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MP-STREAM: A Memory Performance Benchmark
for Design Space Exploration on Heterogeneous

HPC Devices

Abstract—Sustained memory throughput is a key determinant
of performance in HPC devices. Having an accurate estimate of
this parameter is essential for manual or automated design space
exploration for any HPC device. While there are benchmarks for
measuring the sustained memory bandwidth for CPUs and GPUs,
such a benchmark for FPGAs has been missing. We present
MP-STREAM, an OpenCL-based synthetic micro-benchmark for
measuring sustained memory bandwidth, optimized for FPGAs,
but which can be used on multiple platforms. Our main contribu-
tion is the introduction of various generic as well as device-specific
parameters that can be tuned to measure their effect on memory
bandwidth. We present results of running our benchmark on a
CPU, a GPU and two FPGA targets, and discuss our observations.
The experiments underline the utility of our benchmark for
optimizing HPC applications for FPGAs, and provide valuable
optimization hints for FPGA programmers.

I. INTRODUCTION

High-Performance Computing (HPC) machines are becom-
ing increasingly heterogeneous with the adoption of GPUs,
many-core accelerators like Xeon Phis, and more recently,
FPGAs. For FPGAs to become truly mainstream, an ecosystem
of tools and benchmarks will be required. One such require-
ment is to have a benchmark that can measure the memory
bandwidth achievable with FPGA target devices and associated
tools. Memory bandwidth is increasingly the performance
bottleneck for many HPC applications. Out of thirteen dwarfs
of HPC identified in [1], seven can be considered memory-
bound. Benchmarks that can qualify HPC devices with respect
to sustained memory bandwidth can be of immense utility.

The STREAM benchmark is the de-facto industry standard
for measurement of computer memory bandwidth, and has
been widely used and cited since its introduction in 1995 [2].
Its implementation for GPUs using CUDA and OpenCL has
also been developed as GPU-STREAM [3]. To the best of
our knowledge, the STREAM benchmark has not yet been
adapted for evaluating FPGA devices. Our work aims primarily
to address this.

In this paper, we present our interpretation of the STREAM
benchmark, which we call Multi-Platform-STREAM, or sim-
ply MP-STREAM. Our purpose is to enable exploring the en-
tire design-space that effects the sustained memory-bandwidth.
Our key contribution the introduction of tuning parameters that
have an impact on the sustained memory bandwidth. These
additional features provide valuable insights to optimizing
high-performance code for FPGAs. The MP-STREAM bench-
mark is not limited to FPGAs though and we present results
across four different architecture in this paper. We discuss
some interesting and – at times – non-intuitive results that

appear when the tuning parameters are explored, emphasizing
the observation that memory-bandwidth optimization is both
target device and vendor specific, and that cross-platform
parallel programming languages like OpenCL are not always
performance-portable.

II. BACKGROUND AND REQUIREMENT OF A NEW
BENCHMARK

STREAM [2] is a synthetic benchmark, originally written
in Fortran 77, for measuring the performance of four different
kernels performing array operations. These four kernels are:

1) COPY: a(i) = b(i)
2) SCALE: a(i) = q*b(i)
3) SUM: a(i) = b(i) + c(i)
4) TRIAD: a(i) = b(i) + q*c(i)

where q is a scalar. By knowing the size of the arrays, the size
of each element, and then measuring the time taken to exe-
cute a kernel, the sustained memory-bandwidth is computed.
The STREAM benchmark has become the de-facto industry
standard for reporting the sustained memory bandwidth. GPU-
Stream benchmark [3] implements the four kernels listed
above in OpenCL and CUDA frameworks for GPGPUs. This
open-source OpenCL benchmark was a useful resource in
developing our FPGA-oriented version.

The original STREAM benchmark was written for CPUs
and cannot be directly ported to FPGAs. The GPU-STREAM’s
OpenCL benchmark could be more easily adapted for
OpenCL-compatible FPGA targets, but could not be effectively
used for FPGAs directly, as our purpose is to be able to fully
explore the design-space of FPGA memory architecture. The
sustained memory bandwidth on FPGA targets is affected by
a large number of parameters – not all relevant to CPUs or
GPUs – and some parameters affect the memory bandwidth in
unexpected ways as we will see later.

III. EXPLORING THE FPGA MEMORY-ACCESS
ARCHITECTURE WITH THE MP-STREAM BENCHMARK

We have developed a portable benchmark based on the
four kernels defined in the original STREAM benchmark.
The benchmark has been written in OpenCL [4], which is a
heterogeneous parallel programming language and framework.
We have tested the benchmark on four heterogeneous targets.
The bandwidth is simply calculated by measuring the time
taken to run each of the kernels for a known array size.

