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Abstract—Scalable sparse LU factorization is critical for effi-
cient numerical simulation of circuits and electrical power grids.
In this work, we present a new scalable sparse direct solver
called Basker. Basker introduces a new algorithm to parallelize
the Gilbert-Peierls algorithm for sparse LU factorization. As
architectures evolve, there exists a need for algorithms that
are hierarchical in nature to match the hierarchy in thread
teams, individual threads, and vector level parallelism. Basker is
designed to map well to this hierarchy in architectures. There is
also a need for data layouts to match multiple levels of hierarchy
in memory. Basker uses a two-dimensional hierarchical structure
of sparse matrices that maps to the hierarchy in the memory
architectures and to the hierarchy in parallelism. We present
performance evaluations of Basker on the Intel SandyBridge
and Xeon Phi platforms using circuit and power grid matrices
taken from the University of Florida sparse matrix collection and
from Xyce circuit simulations. Basker achieves a geometric mean
speedup of 5.91× on CPU (16 cores) and 7.4× on Xeon Phi (32
cores) relative to KLU. Basker outperforms Intel MKL Pardiso
(PMKL) by as much as 53× on CPU (16 cores) and 13.3× on
Xeon Phi (32 cores) for low fill-in circuit matrices. Furthermore,
Basker provides 5.4× speedup on a challenging matrix sequence
taken from an actual Xyce simulation.

I. INTRODUCTION

Scalable sparse direct linear solvers play a pivotal role
in the efficiency of simulation codes on many-core systems.
Current approaches process multiple columns with similar
nonzero structure (supernodes) with threaded Basic Linear
Algebra Subprograms (BLAS) [1]. The approach of using
BLAS with one-dimensional data layouts of these matrices
may not be able to extract enough parallelism when the
matrix has low fill-in or an irregular nonzero pattern, such
as matrices generated by Simulation Program with Integrated
Circuit Emphasis (SPICE). Therefore, a new type of solver
is needed that uses a hierarchical structures to leverage fine-
grain parallelism within the irregular nonzero pattern. In this
work, we present a new shared-memory sparse direct LU
solver, Basker, designed to use hierarchical data layouts that
exposes fine-grain parallelism and naturally fit the hierarchical
memory structure of most many-core systems. Basker is tar-
geted towards parallelizing the state-of-the-art Gilbert-Peierls
algorithm [2] for low fill-in problems and thereby becoming
the first parallel shared-memory solver to do so.

Sparse factorization of unsymmetric indefinite systems is
difficult due to the need for numerical pivoting for stability and

dynamic nonzero structure generated by such pivoting. Scaling
sparse LU therefore depends on efficiently finding concurrent
work inside this dynamic nonzero structure while providing
enough numerical stability. As a result, speedups achievable
for sparse factorization is far from ideal [3], [4]. Coefficient
matrices with low fill-in are particularly difficult, since the
existence of supernodes is limited. However, a hierarchical
structure can often be found in these matrices that can expose
multiple levels of parallelism.

Basker uses a hierarchy of two-dimensional sparse blocks
designed to exploit the nonzero structure that can be found
in a matrix from circuit/powergrid problems. These blocks
can be found using traditional ordering techniques, such as
block triangular form [5] and nested-dissection ordering [6].
This hierarchy of two-dimensional sparse blocks design allows
Basker to accomplish two goals: (1) exploiting any fine-
grained parallelism found within or between blocks and (2)
designing a hierarchical data structure that fits the multiple
levels of memory hierarchy and divide data among threads
appropriately. As a result, Basker enables parallelization of
Gilbert-Peierls algorithm by allowing multiple threads work
simultaneously on a single matrix column.

In this work, we present the algorithm and data layouts
used by Basker to achieve hierarchical parallelism. Basker is
a implemented in templated C++11 with Kokkos [7]. Kokkos
is a package providing portability across multiple manycore
processors and device backends. The main contributions of
this work are:

• Parallelization of the Gilbert-Peierls algorithm;
• A method to expose hierarchical parallelism in sparse

matrices using two dimensional data-layouts;
• A new threaded sparse direct LU solver that outperforms

Intel MKL’s Pardiso [4] and KLU [5] while reducing
memory usage on matrices with low fill-in;

• Empirical evaluation of Basker, KLU, and Pardiso on the
Intel Sandy Bridge and Xeon Phi architectures.

• Performance evaluation with 1000 matrices from a tran-
sient simulation performed by the Xyce circuit simulator

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of previous solver work. We then
introduce the hierarchically structured algorithm to extract par-
allelism from sparse matrices in Section III. Implementation
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choices are outlined in Section IV. Section V provides per-
formance results and comparisons with other solvers. Finally,
possible future improvements and a summary of our findings
are described in Section VI.

II. BACKGROUND AND RELATED WORK

This section provides a brief overview of background and
related work to the solution of the sparse linear system Ax =
b, where A is a large sparse coefficient matrix, x is the solution
vector, b is the given right-hand side vector.
Orderings. All sparse direct solvers use structural information
to improve performance and scalability. Coefficient matrices
are often reordered to limit fill-in, i.e., zeros becoming nonzero
during factorization, or cluster nonzeros into patterns that re-
veal dependencies in computation. Minimum degree orderings,
such as approximate minimum degree ordering (AMD), are a
type of ordering that is very efficient in reducing fill-in [8].
Nested-dissection (ND) [6] is another ordering based on the
graph(G) corresponding to a matrix, using G(A) when A
is symmetric and G(A+AT ) when A is unsymmetric. It is
commonly used to provide a tree-structure that can be used in
parallel factorizations while reducing fill-in.

If an unsymmetric matrix does not have the strong Hall
property, i.e., if every set of k columns has nonzeros in at
least k+1 rows, then the matrix can be permuted into a block
triangular form (BTF) where block submatrices in the lower
triangular part are all zeros. A coefficient matrix A permuted
by matrices P and Q into BTF has the form:

PAQ =


A11 A12 · · · A1k

A22

...
. . .

