UC Davis
UC Davis Previously Published Works

Title
Mini-Gunrock: A Lightweight Graph Analytics Framework on the GPU

Permalink
https://escholarship.org/uc/item/5wmO061ty

Authors

Wang, Yangzihao
Baxter, Sean
Owens, John D.

Publication Date
2017-03-23

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5wm061tr
https://escholarship.org
http://www.cdlib.org/

Mini-Gunrock: A Lightweight Graph Analytics Framework on the GPU

Yangzihao Wang
University of California, Davis
yzhwang @ucdavis.edu

Abstract—Existing GPU graph analytics frameworks are typ-
ically built from specialized, bottom-up implementations of
graph operators that are customized to graph computation.
In this work we describe Mini-Gunrock, a lightweight graph
analytics framework on the GPU. Unlike existing frameworks,
Mini-Gunrock is built from graph operators implemented
with generic transform-based data-parallel primitives. Using
this method to bridge the gap between programmability and
high performance for GPU graph analytics, we demonstrate
operator performance on scale-free graphs with an average
1.5x speedup compared to Gunrock’s corresponding operator
performance. Mini-Gunrock’s graph operators, optimizations,
and applications code have 10x smaller code size and compa-
rable overall performance vs. Gunrock.

Keywords-GPU computing; Graph analytics; Programming
model; Runtime system

I. INTRODUCTION

The high-performance, highly parallel, fully programmable
modern Graphics Processing Unit’s (GPU) high memory
bandwidth, computing power, excellent peak throughput, and
energy efficiency bring acceleration to regular applications
that have extensive data parallelism, regular memory access
patterns, and modest synchronization requirements.

However, for graph analytics, the inherent irregularity of
graph data structures leads to irregularity in data access and
control flow, making efficient graph analytics on GPUs a
significant challenge. Promising specialized GPU graph al-
gorithm implementations can achieve high performance, but
usually at the price of poor portability and programmability.
And more generalized parallel graph analytics systems with
better programmability may sacrifice performance.

Our Gunrock framework [1] is built on an abstraction of
operations on frontiers of vertices or edges. Like most GPU
graph frameworks, Gunrock’s implementation is bottom-
up and focuses on custom, graph-specific, highly efficient
implementations of these operators. In this work we describe
Mini-Gunrock, a lightweight graph analytics framework on
the GPU that implements Gunrock’s abstraction on top of
generic data-parallel primitives from moderngpu 2.0 [2].
With this work we hope to bridge the gap between pro-
grammability and high performance by reducing both the
application code size and operator development code size.
Our thesis in this paper is that moderngpu 2.0’s generic data-
parallel primitives can implement the necessary operators for

Sean Baxter
moderngpu@ gmail.com

John D. Owens
University of California, Davis
Jjowens@ece.ucdavis.edu

a graph library using parallel transforms, a type of operation
which applies an arbitrary functor to each item in the input.
We demonstrate that our Mini-Gunrock implementation suc-
cessfully leverages moderngpu’s high performance to deliver
high-performance graph primitives.

Mini-Gunrock’s operator performance on scale-free graphs
is on average 1.5x faster than Gunrock’s corresponding
operator performance, and graph primitive performance of
Mini-Gunrock is comparable with Gunrock’s correspond-
ing graph primitive performance. Mini-Gunrock implements
most of the graph operators, optimizations, and applications
from Gunrock with 10x smaller code size (not counting
moderngpu) and comparable overall performance. Mini-
Gunrock and its bottom-up method for building a graph an-
alytics system show the flexibility of Gunrock’s data-centric
abstraction. Our implementation enables rapid prototyping
of both new graph operators and new graph primitives.

II. OVERVIEW

The purpose of Gunrock is to develop a programmable
graph processing system with high performance. Its imple-
mentation is based on a data-centric programming model
that increases flexibility and programmability over other
GPU graph processing libraries and achieves comparable
performance to specialized GPU graph algorithms. Our work
on Gunrock led us to the following question: What is the
right level of abstraction of a graph analytics programming
model on the GPU? Gunrock’s data-centric programming
model focuses on evolving frontiers when running a graph
primitive. One iteration could be generalized as an equation:

fou = Op(finv G, P) (D

where fi;, and f,, are the input and output frontiers re-
spectively, Op(f, G, P) is a graph operation on frontier f
using data from graph G and per-node or/and per-edge data
P. Gunrock implements each graph operator with specific
low-level optimizations. Gunrock uses several common data-
parallel primitives in different graph operators, which can
be categorized into three groups: Per-Item Computation:
simple regular kernels; Prefix-Sum Based: prefix-sum and
streaming compaction; and Irregular Computation: load-
balanced search and segmented reduction.

In this work, we take another approach to implementing
Gunrock’s data-centric programming model: building graph
operators on top of lower-level common data-parallel prim-
itives. We call the resulting lightweight graph analytics
framework “Mini-Gunrock”. We have three design goals for
Mini-Gunrock:

Flexibility: To have the same features as in Gunrock;

Simplicity: To enable fast development of new graph oper-
ators and primitives with less and cleaner code; and

Performance: To have comparable performance to Gun-
rock.

To achieve the above goals, we need to use a set of lower-
level data-parallel primitives that allow sufficient flexibility
while offering state-of-the-art performance. Moderngpu 2.0
has implemented a set of data-parallel primitives based
on transforms; each of them can take user-specified func-
tors but otherwise inherit the high performance offered by
moderngpu 1.0. We implement Mini-Gunrock on top of
moderngpu’s transform-based primitives.

