for each column individually
rather than for the matrix as a whole. This procedure
results in convergence and produces good topic models,
but at the cost of reduced performance. This perfor-
mance reduction occurs because, for most sparse ma-
trix storage formats, addressing the entries of specific

columns of a matrix is slower than addressing the en-
tries of that matrix irrespective of which column they
belong to. This additional time to address the contents
results in reduced performance.

Another way to ensure an even distribution of
nonzeros among the columns of our matrices is to find
the NMF topics sequentially by converging one topic at
a time. We can do this by considering the NMF using
block matrices

(4.5) A ≈ UV T = [U1 U2][V1 V2]
T = U1V

T
1 + U2V

T
2

where U1 and V1 are matrices whose column vectors
consist of previously converged NMF topics, and U2

and V2 are single column vectors that represent the new
topics that we seek to find. We can derive the update
rules for finding U2 and V2 by rewriting the original
minimization problem using the matrix blocks:

(4.6) min ||A− UV T ||22 = min ||A− U1V
T
1 − U2V

T
2 ||22

The solution for one of U2 or V2, while holding the other
constant, is then a modified least squares solution:

V2 = (ATU2 − V1U
T
1 U2)(U

T
2 U2)

−1(4.7)

U2 = (AV2 − U1V
T
1 V2)(V

T
2 V2)

−1(4.8)

We can find a k-topic NMF using these update rules
by doing projected ALS k times; we store each new
topic that we generate as additional columns of the
matrices U1 and V1 and then find the next topic by
doing projected ALS again using Equations (4.7) and
(4.8). We call this procedure sequential ALS because we
are finding our NMF as a sequence of individual topics
rather than as a block of topics. The full algorithm for
sequential ALS is given in Algorithm 3.

A similar procedure was previously proposed in [7],
where the author uses it as part of a method for
generating a high-rank NMF in order to reconstruct
missing data. The article in [7] does not use any means
of ensuring sparsity in the resulting NMF, however,
which would be necessary for the proposed algorithm
to be used successfully on realistically large data sets.

Figure 7 shows the results of enforcing sparsity
column by column and the results of using sequential
NMF for the same Wikipedia data matrix that was used
to produce Table 1. Both methods produce an even
distribution of nonzero entries among the columns of
our matrices. Column-wise sparsity enforcement yields
good topic terms, and sequential ALS yields good topic
terms with the exception of topic 4. This behavior is
consistent with what we have observed for the sequential
ALS algorithm. While the algorithm often produces
good topic terms, it is less robust than the typical



Algorithm 3 Sequential ALS NMF

Input: data matrix A ∈ R
n×m, initial guess U0 ∈

R
n×k2 , maximum NNZ(U) tu and maximum NNZ(V)

tv, topics per block k2, number of blocks η (total number
of topics k = η × k2)
Output: Approximation UV T ≈ A, U ∈ R

n×k,
V ∈ R

m×k

START: Find U1 ∈ R
n×k2 and V1 ∈ R

m×k2 such that
U1V

T
1 ≈ A using Algorithm 2, using U0 as initial guess.

For i = 2 to η

Set U2 = U0

Do until convergence:

1. Find V2 using Equation (4.7), and set
negative entries of V2 to zero.

2. Sort nonzero entries of V2, keep only tv
largest nonzeros in V2

3. Find U2 using Equation (4.8), and set
negative entries of U2 to zero.

4. Sort nonzero entries of U2, keep only tu
largest nonzeros in U2

end do

Append the column vectors of U2 and V2 to the
matrices U1 and V1 respectively, increasing their
rank by k2: U1 = [U1 U2], V1 = [V1 V2].

end for

Output U = U1, V = V1

END

projected ALS is. Figure 8 shows the accuracy of the
NMF document topics when we use sequential ALS and
column by column sparsity enforcement on the PubMed
dataset, as measured by using Equation (3.3). By this
measure, both methods produce document clusters that
are approximately as accurate as the document clusters
produced when we use the unmodified Algorithm 2.

In order to compare the performance of sequential
NMF and column-wise sparsity enforcement, Figure 9
shows the time required for 100 ALS iterations for find-
ing a five-topic NMF for the PubMed journal dataset,
using normal projected ALS NMF with sparsity enforce-
ment, projected ALS NMF with column-wise sparsity
enforcement, and sequential ALS. Enforcing sparsity for
each column individually takes longer than doing so for
the entire matrix at once, as we would expect when us-
ing sparse matrix formats. Sequential ALS is quite a bit
faster than the other two methods. This result is not
surprising, as sequential ALS does not require the use

Sparsity Enforcement with Even Nonzero
Distribution

Enforce Sparsity by Column
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

government proteins electrons album jewish
party protein electron band jews
war cells atoms music judaism

president cell atom albums hebrew
election dna hydrogen songs torah

Enforce Sparsity with Sequential ALS
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

government city album film game
war population band church games
party airport music empire players

military census albums country team
soviet county songs united league

Figure 7: Top five terms for each of five topics from
Wikipedia data. This time we enforce sparsity for
each column individually or by using sequential topic
generation, with a limit of 10 nonzero entries per topic
(for a total of 50 nonzero entries in the U matrix).
Compare with Table 1; here our topic terms are evenly
distributed.

Document Clustering Accuracy with Sequential

and Column-wise Topic Sparsity
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Figure 8: Mean document clustering accuracy as mea-
sured by Equation (3.3) when calculating a five-topic
NMF of the PubMed dataset by using either Algorithm
3 or Algorithm 2 with sparsity enforced for each column
of U and V individually.

of a matrix inverse when U2 and V2 of Equations (4.7)
and (4.8) have rank 1, as they do here; in that case, the
inverse amounts to floating point division. Despite indi-
cations that sequential ALS provides less coherent term
topics than the regular ALS NMF, this improvement in
runtime suggests that it bears further investigation.

5 Conclusion

In this article, we described a method to enforce spar-
sity in the computation of the NMF of a potentially
large dataset. By setting the level of sparsity in our
matrices that we desire at each iteration of alternating
least squares, we can substantially reduce the memory
resources that are required to compute NMF without
sacrificing additional compute resources. In spite of the



Time Scaling for Sparsity Enforcement
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Figure 9: Time required for 100 ALS iterations when
finding a 5 topic NMF for the PubMed dataset. Results
are shown using sparsity enforcement for the whole U
and V matrices at once, for each column of U and V
individually, and for columns of U and V generated
sequentially. For the normal and column-wise NMF
results, 100 projected ALS iterations are performed. For
the Sequential ALS NMF, 20 iterations are performed
for each of 5 topics that are generated, for a total of 100
ALS iterations.

simplicity of the proposed approach, our experiments in-
dicate that the algorithm converges at least as quickly
and reliably as regular, dense projected ALS and that
the NMF topic models that it produces are similarly
accurate.

Using this method, we can produce an NMF with
matrices of fairly extreme sparsity, relatively inexpen-
sively. In doing so we find that we produce NMF topic
models with very unevenly distributed terms and docu-
ments among the topic clusters. We can produce topic
models with perfectly evenly distributed topic terms
and documents by enforcing sparsity for each topic in-
dividually. If we do this directly by enforcing sparsity
for each column of U and V individually, then we find
that we produce good term topics at the cost of sacri-
ficing performance resulting from the slowdown caused
by accessing sparse matrix formats column by column.
If we do this by converging each topic sequentially, we
produce quality term topics less reliably but with a con-
siderable improvement in speed. Improving these tech-
niques so that we do not have to sacrifice computation
time or topic quality is a subject of continuing research.
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