...
Akk

 .

This form is common in irregular unsymmetric systems,
such as those from circuit simulation [5]. In this form, only
submatrices on the diagonal (Aii) need to be factored resulting
in far less work, reduced memory usage, and a great deal
of parallelism. In addition to fill reduction, permuting the
matrix to limit pivoting by placing nonzeros on the diagonal is
common before computation [9]. Finding such a permutation
is done through finding a maximum cardinality matching of
a bipartite graph representation of the coefficient matrix [10].
However, nonzeros on the diagonal is only one half of the
issue; a variant that also tries to maximize the values on the
diagonal is often used. We will call this variant maximum
weight-cardinality matching ordering (MWCM) [10].
Sparse LU. We consider three popular solver packages,
namely SuperLU-Dist [9], Pardiso [4], and KLU [5], to
compare their design choices to Basker.

SuperLU-Dist is a distributed memory unsymmetric direct
solver [9] that uses a two-dimensional data layout and
avoids pivoting by using MWCM that maximizes the sum
of the diagonal element (MC64) [10]. In each block matrix,
SuperLU-Dist performs a supernodal based LU factorization.
However, supernodal methods have limitations such as a pivot

can only be chosen from inside a single supernode, fill-in must
be known before hand, and scaling is limited by the size of
supernodes [11]. A shared-memory version SuperLU-MT [11]
that uses a one-dimensional data layout exists.

Pardiso [4] is a shared-memory, supernodal, sparse LU
solver that uses a number of techniques to achieve high per-
formance. These techniques include using a left-right looking
strategy to reduce synchronization and provide three levels of
parallelism, namely from the etree, hybrid (left-right) at top
levels, and pipelining parallelism. We compare against Intel
MKL version of Pardiso and SuperLU-MT in Section V.

KLU [5] is a serial direct solver, based on the Gilbert-Peierls
algorithm, and the closest to our effort in algorithmic terms.
It achieves good performance by permuting the matrices first
into BTF. It then uses the Gilbert-Peierls algorithm to discover
the nonzero pattern due to fill-in during numeric factorization
in time proportional to arithmetic operations (Algorithm 1 [2]).
However, KLU has no method to factor any part in parallel.
Basker was designed to replace KLU for circuit simulation
problems by adding parallel execution both between blocks
and within blocks of the BTF. It is part of Trilinos library
through both Amesos2 [12] and ShyLU [13] packages.

Algorithm 1 Gilbert-Peierls Algorithm
1: //Input A. Output L,U, P .
2: for all k columns of A do
3: Find topological order of fill-in pattern of A(:,k) with depth-first search

→ patternk

4: for all j ∈ patternk do
5: A(j + 1 : n, k) = A(j + 1 : n, k)− L(j + 1 : n, j)A(j, k)
6: end for
7: Select pivot from A(:, k)→ P (k)
8: Copy from A(:, k) to L and U based on P
9: end for

The primary features of Basker are: (1) It is a nonsupernodal
factorization; (2) It uses a hierarchical data layouts; (3) It
uses both MWCM and pivoting; (4) It is a templated C++
solver using a manycore portable package supporting multiple
backends such as OpenMP and PThreads.

III. BASKER ALGORITHM

This section introduces the parallel symbolic (pattern only)
and numeric (pattern and values) factorization algorithms in
Basker. The nonzero pattern of the coefficient matrix and
the data-layout,i.e., how matrix entries are stored, determines
not only the work but also the available parallelism to
a sparse factorization. Serial/multithreaded LU factorization
codes traditionally utilize a flat one-dimensional (1D) layout
of blocks where blocks contain nonzeros in rows/columns
stored contiguously. These blocks are derived from some
ordering of the matrix (e.g., See Figure 1(a)). However, using
only 1D layouts limit the algorithms from exploiting sparsity
patterns within and between block structures. For instance, a
1D multithreaded supernodal factorization’s speedup will be
limited by the threaded BLAS on a set of columns (rows)
called separators (e.g, the block column 7 in Figure 1(a)).
When these columns are not dense, like in circuit/powergrid



problems the use of BLAS is limited leading to a serial
bottleneck in the separators. Due to this observation, Basker
uses a variety of reordering methods, such as BTF and ND,
to derive a hierarchy of two-dimensional sparse blocks. This
reordering allows Basker to fit the irregular nonzero pattern
into a hierarchy of blocks that fit the memory structure of
modern nodes and allow an algorithm that can utilize the 2D
layouts (called 2D algorithm). 2D algorithms break columns
into multiple submatrices (e.g., See Figures 2,3(a)) allowing
for multiple threads to work on a column that would have been
serial in a nonsupernodal method or efficiently use multiple
calls of serial BLAS.

In this work, we will focus on two levels of structures, i.e.,
BTF and ND. We leave the third level (supernodes) within
the 2D blocks for future extensions. BTF provides both the
coarse structure for the whole matrix, and the fine structure
for a collection of submatrices. ND provides the fine structure
for very large submatrices from BTF. The fine structure of ND
is used to arrive at a parallel 2D Gilbert-Peierls algorithm.

The notation used in this section is as follows. A submatrix
is given as Aij , where i and j are the indices in the row and
column in the two-dimensional block structure. The nonzero
pattern of a column (c) in a submatrix Aij is given as Aij(c).
We use C++ notation for comments in the algorithms.

(a) (b)

Fig. 1. (a) One-dimensional layout of an ND-structure/binary etree
structure. The block [A17A77] limits performance. The coloring provides one
assignment of threads to computation. (b) Dependency tree of one-dimensional
layout. Note the large top level nodes that must be factored by one thread.