III. RELATED WORK

Generic GPU Primitive Libraries: Popular primitive li-
braries on the GPU include the CUDA Data Parallel Prim-
itive Library (CUDPP), CUDA Unbound (CUB), and the
moderngpu library we use in this work. We choose mod-
erngpu because its family of transform operators provide
both the generality we require to implement Gunrock op-
erators as well as an implementation prioritizing the load
balancing of irregular workloads.

GPU Graph Processing Libraries: Several works target the
construction of a high-level GPU graph processing library
that delivers both good performance and good programma-
bility. Wang et al. [3|] gave a detailed survey of GPU graph
libraries. They observe that when designing graph analytics
libraries on the GPU, rather than starting with generic
primitives and building the graph operators on top of them,
most recent work instead descends from a highly optimized
implementation that was narrowly graph-specific, with little
of their implementation focus on generic data-parallel prim-
itives. For instance, CuSha [4] generally does not rely on
any generic library, but uses one customized reduce kernel in
the traversal process. Medusa [S] used CUDPP’s segmented
scan primitive in its message combiner operator. The generic
primitives in these two libraries were not part of their
programming model, but rather served as utility functions.
VertexAPI2 [6], MapGraph [7], and Gunrock [1] all used
moderngpu 1.0’s primitives in their neighbor list expansion
operator. However, the use of generic primitives in these
libraries is limited to the low-level optimizations and does
not influence their programming models. No current GPU-

based graph library has built its architecture atop generic
primitives.

IV. TRANSFORM-BASED DATA-PARALLEL PRIMITIVES

The transform algorithm is one of the mutating sequence
operations in the C++ STL. A transform applies the same
operation to every element in a range of input iterators. If the
operation takes two input iterators, it is a binary operation;
if one, a unary operation. In the context of this paper, “trans-
form” refers to the unary transform because moderngpu 2.0
does not currently support a binary transform. Transform is
a mutating algorithm; it could modify input items, and it
returns an iterator to the end of the output range. In this
section, we discuss Gunrock’s graph operator design and
moderngpu 2.0’s generic primitive design and show how
they connect from the perspective of transform-based data-
parallel primitives.

A. Gunrock’s Graph Operators

Gunrock’s data-centric programming model defines graph
operators as operations that manipulate frontiers (arrays of
vertex or edge IDs). There are four graph operators in
Gunrock:

Advance takes an input frontier, visits the neighbor list of
each item in the input frontier, does per-item process-
ing, and outputs the neighbor lists as the output frontier.

Filter takes an input frontier, visits each item in the input
frontier, does per-item processing, compacts the input
frontier according to some user-defined predicate, and
generates the output frontier.

Segmented Intersection takes two input frontiers with the
same length, visits the neighbor lists of each pair,
computes the intersection and does per-item processing,
and generates the output frontier.

Compute takes an input frontier, visits each item, and
does per-item processing. In Gunrock it is usually
combined with other operators and serves as a user-
defined functor.

To generalize, Gunrock’s graph operator can be presented
in the following way: a Gunrock graph operator takes one
or more input frontiersﬂ processes a user-defined compute
functor in parallel, and outputs a new frontier. While im-
plementing these operators in parallel is not particularly
difficult, implementing them with high performance in the
face of highly irregular workloads (data-dependent branches
and high variance in the size of neighbor lists) is a significant
challenge.

IFor segmented intersection, this input frontier can be either two vertex
frontiers with the same length or one edge list frontier where each item has
two end vertex IDs.

compute transform scan transform compact transform

kernel count scan_op upstream || downstream
kernel kernel

kernel count count

Input Input
Input
£ 3
idx=[0,count)
run upstream kernel in parallel
return valid flag
run downstream kernel in parallel
output[dst_idx]=src_idx

idx=[0,count) ':’“[OI'?W"" el
run kernel in parallel run kernel in paraliel
return item to be scanned

| 1

output: same as input (or

output: segment offsets
none) put: seg

output: filtered source indices

Figure 1: Compute, scan and compact transforms in Mini-
Gunrock.

in
kernel put output segment_offsets
count count
Input
1

dx=[0,output count), seg=[0, input count)
rank = offset from segment head
run kernel in parallel

|

output: combined neighbor lists of input vertex IDs

Figure 2: Lbs transforms in Mini-Gunrock.

B. Moderngpu 2.0’s Generic Primitives

Moderngpu 2.0’s transforms include scan_transform (par-
allel transform for prefix-sum), [bs_transform (parallel
transform for merge-based load balanced search), segre-
duce_transform (parallel transform for segmented reduc-
tion), and compact_transform (parallel transform for stream-
ing compaction). [bs_transform is a parallel search of an
array of sorted input items in an array of sorted output
items, so that the input items can then be coordinated with
their output items. It essentially turns an offset array and
a neighbor list array into an edge list in parallel, which
in practice implements the same strategy as Gunrock’s
merge-based load-balanced partitioning workload mapping
functionality.

Figure [I] Figure [2] and Figure [3] show the data flow of five
transforms we use in Mini-Gunrock. For every transform,
users can define a named functor or a lambda function. Dif-

‘ [kernel][input J[output][segment_offsets] [reduce_op H
count count

input

¥

‘ idx=[0,output count), seg=[0,input count) 1

rank=offset from segment head
run kernel in parallel, return value to reduce

¥

[output: reduced_values]

Figure 3: Segreduce transforms in Mini Gunrock.

ferent transforms have different default auxiliary parameters
for the functor. For the regular transform, scan transform,
and compact transform, there is only one single auxiliary
parameter idx, the index of the input element. For Ibs
transform and segreduce transform, there are three auxiliary
parameters idx, seg, and rank, where idx is the index of
the output frontier, seg is the index of the input frontier,
and rank is the local offset value of the neighbor item.
Using these auxiliary parameters and different combinations
of these transforms, we can implement most of our graph
operators: scan_transform and lbs_transform share similar
goals to advance, compact_transform is similar to filter, and
general transform is similar to compute. More importantly,
by implementing our operators using moderngpu transforms,
we can both leverage moderngpu’s excellent performance
on irregular inputs as well as incorporate numerous Gun-
rock optimizations. As we will show, using transform-based
primitives achieves comparable performance to Gunrock.