The key motivation behind extending STREAM benchmark
was to introduce parameters that had an effect on sustained



memory bandwidth especially in the context of FPGAs. In this
section we discuss these parameters, categorized as generic or
specific to a target. The generic parameters are as follows:
Size of array: The size of the array is the only controllable
parameter in the original STREAM benchmark. Smaller array
sizes have a proportionally larger memory latency impact, so
larger arrays measure the asymptotic performance. Also arrays
should be large enough to ensure that we are in fact measuring
DRAM bandwidth in cache-based targets.
Source/destination of streams: While typically bandwidth
to global memory (device-DRAM) is of primary interest for
performance, we have also included the ability to measure
bandwidth between the host and the device which in the typical
case would give us the bandwidth over a PCIe host–device
interface.
Data type: The benchmark currently supports integer and
double types. Using doubles for the copy kernel translates
into a 64-bit coalesced access, while for other kernels, there
is impact on the computation as well.
Degree of vectorization: OpenCL allows vector data types
as arguments to the kernel which translates to a memory
controller on the FPGA that coalesces memory accesses – up
to 16 words – leading to improved memory throughput.
Data access pattern: Streaming from memory is equivalent to
an iteration over the array, which may be multi-dimensional.
The pattern of index-access has considerable impact on band-
width. Testing different access patterns was considered a future
direction for the original STREAM benchmark. The effect of
access pattern on bandwidth has been investigated in a number
of studies [5], [6]. In MP-STREAM we currently test two
patterns: contiguous data, and strided data, with fixed stride.
Kernel loop management: The kernels of the stream bench-
mark are array operations, which would be implemented as
loops in software. When such a kernel is ported to OpenCL,
the array operation can be expressed in different ways, which
translates to a different memory-access architecture and has
an impact on the sustained bandwidth, at times in unexpected
ways. The three types of “loop management” that can be
experimented with our benchmark are as follows:
NDRange Kernel: In OpenCL, loop over a kernel’s iteration-
space is typically subsumed by launching multiple work-items,
the total number of which is known as NDRange. An NDRange
kernel looks like this:

1 /** HOST **/
2 clEnqueueNDRangeKernel (kernel, ARRAY_SIZE, ...);
3 /** DEVICE **/
4 index = get_global_id(0);
5 c[index] = a[index];
6

Single work-item, flat-looping kernel: We can launch just one
work-item, and have a for loop in the kernel, e.g.:

1 /** HOST **/
2 clEnqueueNDRangeKernel (kernel, 1, ...);
3 /** DEVICE **/
4 for (index=0; index < ARRAY_SIZE; index++)
5 c[index] = a[index];
6

Single work-item, nested-looping kernel: We found, somewhat
unexpectedly, that there is another variant in this scenario,
where we loop over a 2D array in a nested fashion (shown
below), and that can affect the bandwidth:

1 /** HOST **/
2 clEnqueueNDRangeKernel (kernel, 1, ...);
3 /** DEVICE **/

4 for (i=0; i < ARRAY_SIZE_I ; i++)
5 for (j=0; j < ARRAY_SIZE_J ; j++)
6 c[i][j] = a[i][j];
7

Loop unroll factor: The loop unroll factor
can be controlled in OpenCL through the
__attribute__((opencl_unroll_hint(n)))
command. Our benchmark’s build scripts generate custom
kernel code inserting this optimizations as specified by
command-line flags.
Required work-group size: The optional attribute
reqd_work_group_size(X, Y, Z) allows the
compiler to optimize the generated code, and is recommended
by some OpenCL-FPGA compilers to optimize the FPGA
synthesis.

FPGA device vendors often have optimization techniques
that are not necessarily part of the OpenCL standard. For
example, Intel’s AOCL compiler has a number of optimization
parameters discussed in [7]. The optimization parameters we
considered relevant to this benchmark were: (1) Number of
SIMD work-items and (2) Number of compute-units.