A. Coarse Block Triangular Structure

Basker uses block triangular form (BTF) on the input matrix
to compute a coarse structure. It permutes the matrix based on
an ordering found from MWCM (Pm1) to ensure a non-zero
diagonal with large entries. A strongly connected components
algorithm is used next to reorder the matrix (Pc) such that each
component corresponds to a block diagonal. The reordered
matrix, i.e., PcPm1APc, produces a structure similar to that
in Figure 2(a). This form is common to matrices from several
domains, and is well studied [14]. Any of the large diagonal
blocks may or may not exist for a particular matrix.

In Figure 2(a), a two-dimensional structure with three
diagonal blocks is shown. As the multiple tiny subblocks in
D1 and D3 provide enough natural parallelism (for factoring
each block), Basker uses this ordering derived from BTF as
their second level structure as well. The submatrices from
this second level structure are handled using a Fine Block

(a) (b)

Fig. 2. (a) Coarse structure, BTF (PcPmAPT
c ). The first level allows

Basker to reduce factorization work by only factoring the diagonal blocks.
(b) Representation of fine BTF structure, i.e., D1 and D3. Coloring of the
blocks suggest one possible mapping of thread and blocks.

Triangular Structure based method. In contrast, D2 is very
large without an opportunity to expose parallelism. We will
use ND to reorder D2 further and use Fine Nested-Dissection
Structure based method.

B. Fine Block Triangular Structure

A typical representation of fine BTF structure, such as D1

and D3, is given in Figure 2(b). The substructure is easily
dealt with as the subblocks are independent of each other.
Therefore, the sparsity pattern and factorization of each sub-
block (Aii) can be computed concurrently. A two-dimensional
sparse block structure is used here. The off-diagonal blocks
are “partitioned” in a manner to help the sparse matrix-vector
multiplication when solving for a given right-hand side vector.
They could further be split, however they tend to be very
sparse as they retain the original nonzero pattern.
Parallel Symbolic Factorization. The symbolic factorization
algorithm for the fine BTF block is shown in Algorithm 2. It
is embarrassingly parallel over the blocks. We reorder each
diagonal submatrix using AMD (Line 2) for fill-reduction.
Next, we find the number of nonzeros of each column and
estimate the number of floating-point operations required to
factor (Line 3). Using the number of floating-point operations,
Basker assigns the submatrices among the threads and memory
for LU factors can be allocated. The colors in Figure 2(b)
provides one such assignment for four threads.

Algorithm 2 Fine BTF Symbolic Factorization
1: for all subblocks on diagonal (Aii) IN PARALLEL do
2: Compute AMD order on Aii → Pamd

3: Compute column count and number of operations of PamdAiiP
T
amd

4: end for
5: Partition subblocks equally among p threads based on number of

operations
6: for all p threads do
7: Initialize LU structure
8: end for

Parallel Numeric Factorization. After symbolic factoriza-
tion, the numeric factorization uses the same thread mapping
to submatrices to call sparse LU factorization using Gilbert-
Peierls algorithm. The algorithm is not shown as it is a simple
parallel-for loop over the diagonal submatrices.



C. Fine Nested-Dissection Structure

A subblock, such as D2 in Figure 2(a) could be too large
to be factored in serial as in the above BTF fine structure
method. This block could easily dominate the factorization
time, but there is no simple way to factor this block with
multiple threads with natural ordering. This block constitutes
an average of 68.4% of the total matrix size in our problem test
suite (see Section V). As observed before, using a 1D layout
(Figure 1(a)) does not provide enough parallelism. Instead we
reorder this block even further into finer 2D blocks. Using this
structure,we design the first parallel Gilbert-Peierls algorithm
so multiple threads can work on a single column.

The nested-dissection ordering is used in order to discover
smaller independent subblocks to factor in parallel. Basker
first permutes D2 using a MWCM (Pm2) to find the locally
best matching and reduce the need to pivot. Next, Basker
computes the ND ordering on the graph of D2+DT

2 with a
ND tree. Basker currently limits the number of leafs in the
ND tree to the number of threads available (p). We note that
increasing the number of leafs in the ND tree may provide
smaller cache friendly submatrices, but would limit the amount
of pivoting allowed. This trade-off is not explored in this paper.
Additionally, current implementations of ND provide only a
binary tree, and therefore, Basker is limited to using a power of
two threads. The ND ordering (Pnd) results in PndPm2D2P

T
nd,

and the reordered matrix is given in Figure 3(a) for four
threads. This two-dimensional structure of sparse matrices is
used to store both the reordered matrix and factorization (LU ).
The colors suggest one possible layout where blocks of a
particular color are shared by a thread.
Dependency Tree. Basker requires a method to map the ND
structure to threads. One option is to use a task-dependency
graph, and use a tasking runtime. However, Basker is currently
limited to using data-parallel methods (parallel-for) due to
dependence on Kokkos and integration requirements with
Trilinos and Xyce. Basker does this by transforming a task-
dependency graph into a dependency tree that represents level
sets that can be executed in parallel.

Figure 3(b) provides a general dependency tree used by both
symbolic and numeric factorization for the two-dimensional
matrix in Figure 3(a), and is read from the bottom-up. This
tree represents two levels of dependency. The first level
dependencies are between matrices within a node. Within each
node, matrices listed in a particular row depend on matrices
listed in rows below in the same node. For example, L31

depends on having LU11. The second level dependencies are
between nodes and are represented with arrows. The levels in
the dependency tree is denoted as treelevel, and treelevel
will always be used for only the dependency tree (not the
etree or ND tree). Nodes are colored to match the thread
mapping in Figure 3(a). Note that this tree is different from
a ND tree, and expresses the concurrency in the hierarchical
layout so Basker can use level scheduling. One can easily see
the difference with Figure 1(b) where the root node represents
the entire LU77 block column, whereas in the new dependence

tree LU17 . . . LU67 are distributed to multiple threads and the
bottleneck in the root node is much smaller.