Moreover, using transform-based primitives gives us addi-
tional benefits compared with the graph operators we defined
in Gunrock. Transform is more flexible as it can define
both regular and irregular tasks. Using transform enables a
smaller code size for the implementation of graph operators.

V. GRAPH OPERATOR IMPLEMENTATION USING
TRANSFORMS

Built on top of moderngpu transforms, our graph operator
implementations in Mini-Gunrock benefit from the high
performance of moderngpu transforms while maintaining a
simple and clean interface.

Filter Operator Mini-Gunrock’s filter operator is imple-
mented using compact_transform. The transform-based
implementation has two phases: 1) an upsweep phase to
mark flags (via a user-defined functor) for input items
to be filtered, and 2) a downsweep using prefix-sum to
generate the compacted output indices and write outputs
in parallel.

Advance Operator The advance operator can be imple-
mented using scan_transform and [bs_transform (as
shown in Figure [). The scan_transform on the neigh-
bor list lengths of all the input items will generate an
offsets array, which serves as the beginning pointer of
each input item’s neighbor list in the output frontier.
This array is then sent into [bs_transform to do the
load-balanced search. Instead of having to implement
sorted search, allocate shared memory, and handle
communications between threads, like what Gunrock
has implemented in its advance operator, Ibs_transform
automatically handles the workload mapping among
all threads once given the offsets array, and generates
the necessary information for the computation on each
thread. As a major operator for all traversal-based

Input Frontier

Node Array

é Per-ltem-Computation
+ src_node = seg
4 N dst_node =
Per-Edge-Computation [Per-ltem-Computation col_indices[row_offsets[seg]+rank]
L (src_node, dst_node)) neighborlist_len=row_offsets[i+1]-row_offsets|i] Y

L]

Output Neighborlists Set

Output Neighborlists Set

Segment Descriptor

Advance

scan transform

lbs transform

Figure 4: The left block shows the input, output, and parallel operation of an advance operator in Mini-Gunrock; the right
block shows its implementation using transform-based primitives.

Input Frontier

v

4 N
Per-Neighborhood-Computation
(src_node, dst_node, reduce_op)

Node Array 4 Per-ltem-Computation
src_node = seg
dst_node =
col_indices[row_offsets[seg]+rank]
Per-ltem-Computation value_to_reduce=reduce_val_calc()
neighborlist_|len=row_offsets[i+1]-row_offsets][i] A +

L]

Reduced Value Array

Segment Descriptor

Reduced Value Array

Neighborhood Reduction

scan transform

segreduce transform

Figure 5: The left block shows the input, output, and parallel operation of a neighborhood reduction operator in Mini-
Gunrock. The right block shows its implementation using transform-based primitives.

graph primitives and several other graph primitives,
making Mini-Gunrock’s advance efficient is one of the
most critical aspects of its high performance. The lbs
transform allows us to achieve that goal.

Neighborhood Reduction Operator Our neighborhood
reduction operator can be implemented using
scan_transform and segreduce_transform (as shown in
Figure [5). In this operator, one pass of scan serves the
same purpose as in the advance operator. The following
segmented reduction transform internally fuses the
merge-based load-balanced search with the reduction
computation. It has the same level of efficiency as the
advance operator. We can easily choose whether to
output the visited neighbor nodes, or to output a list of
nodes computed by the reduction operator, depending
on our next operation in the graph primitive. Also,
we can set the neighborhood to be either out-degree
neighbors (for a push-style neighborhood reduction)
or in-degree neighbors (for a pull-style neighborhood
reduction).

Compute Operator Our compute operator is merely a
regular computation task on each input item. It is
a basic transform with a user-defined functor as the
computation step. The difference between transform
and a specialized regular GPU kernel is that for trans-
form, the algorithm will launch kernels with optimal
settings that maximize utilization according to a set

of GPU-architecture- and input-length-dependent pre-
defined conditions.

A. Mini-Gunrock vs. Gunrock

This section compares Mini-Gunrock and Gunrock at the
graph operator level.

The goal for Mini-Gunrock is to make graph operator
implementation easy and flexible. Such goal can be achieved
by either a wrapper of a combination of transform-based
primitives or a general transform with a simple kernel
function. As a more general type of primitive, transform-
based primitives and combinations of them separate low-
level optimizations from higher-level operator/primitive de-
sign. They enable the developers who want to add new
graph primitives in the system to focus on the higher-level
design of graph operators and primitives. Most of Gunrock’s
current graph operators can be inplemented using transform-
based primitives and their combinations, with the exception
of segmented intersection, which we discuss in Section @

Compared to Mini-Gunrock, Gunrock’s graph operator im-
plementation is more flexible. Gunrock users have control of
both launch settings and shared memory and local memory
allocation. Gunrock’s implementation uses advanced GPU
techniques like persistent threads. With such flexibility, users
can also switch the optimization strategies used underneath
the operator abstraction as needed. For neighborhood reduc-
tion, Gunrock’s current implementation requires a separated

segmented reduction pass after its advance, which is not opti-
mal. However, it is possible to fuse this additional segmented
reduction pass with the current advance kernel to increase
performance. The downside of Gunrock’s implementation is
that it mixes its optimizations with graph operator design,
exposing too many interfaces and parameters to users. This
adds to the complexity of building any graph operator or
graph primitive.