Similarly, Xilinx’s SDACCEL also has custom optimiza-
tions that can be added to the kernel code for different types
of optimizations, as described in [8]. The ones relevant to this
benchmark are: (1) Pipeline loop, (2) Pipeline work-items, (3)
Maximum memory ports, and (4) Memory port data width

IV. EXPERIMENTS IN DESIGN-SPACE EXPLORATION
USING MP-STREAM

Our experimental setup comprises two OpenCL-compatible
FPGA targets, an Intel CPU and an Nvidia GPU, demon-
strating the portability of our benchmark across heterogeneous
targets. Some more details are as follows:
CPU: Intel Xeon CPU E5-2609 v2, 10 MB cache, 34 GB/s
Peak BW.
GPU: GeForce GTX Titan Black, 336 GB/s Peak BW.
FPGA-AOCL: Altera Stratix V GS D5 (Nallatech PCIe-385),
25 GB/s Peak BW, AOCL 15.1 compiler.
FPGA-SDAccel: Xilinx Virtex 7 XC7 (Alpha-Data ADM-
PCIE-V7), 10 GB/s Peak BW, Sdaccel 2015.1 compiler.
The objective behind these experiments is to demonstrate the
portability of our benchmark across heterogeneous platforms,
and also to emphasize the utility of the tuning parameters that
we have introduced in exploring the design-space of memory-
access architecture, specifically for FPGAs. We would like to
emphasize that there is no guarantee we have achieved the
best possible results on the tested targets, and we do not claim
exhaustive exploration of the search space.

Varying Array Size and Vectorization: The first two
experiments were on varying the size of the input array, as well
as the size of vectors used in the kernel signature (Figure 1).
The horizontal dotted-lines indicate the peak bandwidths for
that target. For all targets, larger array sizes leads to better
sustained bandwidth, which is an expected result, as large array
sizes hide the latencies of memory access and of the control
transfer between host and device. We see the bandwidths
plateau around 4MB, and this is the fixed size we use when
experimenting with variation across other parameters. Note
that GPU has both a much higher peak bandwidth, and
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Fig. 1: Testing all four targets with varying (a) array sizes and
(b) vector size (memory coalescing) for the copy kernel. Word
size is 32 bits, and data is contiguous, loop-management is
optimal for each target. No other optimizations are used.
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Fig. 2: Evaluating effect of data contiguity for different array
sizes (and strides). Word size is 32 bits, loop-management
is optimal for each target, and no vectorization or other
optimizations are used.

a sustained bandwidth very close to the peak. The FPGA
targets’ sustained performances are relatively worse compared
to their peaks. If we look at Figure 1(b) though where we
use vectors to coalesce memory accesses, we see the FPGA
targets approaching their peak bandwidths, and it is obvious
that unless we use coalesced memory access, we are severely
under-utilizing the available memory bandwidth on FPGAs.

Effect of Data Contiguity: The effect of data contiguity
on sustained memory bandwidth to a DRAM is well known.
We tested two patterns of access: contiguous, and strided with
a fixed stride. For strided access, we accessed the row-major
2D array in a column-major fashion. The results are shown
in Figure 2. As expected, all targets see a deterioration in
performance for strided access, although to varying degrees.
One can see potential for a possible optimization where – if
there are multiple strided accesses to the same array(s) in
global memory as is common in scientific applications – it
may be worthwhile re-arranging data at the host to convert
subsequent strided accesses to contiguous accesses.

Different Loop Managements: As discussed earlier, we
tested three different ways of expressing array access loop,
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Fig. 3: Evaluating the effect of different kinds of loop man-
agement on all four targets. Array size is 4MB, word size is
32 bits, and no vectorization or other optimizations are used.

and results are shown in Figure 3. The GPU and CPU perform
best for the NDRange Kernel, where multiple work-items are
launched. This makes best use of the data parallelism available
in these targets, and a typical OpenCL programmer can be
expected to write applications in this manner. Consistent better
performance on FPGA targets however is better achieved by
having a single-work-item kernel, with a for loop at the kernel.
The SDACCEL target is quite sensitive to this parameter, and
surprisingly shows much better performance when we access
the 2D array in a nested looping fashion, which implies that
the memory-access logic is synthesized differently, even if the
eventual underlying access pattern is exactly the same. One
can reasonably presume that experimenting with more devices
will show similar target-specific characteristics, which supports
our argument that a synthetic benchmark for exploring the
design-space of the memory-access architecture is critical for
achieving performance on HPC systems.

Testing All Four Kernels: The STREAM benchmark has
four kernels as discussed earlier: copy, scale, add and triad.
Though our focus is on the copy kernel for evaluating the
bandwidth, we did run all four kernels on all four targets to
qualify our benchmark. The results are shown in Figure 4(a).
Since all four kernels are quite simple, the performance could
be expected to be memory-bound, and in general we can see
this effect in the results.