(a)

(b)

Fig. 3. (a) Matrix in nested-dissection ordering of D2. Each submatrix is
stored by Basker as a sparse matrix. One possible thread layout indicated
by color. Note, LU will be stored in the same two-dimensional structure.
(b) Dependency tree based off ND structure. The dependency is read from
the bottom up, both within and between nodes. The colors represent a static
mapping of threads similar to those in (a).

Parallel Symbolic Factorization. Basker now needs an accu-
rate estimate of the nonzero count for the two-dimensional LU
factors found in parallel (Algorithm 3). A parallel symbolic
factorization is crucial in a multithreaded environment as
repeated reallocation for LU factors would require a system
call, which is a performance bottleneck when done in a parallel
region. We do not form the etree of the whole matrix and
instead build the appropriate portions of the etree in different
threads.

Basker first processes the bottom two levels in the depen-
dency tree (Line 2-9) to obtain an accurate nonzero count.
The bottom most level of the dependency tree, i.e., treelevel
-1, has submatrices corresponding to A11, A22, A33, A44. First,
we find both the nonzero count per column and the etreei [15]
of either etree(Aii+AT

ii) or etree(AiiA
T
ii) (depending on

symmetry and pivoting options) in parallel (Line 5). Second,
the nonzero counts for remaining Lik in the node at treelevel
-1 is found (Line 6). We note that

Lik(c) = Aik(c)

c−1⋃
t=1

{Lik(t)|t ∈ Uii(c)} [16].

Also, pivoting while factorizing Aii will not affect Lik(c) as
k > i by the fill-path theorem [17]. Therefore, Basker can
use the above expression to find the nonzeros counts of the



lower-diagonal submatrices. Moreover, we find a data structure
lest with the maximum and minimum row index for each
column c that will be used for estimating nonzero counts
in higher treelevel. At treelevel 0, nonzero counts for the
upper-diagonal submatrices, i.e., Uki, can be found (Line 8).
As Uki(c) may depend on the pivoting on Aii the etreei
must be used. For each column (c), the method counts the
nodes encountered starting from each nonzero in the column
of Aki(c) to the least common ancestor of any nonzero already
explored, where the least common ancestor of two nodes is
the least numbered node that is the ancestor of both. A data
structure uest is returned with the maximum and minimum
row index for each row.

Algorithm 3 Fine ND Symbolic Factorization
1: //treelevel = -1 to 0. Find etree and nonzero count of submatrices on

diagonal of lowest level in ND tree and lower half.
2: for all p threads IN PARALLEL do
3: Map p→ i
4: //treelevel = -1
5: Compute column count and etreei of LUii

6: Compute column count of lower off-diagonal Lki ∀k → lestk
7: //treelevel = 0
8: Find column count of upper off-diagonal Uik ∀k → uestk
9: end for

10: //Move up dependency tree
11: for all treelevel = 1 : log2(p) do
12: for all nodes at treelevel IN PARALLEL do
13: Map node→ j
14: Compute column count of diagonal submatrics corresponding to

separators LUjj using lestj and uestj
15: Compute column count of lower off-diagonal submatrices corre-

sponding to separators Lkj using lestk and uestj → lestk
16: Compute column count of upper off-diagonal submatrices corre-

sponding to separator Ujk using lestj and uestk → uestk
17: end for
18: end for

The estimated nonzero counts for submatrices in the higher
levels of the dependency tree are found using the estimates
lest and uest by looping over the remaining treelevels (Line
11). At each treelevel, all the nodes on the level are handled
by finding the nonzero count of the diagonal subblock, e.g.,
LU33 (Line 14). Now,

Ljj(c) = Ajj(c)

c−1⋃
t=1

{Ljj(t)|t ∈ Ujj(c)}
j⋃

k=1

LjkUkj(c)

for these blocks, where LjkUkj(c) is the pattern after the
multiplication of LjkUkj(c). Basker estimates an upper bound
of LjkUkj(c) using the lest and uest by assuming the column
is dense between the minimum and maximum if lest and uest
overlap for the column. We find that this is a reasonable upper
bound and cheaper than storing the whole nonzero pattern.
Finally, the column count of any off-diagonal submatrices,
such as L73 and U37, can be computed (Line 15 and 16).
The column count for these submatrices use the upper bound
as well (i.e., fill-in estimated with lest and uest).
Parallel Numeric Factorization. This subsection describes
the parallel left-looking Gilbert-Peierls algorithm (Algorithm
4). To facilitate understanding, we explain the algorithm using

a series of block diagrams of the execution in Figure 4.
Blocks that are not colored gray represent submatrices that
are active/used at a stage, and the colors correspond to the
thread mapping as in Figure 3(b).

Algorithm 4 Fine ND Numeric Factorization
1: //treelevel=-1
2: for all p threads IN PARALLEL do
3: Map p→ i where i is a leaf node
4: Factor diagonal submatrices Aii → LUii

5: Factor lower off-diagonal submatrices Aki → Lki∀k
6: end for
7: Sync all threads
8: //Factor remaining submatrices columns
9: for all slevel = 1 : log2(p) do

10: Map slevel→ j
11: for all p threads IN PARALLEL do
12: Map p→ i where i is a leaf node
13: //treelevel=0
14: Factor upper off-diagonal submatrices Aij → Uij

15: for all treelevel = 1 : slevel-1 do
16: Map sublevel→ l
17: Sync select threads
18: Reduce contributions from previously found Ul1j , Ul2j into

upper off-diagonal submatrix Alj → Âlj

19: Sync select threads
20: Factor upper off-diagonal submatrices Âlj → Ulj

21: end for
22: //treelevel=slevel, lower half of column
23: Sync select threads
24: Reduce contributions from previously found Ul1j , Ul2j into diag-

onal submatrix Ajj → Âjj

25: Sync select threads
26: Factor Âjj → LUjj

27: Sync select threads
28: Factor lower off-diagonal matrices Akj → Lkj∀k
29: end for
30: Sync all threads
31: end for