VI. OPTIMIZATIONS IN MINI-GUNROCK
A. Advance-based Optimizations Using Transforms

Pull-based Traversal A push-based advance expands the
neighbor lists of the current input frontier; this is
normally supported in all GPU graph libraries. A pull-
based advance [8]] instead intersects the neighbor lists
of the unvisited node frontier with the current frontier.
This approach is beneficial when the number of unvis-
ited vertices drops below the size of the current frontier
and shows from 5x to 30x speedup for BFS on certain
scale-free graphs, but vertex-centered GPU frameworks
have found it challenging to integrate this optimization
into their abstraction. The capability of keeping two
active frontiers differentiates Gunrock from other GPU
graph processing programming models. Gunrock’s im-
plementation first generates a unvisited frontier with all
the unvisited nodes, then uses the unvisited frontier in
the advance step, visiting all unvisited nodes that have
visited predecessors, and generates both a new active
frontier and a new unvisited frontier. Mini-Gunrock’s
pull-based implementation also has two phases: data
structure preparation and the actual pull-based advance.
For data structure preparation, we use two transforms:
one regular transform to generate a dense bitmap fron-
tier representation from the sparse compacted frontier
representation, then one compact_transform to gen-
erate a compacted frontier of unvisited nodes. For
the pull-based advance, we use scan_transform and
Ibs_transform as in a push-based advance operator, but
with a new functor to update the bitmap and process
the computation on edge or destination vertices.

Flexible Features Compared to Gunrock, Mini-Gunrock
has various flexible features in advance and neighbor-
hood reduction. These include: 1) for an input frontier
that contains all of the edges in the graph, save the
scan_transform pass to directly use the row offsets
array; 2) for an advance operator whose output frontier
is not used anywhere, skip writing to the output frontier;
and 3) for a neighborhood reduction, set direction
to forward or backward to process the reduction on
either out-degree neighbors or in-degree neighbors.
While Gunrock also supports these optimizations, its
implementations of optimizations of this type would

typically require either additional kernels or various
interface changes. Building optimizations on top of
transform-based primitives allows Mini-Gunrock’s im-
plementation to simply port existing optimizations in
Gunrock and add additional optimizations that had not
been implemented in Gunrock due to their complexity.

B. Filter-based Optimizations Using Transforms

Idempotence The idempotence optimization allows arbi-
trary heuristic filtering functors to be added in the
upsweep pass of the compact_transform. An additional
benefit of having this optimization in a filter operator
is the avoidance of atomic operations in an advance
operator when the computation is idempotent, with a
tradeoff of a potentially larger frontier size per iteration.

Two-level Priority Queue In Mini-Gunrock, a two-level
priority queue can be implemented with a com-
pact_transform with a user-defined priority score func-
tion and threshold value.

C. Mini-Gunrock vs. Gunrock

This section compares Mini-Gunrock and Gunrock from the
optimization perspective.

In Mini-Gunrock, we have implemented several optimiza-
tions that parallel those in Gunrock. The advance-based
optimizations include pull-based traversal and flexible fea-
tures such as optimization for all-edge input frontiers, output
frontier skipping, and neighborhood reduction on either in-
degree neighbors or out-degree neighbors. The filter-based
optimizations include idempotence and a two-level priority
queue.

However, due to the different way Mini-Gunrock and Gun-
rock process items within operators, the performance of
these two optimizations differs between the two implemen-
tations. The redundancy-removal heuristics in Mini-Gunrock
are less effective compared to Gunrock, thus causing an ex-
plosion of frontier size, which slows down the convergence
when used. This is because in Gunrock, after we decide the
workload for each block, we use a smaller tile to move the
value of these items from global memory to local memory
and within each block sequentially process each tile. In
contrast, in Mini-Gunrock, we can only parallelize over
all items globally, which reduces the chance of collisions
in hash tables. Another such difference is in pull-based
traversal, where each unvisited vertex visits all its parents
until it finds a parent in the active frontier. In Mini-Gunrock,
just as in Gunrock, multiple threads may be cooperatively
working together on one unvisited vertex’s list of parents. If
a Mini-Gunrock thread finds a parent in the frontier, it can
exit its kernel immediately; but (unlike in Gunrock) it cannot
also cause a group early exit of all other threads working on

that vertex. As a result, the performance gain of pull-based
traversal in Mini-Gunrock is limited compared to the same
optimization implemented in Gunrock.

Several optimization implementations are similar in both
Gunrock and Mini-Gunrock, including kernel-fusion opti-
mizations (e.g., the fusing of compute kernel and traver-
sal operators) and the two-level priority queue (splitting a
frontier into two subfrontiers, useful in, e.g., SSSP’s delta-
stepping formulation).

In general, any optimization that 1) only relies on input
frontier and output frontier indices and 2) operates on one
item only once can be implemented within the current
transform-based framework in moderngpu 2.0.

VII. GRAPH PRIMITIVES USING TRANSFORMS

One goal of Mini-Gunrock is to quickly build new graph
primitive prototypes with minimal code size. We discuss
various graph primitives that can be implemented using
Mini-Gunrock.

Just as in Gunrock, the three main components of a graph
primitive in Mini-Gunrock are: 1) Problem, which provides
graph topology data and an algorithm-specific data man-
agement interface; 2) Functor, which contains user-defined
computation code as a device function; and 3) Enactor,
which serves as the entry point of the graph primitive and
defines the running process by a series of graph operators. To
show how Mini-Gunrock implements primitives in Gunrock,
we show the source code of the SSSP enactor and functor
in Mini-Gunrock (the SSSP problem code is very simple):

Listing 1: Graph operator interfaces.

contains its graph primitive data structure type (Problem),
its functor structure (Functor), and some auxiliary variables.
But for function arguments, Mini-Gunrock only contains the
problem object, the input and output frontier, the current iter-
ation number, and a context object needed by all transform-
based primitives.