Submatrices are factored based on the dependency tree
in Figure 3(b) in a column-by-column manner. Figure 4(a)
starts with the submatrices in treelevel -1. Basker factors
the submatrices on the diagonal that have no dependencies,
i.e., computing LUii(c) (Line 4). This factorization uses the
Gilbert-Peierls algorithm similar to Algorithm 1 in parallel on
each submatrix. Next, the just computed column Uii(c) is used
to compute column c in the lower off-diagonal submatrices in
the node at treelevel -1, e.g., L31(c) and L71(c) (Line 5).
This is done by discovering the nonzero pattern as a result
of parallel sparse matrix-vector multiplication. At treelevel
-1, a level synchronization between all threads is needed
before moving to next treelevel. Note that Basker need not
necessarily sync all threads if done in a task parallel manner.

The nodes in the dependency tree starting at treelevel = 0
has a subtle but important distinction. All submatrices in a tree
node are not computed before moving to next node as in the
symbolic factorization. In contrast, only those submatrices in
a tree node corresponding to a particular column slevel are
computed (Line 9). The slevel indicates multiple passes over
the dependency tree (bottom up until treelevel). Figures 4(c)-
4(g) show the block diagram of slevel = 2 with treelevel =
0, 1, and 2, where the red line indicates the column being
factored. Submatrices at this treelevel = 0 (Figure 4(c)),



(a) (b) slevel 1 (c) Last separator column, slevel 2 (d)

(e) (f) (g)

Fig. 4. Workflow of Algorithm 4 (Numeric Factorization for Fine ND structure). The subblock forming the lower triangle are subblocks of L and the red
line indicates column of A being factored. Note, the only serial bottleneck, i.e., a single colored block, is the bottom right most block in (g).

e.g., U17, are factorized in parallel using a method similar
to Algorithm 1 except that Lii is used for the backsolve (Line
14).

Basker continues up the dependency tree with a loop
over treelevel (Line 15). At each new level, Basker must
synchronize specific threads in order to combine their results
(Line 18). Figure 4(d) shows the blocks used in the reduction.
The reduction has two phases. The first phase is multiple
parallel sparse matrix-vector multiplication of the matrices
colored in L and the column of U(c) just found (the red
line in the colored blocks). The second phase is subtracting
each threads’ matrix-vector product from the corresponding
blocks in A (where gray blocks in the column are A37(c),
A67(c) and A77(c)). For example, one thread computes the
reduction results in Â37(c) = A37(c)−L31U17(c)−L32U27(c).
Â67(c) and Â77(c) are computed in parallel as well. Once
the reduction is complete, the newly updated submatrix at
treelevel can be factored similar to other upper off-diagonal
matrices (Line 20). Figure 4(e) provides a visual representation
of this step. At the last step, when treelevel = slevel = 2, at
the root, there is one reduction needed to the already computed
Â77(c) (Line 24, Figure 4(f)) and then a simple factorization
in the diagonal block can be computed (Line 26, Figure 4(g)).
This last factorization is the only serial bottleneck in the
algorithm.

In the more general case, when treelevel = slevel (Line 22)
and we are not at the root node (not shown in the figures),

there is no farther bottom-up traversal of the dependency tree.
This would have been true for the treelevel = slevel = 1 for
block column three in our example. In matrix terms, this means
that U(c) for a column has been computed and only the block
diagonal and L remain to be computed (e.g, L33(c), U33(c),
and L73(c)). This requires a reduction (Line 24) and factoring
the diagonal submatrix (Line 26) as before, but any lower off-
diagonal submatrices of L that remain, such as L73(c), need
to be factored as well (Line 28).

IV. BASKER IMPLEMENTATION

Data Layout. Basker uses a hierarchy of two-dimensional
sparse matrix blocks to store both the original matrix and LU
factors. The 2D structure is composed of multiple compressed
sparse column (CSC) format matrices. Parallelism must be
extracted from between blocks in the BTF structure and
within large blocks in order to achieve speedup on low fill-
in matrices. In particular, a hierarchical structure needs to
be exploited to reveal more parallelism. Additionally, this
also breaks the problem into fine-grain data structures that
better fit the structure of memory in modern many-core nodes.
Basker implements this by building this structure of C++
classes during the symbolic factorization after applying the
aforementioned orderings.
Synchronization. Light weight synchronizations are needed to
allow multiple threads to work on a single column in Basker.
There are multiple places where these synchronizations need
to happen in Basker, and they are marked in Algorithm 4.



The number of threads that need to synchronize depends on
location and iteration in the algorithm. For instance, all threads
need to synchronize moving from factoring leaf nodes and
parent nodes, but only two threads need to sync in separator
columns.

A traditional data-parallel approach launches parallel-for
over a set of threads, and these threads rejoin the master
only after the end of the loop. However, if synchronization
takes place between all threads at every level, the overhead
would be too high. In particular, the total time spent for
synchronization in this manner for matrix G2 Circuit with 8
cores is 11% of total time. Therefore, Basker uses a different
mechanism to synchronize between threads. This mechanism
is a point-to-point synchronization that utilizes writing to a
volatile variable where synchronization only happens between
two threads that have a dependency. Point-to-point synchro-
nization’s importance in the speedup of sparse triangular solve
has been shown before [18]. Using this method, Basker is
able to reduce synchronization overhead to 2.3% (∼ 79%
improvement) of total runtime for G2 Circuit.

V. EMPIRICAL EVALUATION

We evaluate Basker against Pardiso MKL 11.2.2 (PMKL),
SuperLU-MT 3.0 (SLU-MT), and KLU 1.3.2 on a set of sparse
matrices from circuit and powergrid simulations in terms of
memory and runtime. Our MWCM implementation is similar
to MC64 bottle-neck ordering [10], unlike SuperLU-Dist’s
product/sum based MC64 ordering. Scotch [6] 6.0 is used to
obtain the ND ordering. Furthermore, we compare Basker’s
performance on a sequence of 1000 matrices from circuit
simulation of interest.

A. Experimental Setup

System Setup. We use two test beds for our experiments.
The first system has two eight-core Xeon E5-2670 running at
2.6GHz (SandyBridge). The two processors are interconnected
using Intel’s QuickPath Interconnect (QPI), and share 24GB of
DRAM. The second system has an Intel Xeon Phi coprocessor
with 61 cores running at 1.238GHz and 16GB of memory.
Since Basker requires a power of two threads, we only test up
to 32 cores as 64 threads would oversubscribe the device. All
codes are compiled using Intel 15.2 with -03 optimization.
Test Suite. Basker is evaluated over a test suite of circuit and
powergrid matrices taken from Xyce and the University of
Florida Sparse Matrix Collection [19]. These matrices vary in
size, sparsity pattern, and number of BTF blocks. Additionally,
these matrices vary in fill-in density, i.e., |L+U |

|A| where |A|
is the number of nonzeros in A. We note that fill-in can be
< 1 when using BTF, since only the diagonal subblocks of
A are factored to LU . In Davis and Natarajan [5], coefficient
matrices coming from circuit simulation generally have lower
fill-in density than those coming from PDE simulations, i.e.,
|L+U |
|A| < 4.0. Matrices with lower fill-in tend to perform better

using a Gilbert-Peierls algorithm than a supernodal approach.
For fairness, we include seven matrices with fill-in density
larger than 4.0. Table I lists all matrices sorted by increasing

TABLE I
MATRIX TEST SUITE. n REPRESENTS DIMENSION OF MATRIX, |.| IS THE

NUMBER OF NONZEROS IN THE MATRIX. THE MINIMUM NUMBER OF
NONZEROS BETWEEN THE FACTORS OF BASKER AND PMKL IS IN BOLD. *

INDICATES SANDIA/XYCE MATRICES, + INDICATES POWERGRIDS.

KLU Pardiso Basker BTF BTF KLU
Matrix n |A| |L+U | |L+U | |L+U | % blocks |L+U|

|A|
RS b39c30+ 6.0E4 1.1E6 6.9E5 6.3E6 6.9E5 100 3E3 0.6
RS b678c2+ 3.6E4 8.8E6 5.8E6 5.9E7 5.8E6 100 271 0.7

Power0*+ 9.8E4 4.8E5 6.4E5 9.1E5 6.4E5 100 7.7E3 1.3
Circuit5M 5.6E6 6.0E7 6.8E7 3.1E8 7.4E7 0 1 1.3
memplus 1.2E4 9.9E4 1.4E5 1.3E5 1.4E5 0.1 23 1.4
rajat21 4.1E5 1.9E6 2.8E6 4.9E6 2.8E6 2 5.9E3 1.5
trans5 1.2E5 7.5E5 1.2E6 1.3E6 1.2E6 0 1 1.6

circuit 4 8.0E4 3.1E5 5.0E5 5.8E5 5.1E5 34.8 2.8E4 1.6
Xyce0* 6.8E5 3.9E6 4.7E6 3.8E7 4.8E6 85 5.8E5 1.8
Xyce4* 6.2E6 7.3E7 4.5E7 5.0E7 4.5E7 12 7.5E5 2.0
Xyce1* 4.3E5 2.4E6 5.1E6 5.6E6 5.1E6 21 9.9E4 2.4

asic 680ks 6.8E5 1.7E6 4.5E6 2.9E7 4.5E6 86 5.8E5 2.6
bcircuit 6.9E4 3.8E5 1.1E6 1.1E6 1.1E6 0 1 2.8
scircuit 1.7E5 9.6E5 2.7E6 2.7E6 2.7E6 0.3 48 2.8
hvdc2+ 1.9E5 1.3E6 3.8E6 3.0E6 3.8E6 100 67 2.8

Freescale1 3.4E6 1.7E7 7.1E7 5.6E7 6.8E7 0 1 4.1
hcircuit 1.1E5 5.1E5 7.3E5 6.7E5 7.1E5 13 1.4E3 6.9
Xyce3* 1.9E6 9.5E6 7.6E7 4.3E7 7.7E7 20 4.0E5 9.2

memchip 2.7E6 1.3E7 1.3E8 6.5E7 9.4E7 0 1 9.9
G2 Circuit 1.5E5 7.3E5 2.0E7 1.3E7 2.0E7 0 1 27.7

twotone 1.2E5 1.2E6 4.8E7 2.7E7 4.7E7 0 5 39.9
onetone1 3.6E4 3.4E5 1.4E7 4.3E6 1.2E7 1.1 203 40.8

fill-in density measured using KLU. The percent of matrix
rows in small independent diagonal submatrices (Fine BTF
Structure) is shown as BTF%. The total number of BTF blocks
is also shown. A double line divides matrices with fill-in
density higher than 4.0. The test suite is a mix of matrices
with very different properties to exercise different portions of
Basker.

B. Memory Usage

We now compare memory requirements in terms of |L+U |.
Table I lists the number of nonzeros in L+U for KLU,
PMKL, and Basker. We do not report results for SLU-MT
due performance considerations (shown below). The nonzeros
reported for PMKL and Basker are from a run using 8 cores
on SandyBridge. We note that this number varies slightly for
Basker depending on number of cores. The best result between
PMKL and Basker is in bold. We observe that Basker provides
factors with less nonzero entries for most matrices with fill-in
density < 4. This reduction can be as high as an order of
magnitude for the matrix RS b678c2+. This is the result of
using the BTF structure and using fill reducing ordering on
the subblocks. However, PMKL uses slightly less memory on
matrix with fill-in density > 4. The additional memory used
by Basker on these matrices is far less than the additional
memory used by PMKL on the first group of matrices.