Listing 2: SSSP Enactor.

void enact (std::shared _ptr<sssp_problem_t> sssp_problem,
standard_context_t &context) {
init_frontier (sssp_problem);
int frontier_length = 1;
int selector = 0;
// Start the iteration with the initial frontier
that contains the source node ID.
for (int iteration = 0; ; ++iteration) {
frontier_length = advance_forward_kernel<
sssp_problem_t, sssp_functor_t, false,
true>
(sssp_problem, buffers[selector],
buffers[selector”l], iteration,
context) ;
selector "= 1;
frontier_ length = filter_kernel<
sssp_problem_t, sssp_functor_t>
(sssp_problem, buffers[selector]
buffers[selector”1], iteration,
context) ;
// Use advance to relax node distance value
and discover new frontier, and filter to
remove redundant node IDs, until
frontier is empty.
if (!frontier_length) break;
selector "= 1;

Listing 3: SSSP Functor.

template<typename Problem, typename Functor, bool
idempotence, bool has_output>

int advance_forward_kernel (std::shared_ptr<Problem>
problem,

std::shared_ptr<frontier_t<int> > &input,

std::shared_ptr<frontier_t<int> > &output,

int iteration,

standard_context_t &context)

template<typename Problem, typename Functor>

int filter_kernel (std::shared_ptr<Problem> problem,
std::shared_ptr<frontier_t<int> > &input,
std::shared_ptr<frontier_t<int> > &output,

int iteration,

standard_context_t &context)

template<typename Problem, typename Functor, typename
Value, typename reduce_op, bool has_output>

int neighborhood_kernel (std::shared_ptr<Problem>
problem,

std::shared_ptr<frontier_t<int> > &input,

std::shared_ptr<frontier_t<int> > &output,

Value +*reduced,

Value identity,

int iteration,

standard_context_t &context)

In Mini-Gunrock, we keep the operator interface to the
minimum. As in Gunrock, each operator interface also

struct sssp_functor_t {

static __forceinline__ bool cond_filter (int
idx, sssp_problem_t::data_slice_t =xdata, int
iteration) {

// If idx is not -1, then it’s unique, return true

to keep it.

return idx != -1;

}

static __forceinline___ bool cond_advance (
int src, int dst, int edge_id, int rank, int
output_idx, sssp_problem_t::data_slice_t =xdata,
int iteration) {

// If source node’s distance value plus the edge
weight is larger than destination node’s
distance value, update destination node’s
distance value.

float new_distance = data->d_labels[src]+data—>
d_weights[edge_id];
float old_distance = atomicMin (data->d_labels+dst,

new_distance);
return (new_distance < old_distance);
}
static __ forceinline__ bool apply_advance (
int src, int dst, int edge_id, int rank, int
output_idx, sssp_problem_t::data_slice_t =xdata,
int iteration) {
// If destination node’s distance value is updated
, set its predecessor to a new source node.
data->d_preds[dst] = src;
return true;
}
bi

For SSSP, the enactor first initializes two buffers for input
and output frontiers, and then iteratively calls a series of

graph operators until it ends when the frontier is empty.
The functor is similar to Gunrock and contains very simple
user-defined computation code. Our design reduces the code
size needed for both a new graph operator implementation
and a new graph primitive using existing graph operators
to more than 10 times smaller than Gunrock. The SSSP
enactor and functor only contains 208 lines of code (77 for
enactor, 39 for functor, 92 for problem). Both the BFS and
PR implementations in Mini-Gunrock are under 200 lines
of code. The total lines of code of the advance, filter, and
neighborhood reduction operator in Mini Gunrock are 47,
21, and 49 respectively. Section explains the reason
that Mini-Gunrock achieves a much smaller code size.

A. Using Mini-Gunrock to Implement New Graph Primitives

The neighborhood reduction operator in Mini-Gunrock en-
ables a family of new graph primitive implementations that
require this operation. To show this, we implement one
typical algorithm in Mini-Gunrock that uses neighborhood
reduction as its core component: graph coloring.

Graph coloring finds the minimum number of colors that
can be used to color the nodes of a graph such that no
two adjacent nodes (connected with an edge) have the same
color. It can be used to find the maximal independent set in
a task dependency graph, where nodes are tasks and edges
are dependencies between tasks. Although the exact problem
is NP-complete, several parallel algorithms exist for finding
an approximate graph coloring. We chose the Luby-Jones
approach [9] for its simplicity and natural parallelism.

We divide Luby-Jones into three steps that can be imple-
mented using Mini-Gunrock operators:

Compute: Assign a hash number to each node;

Neighborhood Reduction: Find an independent set by se-
lecting nodes that have the maximum value among
neighbors; and

Filter: Remove the colored nodes and iterate on the remain-
ing nodes.

As Listing 4| shows, using Mini-Gunrock, we can easily
implement Luby-Jones. With pull-based neighborhood re-
duction (described in Section @ Mini-Gunrock has also
implemented Gunrock graph primitive with different graph
operators, such as pull-based PageRank (PR), where instead
of distributing each node’s PageRank score to all its out-
degree neighbor nodes, we pull the partial PageRank score
from one node’s in-degree neighbor nodes. However, the
current set of graph operators in Mini-Gunrock cannot
implement triangle counting in Gunrock (Section [IX-B).

Listing 4: Coloring Enactor.

void enact (std::shared_ptr<coloring_problem_ t>
coloring_problem, standard_context_t &context) {

std::shared_ptr<frontier_t<int> > full_frontier(
std: :make_shared<frontier_t<int> > (context,
coloring_problem.get () ->gslice->num_nodes)) ;

// Start the iteration with the initial frontier
that contains all the nodes in the graph.

init_frontier (coloring_problem, full_ frontier);

int frontier_length = coloring_problem.get ()->
gslice->num_nodes;

int selector = 0;

int iteration = 0;

int *reduced_max = coloring_problem->
d_reduced_max.datal();

while (frontier_length > 0 && iteration <
coloring_problem.get () ->max_iter) {

// Neighborhood reduction chooses the max
value among one node’s all out-degree
neighbor nodes and stores it in
reduced_max.

neighborhood_kernel<coloring_problem_t,
reduce_max_t, int, mgpu::maximum_t<int>,

false >(coloring_problem, full_ frontier
, full frontier, reduced_max, std::
numeric_limits<int>::min(), iteration,
context) ;

// Filter compares each node’s hash value,
assign new color for those nodes whose
hash value is larger than the stored
reduced_max.

frontier_length = filter_kernel<
coloring_problem_t, coloring_ functor_t>(
coloring_problem, buffers[selector],
buffers[selector”l], iteration, context)

;

selector "= 1;

++iteration;

// Parallel compute kernel to assign new
hash value to each uncolored node.

coloring_problem->reset_hashs (context);

B. Mini-Gunrock vs. Gunrock

This section compares Mini-Gunrock and Gunrock from the
graph primitive perspective.

There are two design choices that help Mini-Gunrock
achieves comparable performance with a much smaller code
size. The first is a more compact design of basic graph data
structures such as the frontier, the problem, and the enactor.
The second is the use of transform-based primitives on top of
these basic data structures. Although the layers of the system
are the same as Gunrock—we put graph topology data into
a graph class, add per-node/per-edge data into a problem
class, define two queues in frontier class for storing the input
frontier and the output frontier when doing graph traversal,
then write an enactor function and several functors for our
graph operators—for each layer the code is more compact
and we replace all the hand-written optimization kernels with
moderngpu 2.0 primitive calls or general transform calls with
simple kernel functions.

The efficient implementation of neighborhood reduction in
Mini-Gunrock makes it capable of implementing several
new graph primitives. Such examples include maximal

Dataset Vertices Edges Max Degree Diameter Type
soc-orkut 3M 212.7M 27,466 9 s
hollywood-09 1.1IM 112.8M 11,467 11 rs
rmat_s21_e48 2.IM 364.2M 213,904 5 gs
rgg_n_24 16.8M 265.1M 40 2622 gm
roadnet USA 23.9M 577.1M 9 6809 rm

Table I: Dataset Description Table. Graph types are: r:
real-world, g: generated, s: scale-free, and m: mesh-like.
All datasets have been converted to undirected graphs. Self-
loops and duplicated edges are removed.

independent set, weighted label propagation, and several
other primitives whose main operator is neighborhood re-
duction. The flexibility of doing both in-degree and out-
degree neighborhood reduction also enables us to implement
node-ranking primitives with rank scores distributed along
neighbors using either push-style or pull-style. Such exam-
ples include PageRank and betweenness centrality, where
switching to a pull-style neighborhood reduction could avoid
atomic operations and thus improve overall performance.
Because Mini-Gunrock and Gunrock follow the same data-
centric abstraction, the features that are missing from current
Gunrock are mostly on the implementation side, and can be
fixed in future Gunrock releases. For example, neighbor-
hood reduction requires an additional segmented reduction
within our current load-balanced search implementation in
Gunrock; in-degree and out-degree advance/neighborhood
reduction requires some interface changes and additional
runtime memory to store neighbor lists for both directions.

VIII. PERFORMANCE ANALYSIS

We summarize the datasets we used in our experiments in
Table [

A. Performance Summary

Table [[I| shows the end-to-end runtime comparison for BFS
and PR of Mini-Gunrock and Gunrock on five different
datasets. For advance, we compare with Gunrock’s baseline
implementation, which uses the LB strategy and disables
direction-optimizing traversal and idempotence since we
have observed that: (1) idempotence will cause different
per-iteration frontier sizes and make it difficult to com-
pare Mini-Gunrock and Gunrock; (2) direction-optimizing
traversal has a wide performance gap between Mini-Gunrock
and Gunrock due to the limitations of pull-based traversal
implementation in Mini-Gunrock (Section [VI-C). We thus
believe the baseline LB strategy in Gunrock is the most
appropriate comparison to Mini-Gunrock’s transform-based
implementation, which also uses merge-based load balanced
search.

Algorithm Datasets MGR Runtime (ms) GR Runtime (ms)
soc-orkut 1114 212.6
hollywood ~ 37.32 36.5

BES tron 107.3 196.9
roadnet 7548 622.6
gg 3473 485.7
soc-orkut 88.28 176

PR hollywood 27 27.31
kron 93.91 176.2
roadnet 365.9 91.81
rgg 199.5 181.6

Table II: Runtime comparison of Mini-Gunrock and Gun-
rock for BFS and PR. Note that for BFS, we force Gunrock
to use the baseline LB strategy with no idempotence or
direction-optimizing traversal, and for PR, we compare the
runtime for one iteration.