C. Performance

We first compare the general performance of the chosen
sparse solver packages. Only the numeric time is compared,
since the symbolic factorization of both Basker and PMKL is
limited by finding ND ordering. Figure 5 gives the raw time
on Intel SandyBridge for a selection of six matrices. These



six matrices are selected due to their varying fill-in density,
and ordered increasing from a density of 1.3 to 9.2. We first
observe that PMKL is as good or better than SuperLU-MT.
Similar results have been reported in the past [20] in compar-
ing against SuperLU-Dist for circuit problems. Additionally,
Basker performs better than other solvers in 5/6 matrices. For
this reason, we only perform additional comparison to PMKL.
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Fig. 5. Comparison of Basker, PMKL, and SLU-MT raw time (seconds) on
SandyBridge. SLU-MT only does better on Power0 and fails on rajat21.

D. Scalability

In this section, we focus on the scalability of the
numeric factorization phase of Basker and PMKL on
the two architectures. We use the relative speedup to
KLU as that is the state-of-the-art sequential solver, i.e.,
Speedup(matrix, solver, p) = Time(matrix,KLU,1)

Time(matrix,solver,p) , where
Time is the time of the numeric factorization phase, matrix
is the input matrix, solver is either Basker or PMKL, and p
is the number of cores.
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Fig. 6. Speedup of Basker and PMKL relative to KLU on Intel SandyBridge.
KLU time is given in the title of each figure (a) and Xeon Phi (b) on six
matrices that vary in fill-in density from low to high (left to right). Both
Freescale1 and Xyce3 are considered to have high fill-in for Basker.

Figure 6(a) shows the speedup achieved for these
six matrices on SandyBridge platform. We provide
Time(matrix,KLU, 1) in the title of each figure. We
observe that Basker can achieve up to 11.15× speedup
(hvdc2) and outperform PMKL in all but one case (Xyce3)
that has a high fill-density of 9.2. Moreover, we observe that
PMKL has a speedup less than 1 in serial for four problems

demonstrating the inefficiency of a supernodal algorithm to a
Gilbert-Peierls algorithm for matrices with low fill-in density.
By adding more cores, PMKL is not able to recover from
this inefficiency and reaches a max speedup of 2.34× on the
first four problems. The reason for this is due to semi-dense
columns that Basker is able to avoid factoring. PMKL does
factor Xyce3 faster with its high fill-in density, but Basker
scales in a similar way.

The relative speedup of the same six matrices on the Intel
Xeon Phi are shown in Figure 6(b). Again, KLU time is
provided in each figure’s title. On Intel Xeon Phi, Basker is
able to out perform PMKL on four out of the six matrices.
Basker achieves a 10.76× maximum speedup (Power0) on
these six matrices and PMKL achieves 63×maximum speedup
(Xyce3). We observe that any overhead from using a Gilbert-
Peierls algorithm on a matrix with high fill-in density is
magnified by the Intel Phi. This is exposed and seen in both
Freescale1 and Xyce3. One possible reason for this is that the
submatrices in the lowest level of the hierarchical structure
are too large to fit into a core’s L2 cache (512KB). Basker
currently makes the submatrices as large as possible to allow
for better pivoting. However, Basker still achieves speedups
higher than PMKL on the four matrices with low fill-in density.

As a next step, we compare the performance on the whole
test suite. On SandyBridge, the geometric mean of speedup
for all the matrices with Basker is 5.91× and with PMKL is
it 1.5× using 16 cores. On 16 cores, Basker is faster than
PMKL on 17/22 matrices. The five matrices PMKL is faster
on have a high fill-in density. On the Xeon Phi, the geometric
mean speedup with Basker is 7.4× and with PMKL it is
5.78× using 32 cores. On 32 cores, Basker is faster than
PMKL on 16/22 matrices. This includes the same matrices
as on the SandyBridge except Freescale1. The reason for such
a high speedup for PMKL on Xeon Phi is again its higher
performance on high fill-in density matrices.

While the geometric mean gives some idea on relative
performance, we use a performance profile to gain an under-
standing of the overall performance over the test suite. The
performance profile measures the relative time of a solver on
a given matrix to the best solver. The values are plotted for
all matrices in a graph with an x-axis of time relative to best
time and a y-axis as fraction of matrices. The result is a figure
where a point(x,y) is plotted if a solver takes no more than x
times the runtime of of the fastest solver for y problems.

Figure 7(a) shows the performance profile of Basker,
PMKL, and KLU in serial on SandyBridge. This shows a
baseline of how well each method does in serial. We observe
that Basker is better on ∼ 77% of the problems, while the
supernodal method of PMKL is within 5× of the the best
solver for 77% of the problems. However, PMKL is the better
solver for ∼ 34% of the problems. Despite having very similar
algorithms, Basker is able to slightly beat KLU. This slight
difference is because of the difference in orderings and the
use of Kokkos memory padding.

The performance profile of the parallel solvers on Sandy-
Bridge (16 cores) is shown in Figure 7(b). Serial KLU is
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Fig. 7. Performance profiles of Basker and PMKL on Intel SandyBridge and Xeon Phi. A point (x,y) represents the fraction y of test problems within x×
of the best solver. (a) 1 SandyBridge Core. Basker is the best solver for almost 70% of the matrices and PMKL is the best solver for about 30%. (b) 16
SandyBridge Cores. Basker is the best solver for almost 80% of the matrices, while PMKL is the best solver for slightly more than 20%. (c)32 Phi Cores.
Basker is the best solver for over 70% of the matrices, while PMKL is the best solver for 40% of the matrices.

not included in this figure. Basker is the best solver for
∼ 75% of the matrices, and PMKL is within ∼ 5× of Basker
on ∼ 50% of the matrices. PMKL is the best solver for
∼ 30% of the matrices, which correspond to matrices with
high fill-in density. This demonstrates Basker scales well on
SandyBridge for low fill-in density matrices. On Intel Xeon
Phi with 32 cores, the performance profile is slightly different
(Figure 7(c)). Basker now is the best solver for 70% matrices,
and PMKL is within 6× of Basker for 70% of matrices. PMKL
is the best (or very close to the best) for ∼ 40% of the
matrices. One can observe Basker now does poorly on high
fill-in density matrices. A reason for that is the missing large
shared L3 to share data needed during the Basker’s reductions.