The geomean speedup of Mini-Gunrock over Gunrock for
BFS and PR on three scale-free graphs (soc-orkut, holly-
wood, and kron) are 1.507 and 1.558 separately. This shows
that both our transform-based graph operators in Mini-
Gunrock (the [bs_transform-based advance operator and the
segreduce_transform-based neighborhood reduction opera-
tor) can achieve comparable performance with Gunrock’s
baseline advance operator on scale-free graphs. Why? In
this comparison, Gunrock’s LB advance in BFS and PR
uses several separate GPU kernels for getting the length of
neighbor lists in the input frontier, doing prefix-sum, doing
sorted search, and mapping the workload to threads to coop-
eratively expand neighbor lists. In contrast, Mini-Gunrock’s
transform-based implementation fuses these kernels into
two transforms, significantly reducing data movement and
increasing per-iteration performance.

On the other hand, Mini-Gunrock has an order-of-magnitude
performance gap vs. Gunrock on BFS on graphs with large
diameter and small average degree (roadnet and rgg). First,
the transform-based operators have extra kernel launch over-
heads, so for graphs with large diameters, if the algorithm
has a very large search depth, the accumulated overhead will
significantly hurt the overall performance. Second, in Gun-
rock’s implementation, graphs with a small average degree
and a small size frontier cannot fully utilize the GPU. Thus
Gunrock switches from load-balance on the output frontier
(which will have several binary searches for neighbor lists
visiting within one block) to load-balance on the input
frontier. Since the average degree is small, after the switch,
Gunrock’s implementation will still have near-perfect load
balancing and avoid the overhead of binary searches when
the number of the small neighbor lists assigned to one
block is far beyond the block dimension. However, Mini-
Gunrock’s transform-based operator can only perform one
strategy of load balancing, on the output frontier, and suffers
a performance penalty as a result.

B. Per-Iteration Performance Analysis

To compare per-iteration operation performance between
Mini-Gunrock and Gunrock, we collect the runtime and
MTEPS for each BFS advance operation on two scale-
free graphs and two road network graphs. Without losing
generality, we only compare the advance operator, which
has the same workload and memory access pattern as
the neighborhood reduction operator, and ignore the filter
operator, which does not expose much irregularity.

Figure [6] shows the per-iteration advance operation MTEPS
for both Mini-Gunrock and Gunrock on two scale-free
graphs. From the figure we can see that Mini-Gunrock
both shows better peak performance, and stays within the
range of the peak performance for more iterations, than
Gunrock. This demonstrates the efficiency of the transform-
based approach.

Figure [/| shows the per-iteration advance operation MTEPS
for both Mini-Gunrock and Gunrock on two road network
graphs. Neither shows peak performance due to the small
size of frontiers. Both figures show Mini-Gunrock’s advance
consistently performs worse than Gunrock when the frontier
size is too small to fully utilize computing resources. The
result also means that for small frontiers, both Gunrock
and Mini-Gunrock need to try alternative load balancing
strategies, such as Gunrock’s TWC strategy.

IX. LIMITATIONS

The high-level abstraction and high performance of
transform-based primitives allows several benefits when
Mini-Gunrock’s graph operators use them without modifi-
cation. However, it also has some limitations if we want
more flexibility. The two sources of these limitations are:
1) the transform abstraction and 2) the current transform
implementation in moderngpu 2.0.

A. Limitations of the Transform Abstraction

Lack of Multi-Frontier Support: As we noted in section [[V]
moderngpu supports only two types of transforms—unary
transform and binary transform—which means that they
cannot be applied to several multi-frontier required operators
and optimizations in Gunrock. Such optimizations include
multi-level priority queues based on multisplit [[10] and
integrated pull-and-push-based advance with both a sparse-
compact current visiting frontier and a dense-bitmap unvis-
ited frontier [8]].

However, we expect that expanding the current transform
primitive design to support multiple frontiers would en-
able more potential optimizations and graph operators. One
solution to go beyond the unary and binary transform
limitation on the number of input and output arrays is to

read from/write to additional arrays in global memory from
the kernel function in the operator.

Kernel Launching Overhead: Compared to graph operators
in Gunrock, graph operators built on top of transform-
based primitives have more kernel launching overhead (see
Table), which makes their performance suffer for graph
datasets that have a large diameter. Using transform-based
primitives also makes the kernel fusion of two graph oper-
ators impossible in Mini-Gunrock.

B. Limitations of the Current Transform Implementation

No Binary Transform Support: One graph operator from
Gunrock that is difficult to implement in the current mod-
erngpu 2.0’s transform-based framework is segmented in-
tersection, which is a binary transform that takes two input
arrays and produces one output array. It can use balanced
path (a modified version of merge path in moderngpu 2.0) on
the block level to produce an output array that contains all
intersected items from two input arrays. However, the current
implementation of merge path automatically computes the
partition indices of the second array to merge as a way to
do load balancing for the first array, so it still only takes
one input. General support of binary transform primitives is
desirable.

Limited flexibility: The current implementation of mod-
erngpu 2.0 automatically sets up an optimal launch setting
and workload scheduling/decomposition phase according to
a fixed number of items processed per thread. This can often
find the most load-balanced and work-efficient workload
mapping for existing primitives in moderngpu 2.0. How-
ever, customized optimizations such as a dynamic grouping
workload mapping strategy [11] (DG) based on a persistent
threads programming style are difficult to implement, as the
current unary transform will apply a unary operation to every
input item exactly once, but DG requires an input item to
take charge of a thread group (either a warp or a block) to
perform computation on neighbor lists, in which case each
input item may process not only one unary operation more
than once but also multiple unary operations. The opacity
of the transform-based primitive’s set-up and scheduling
phase also increases the difficulty of implementing more
complicated user-defined functions such as those that use
shared memory, complex synchronization, and operations
such as early exit on all threads within a block. An im-
plementation with user-specific shared-memory and local-
memory allocation capability as well as synchronization
interfaces for synchronization among user-specified thread
groups is the key feature to make the current transform
implementation flexible enough for more optimizations in
Gunrock.

Fixed Two-Phase Idiom: Moderngpu 2.0 breaks primitives
into two distinct phases: 1) find a coarse-grained partitioning

Gunrock MTEPS [l Mini MTEPS M Visited Edges (%)
Kron_g500-logn21

Performance over Iteration

2000 100

80
1500
&
60 5
3 °
< 1000 &
40 £
2
500 20
0 0
1 6
soc-orkut
Performance over Iteration
100
—~ 2500
[
&
E
s 80
5 2000
2
g -
s 60 §
& 1500 g
g &
k- =
i w0 3
§ to00 £
8
g
E 500 20
e

1 2 3 4 5 6 7

Figure 6: Area chart that compares per-iteration advance performance between Gunrock and Mini-Gunrock with the
percentage of visited edges of that iteration.

Gunrock MTEPS [l Mini MTEPS B Visited Edges (%)

.,

va

ra
3
N
N

Performance over Iteration

@

4 L

o BV 0.06
E L i W‘

? u ‘m'w‘ 1 J

§ 1000 . ! Al m I,MLM ~
3 L il) £
4 A f 004 g
o =]
g g
hil 3
5 500 @
i 002 >
2

g

5

E 0 0.00

2 3

g

REEEREERIRRERENBYEEIREEIEEERERTEE

Performance over Iteration

roadnet_usa

Visited Edges (%)

Million Traversed Edges Per Second (MTEPS)

e 55 e e e s K8 8 8B 8288 EE 288 EE8 e s essE88s
2 52 38 3K 3 5 3 2 Eg88zTs28§s 228 5 8
N85 ¥YZEIEEEZREEE SRS 5 8 g g5 838888 ¢8 8

Figure 7: Area chart that compares per-iteration advance performance between Gunrock and Mini-Gunrock with the
percentage of visited edges of that iteration.

of the problem that exactly load-balances work over each
thread, and 2) execute simple, work-efficient, sequential
logic that solves the problem. This two-phase idiom always
searches for perfect load balance and does not allow user-
specified coarse-grained partitioning strategies in the first
phase. However, our experiments show that perfect load bal-
ance does not necessarily bring the best performance due to
the potential overhead it will cause for the second execution
phase. Thus a more flexible interface that allows users to
try different strategies in both phases will be desirable for
achieving better performance for different graph primitives
on different datasets.

X. CONCLUSION

In this paper, we discuss the design and implementation
of Mini-Gunrock, a lightweight graph analytics framework
on the GPU. It shows the flexibility of the data-centric
abstraction by implementing this abstraction with a different
implementation. We have also explored different perfor-
mance tradeoffs, and identified strengths and weaknesses
of a transform-based abstraction and implementation. In
conclusion, with Mini-Gunrock, we have achieved our three
goals of flexibility, simplicity, and comparable performance.
It is able to have the same features for graph operators
in Gunrock, it has enabled rapid prototyping of both new
graph operators and new graph primitives, and it achieves
comparable performance with Gunrock.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the DARPA
XDATA program (US Army award W911QX-12-C-0059);
DARPA STTR awards D14PC00023 and D15PC00010;
and NSF awards CCF-1017399, OCI-1032859, and CCF-
1629657.

REFERENCES

[1] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens, “Gunrock: A high-performance graph process-
ing library on the GPU,” in Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 2016, Mar. 2016.

[2] S. Baxter, “Moderngpu: Patterns and behaviors for GPU com-
puting,” 2013-2016, http://moderngpu.github.io/moderngpu.

[3] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang,
M. Osama, C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens,
“Gunrock: GPU graph analytics,” CoRR, vol. abs/1701.01170,
no. 1701.01170v1, Jan. 2017.

[4] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “CuSha:
Vertex-centric graph processing on GPUs,” in Proceedings
of the 23rd International Symposium on High-performance
Parallel and Distributed Computing, ser. HPDC ’14, Jun.
2014, pp. 239-252.

[5] J. Zhong and B. He, “Medusa: Simplified graph processing
on GPUSs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1543-1552, Jun. 2014.

[6] E. Elsen and V. Vaidyanathan, “A vertex-centric CUD-
A/C++ API for large graph analytics on GPUs using the
gather-apply-scatter abstraction,” 2013, http://www.github.
com/RoyalCaliber/vertexAP12,

[7] Z. Fu, M. Personick, and B. Thompson, ‘“MapGraph: A
high level API for fast development of high performance
graph analytics on GPUs,” in Proceedings of the Workshop
on GRAph Data Management Experiences and Systems, ser.
GRADES ’14, Jun. 2014, pp. 2:1-2:6.

[8] S. Beamer, K. Asanovi¢, and D. Patterson, “Direction-
optimizing breadth-first search,” in Proceedings of the In-
ternational Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC *12, Nov. 2012,
pp. 12:1-12:10.

[9] M. Luby, “A simple parallel algorithm for the maximal
independent set problem,” in Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, ser. STOC
’85. New York, NY, USA: ACM, 1985, pp. 1-10. [Online].
Available: http://doi.acm.org/10.1145/22145.22146

[10] S. Ashkiani, A. A. Davidson, U. Meyer, and J. D. Owens,
“GPU multisplit,” in Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP 2016, Mar. 2016, pp. 12:1-12:13.

[11] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
graph traversal,” in Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, ser. PPoPP °12, Feb. 2012, pp. 117-128.

http://moderngpu.github.io/moderngpu
http://www.github.com/RoyalCaliber/vertexAPI2
http://www.github.com/RoyalCaliber/vertexAPI2
http://doi.acm.org/10.1145/22145.22146