E. Comparison on Ideal Matrices

Next, we analyze how well Basker scales on low fill-in
density matrices, compared to how well the supernodal solver
PMKL scales on 2/3D mesh problems. This comparison allows
us to better understand if Basker achieves speedup for its ideal
input similar to PMKL on its ideal input. The other reason is
to see how well we can parallelize Gilbert-Peierls algorithm
for its ideal problems. We use a second test suite of matrices
for PMKL that come from 2/3D mesh problems in Table II.
Performance of PMKL on these matrices will be compared to
the performance of Basker on the six matrices of our primary
test suite with the lowest fill-in density.

TABLE II
2/3D MESH PROBLEMS TO TEST PMKL’S BEST PERFORMANCE.

Matrix n |A| |L+U | Description
pwtk 2.2E5 1.2E7 9.7E7 Wind tunnel stiffness matrix

ecology 1.0E6 5.0E6 7.1E7 5 pt stencil model movement
apache2 7.2E5 4.8E6 2.8E8 Finite difference 3D
bmwcra1 1.5E5 1.1E7 1.4E8 Stiffness matrix

parabolic fem 5.3E5 3.7E6 5.2E7 Parabolic finite element
helm2d03 3.9E5 2.7E6 3.7E7 Helmholtz on square

Figure 8(a) provides a scatter plot of the speedup for each
solver relative to itself over its ideal six matrices. A linear trend
line is shown for each set of solver speedups. Both solvers
achieve similar speedup trend on SandyBridge for their ideal

(a) (b)

Fig. 8. Basker and PMKL with on 6 ideal input matrices. (a) SandyBridge,
Basker is able to achieve a similar speedup curve as PMKL on 2/3D mesh
problems. (b) Intel Xeon Phi, Basker has a similar plot up to 16 cores as
PMKL. Fine-grain access causes imbalance at 32 cores.

inputs. This demonstrates that on systems with a large cache
hierarchy Basker is able to achieve so called state-of-the-art
performance on low fill-in density matrices. In Figure 8(b),
a similar plot is given for our Xeon Phi platform. This time
Basker has a slightly lower trend line starting at 16 cores. We
suspect this is due to both the size of the submatrices not fitting
into cache and time for the reduction. We plan to address both
these issues in future versions of Basker.

F. Xyce

Next, we consider the use of Basker on a sequence of
matrices generated during the transient analysis of a circuit.
Xyce is a transistor-level simulator that performs a SPICE-
style simulation of circuits, where devices and their intercon-
nectivity are transformed via modified nodal analysis into a set
of nonlinear differential algebraic equations (DAEs). During
transient analysis, these nonlinear DAEs are solved implicitly
through numerical integration methods. Any numerical inte-
gration method requires the solution to a sequence of nonlinear
equations, which in-turn generates a sequence of linear sys-
tems. A transient analysis can generate millions of coefficient
matrices with the same structure and significantly different
values. Each factorization may require a different permutation
due to pivoting for this reason. For very large circuits, this
results in the numeric factorization being the limiting factor



of the simulation overall time and scalability. Furthermore, a
solver package must reuse the symbolic factorization for all
matrices in the sequence as repeating symbolic factorization
would dramatically affect performance.

For this experiment, we chose a sequence from the circuit
that generated Xyce1. This circuit is of particular interest
because it has been used in prior studies [21] to illustrate the
ineffectiveness of preconditioned iterative methods and direct
solvers other than KLU. Attempts to use the PMKL solver
had either been met with solver failure or simulation failure
until recently. Therefore, we wish to see how well Basker
performs on a sequence of these matrices (1000 matrices)
which represent 10% of the desired transient length.

Over the sequence of 1000 matrices, Basker took 175.21
seconds, KLU took 914.77 seconds, and PMKL took 951.34
seconds. This is a speedup of 5.43× when using Basker
instead of PMKL and 5.22× when using Basker instead of
KLU. The scalable simulation of this circuit was previously
limited by the serial bottleneck produced by using KLU as
the direct solver, which is justified due to its performance
compared to PMKL. Basker provides significant speedup
compared to either KLU or PMKL, and will finally provide
a scalable direct solver to Xyce for performing the transient
analysis of this circuit.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a new multithreaded sparse LU factorization,
Basker, that uses hierarchical parallelism and data layouts.
Basker provides a nice alternative to traditional solvers that
use one-dimensional layout with BLAS. In particular, it is
useful for coefficient matrices with hierarchical structure such
as circuit problems. We also introduced the first parallel im-
plementation of Gilbert-Peierls algorithm. Performance results
show that Basker scales well for matrices with low fill-in
density resulting in a speedup of 5.91× (geometric mean) over
the test suite on 16 SandyBridge cores and 7.5× over the test
suite on 32 Intel Xeon Phi cores relative to KLU. Particularly,
Basker can have speedups on these matrices similar to PMKL
on 2/3D mesh problems and reduce the time for a sequence of
circuit problems from Xyce by 5×. Basker shows that in order
to speedup sparse factorization on many-core node, solvers
must leverage all available parallelism and may do so by using
a hierarchical structure.

We plan to continue support of Basker in the ShyLU
package of Trilinos for Xyce. Future scheduled improve-
ments include adding supernodes to the hierarchy structure
to improve performance on high fill-in matrices, and using
asynchronous tasking to reduce synchronization costs.
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