Device Specific Optimizations: While we have not ex-
hausted all possible combination of optimizations on the FPGA
targets, we do consider them when defining our designs-space,
and our build framework allows the user to specify target-
specific flags. We ran some experiments on one target (AOCL),
to see how well they compare when we try to achieve the
same effect using native OpenCL features of using vectorized
data types. As we can see from the results in Figure 4(b),
the native vectorization optimization leads to more reliable
improvement in performance. The other two optimizations,
increasing the number of SIMD items, and increasing the num-
ber of compute-units, which express parallelism as well, have
less consistent results, eventually giving poorer performance
as we increase their scale. We also found that the AOCL
optimizations take up more FPGA resources when compared
with equivalent native OpenCL optimizations. We feel this
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is an argument in favour of exploring memory-access design
space using native OpenCL whenever possible. We do not
have a good explanation for why these opaque vendor specific
optimizations generally perform worse than native OpenCL.

General Observations

An obvious – though perhaps unsurprising – observation
is that OpenCL is not always performance portable across
heterogeneous devices, even if it be source-code portable. In
fact, even if we look at FPGA-only targets, Intel/Altera and
Xilinx frameworks show different behaviours for the same set
of parameters. Target-specific domain expertise is thus needed
for getting the best out of each architecture. Smarter optimizing
compilers would be very useful too to make performance on
these heterogeneous targets easier to achieve. Both a manual
and automated design-space exploration route will benefit from
a benchmark that fully explores the memory-access design-
space, leading to our work on MP-stream.

Looking at the comparative picture across four targets, it
is clear that GPUs remain far ahead of the curve in both
peak and sustained memory bandwidth, and will out-perform
in memory-bound applications. FPGA vendors seeking to
compete with GPUs in the memory-bound HPC area have
considerable catching-up to do before they can be considered
viable alternatives. FPGAs are moving towards mainstream
HPC and have been shown to have better performance in a
select set of scientific computing problems. What we have not
considered in this paper is the energy-efficiency of the devices,
but that is one area where FPGAs can still win in spite of the
higher achievable bandwidths on GPUs. Also, the introduction
of high-throughput Hybrid-Memory Cube on FPGA boards
which have much higher peak bandwidths can change the
picture we present in this paper considerably. FPGA-OpenCL
tools can also be expected to mature over time and show
more consistent memory performance that takes into account
different coding styles.

Another useful takeaway is that if data is accessed repeat-
edly across many iterations, as is common scientific appli-
cations e.g. in case of a time loop over space in a weather

model, then there is strong case to be made for pre-shaping
that data to a format that leads to most efficient access from
the acceleration device. Finally, we consider this a very useful
insight that optimizations involving native OpenCL seem to
perform better than propriety, device-specific optimizations.

V. CONCLUSION

We have presented a new benchmark called MP-STREAM,
which extends the original STREAM benchmark for FPGA
targets. Our work is driven by our effort to build an optimizing
compiler for FPGAs, but this benchmark is a stand-alone
project which we hope would play a useful role in FPGA
transition to mainstream computing.

We made the case that FPGAs required an extension of
the original STREAM and the GPU-STREAM benchmarks as
there are a number of additional tuning parameters that effect
FPGA memory bandwidth. We have presented this as the key
contribution of our work, and our results clearly show that
there is indeed significant impact of such parameters. In the
course of our experiments, the observations we made about
achieving high memory bandwidth on heterogeneous targets
were discussed as well which can lead to better performing
HPC applications on FPGAs. In the future, we plan to update
our results with newer FPGA boards and OpenCL compiler
versions, and also introduce more optimizations across all
targets. We have made this benchmark publicly available1, and
plan to have a website for users to contribute and share their
results with the wider community.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[2] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.
1995.

[3] T. Deakin and S. McIntosh-Smith, “Gpu-stream: Benchmarking the
achievable memory bandwidth of graphics processing units,” in Poster
session presented at IEEE/ACM SuperComputing,, Austin, TX, USA,
2015.

[4] “Opencl: The open standard for parallel programming of heterogeneous
systems,” https://www.khronos.org/opencl/, accessed: 2016-06-15.

[5] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1,
pp. 105–118, Jan 2011.

[6] S. Byna, X.-H. Sun, W. Gropp, and R. Thakur, “Predicting memory-
access cost based on data-access patterns,” in Cluster Computing, 2004
IEEE International Conference on, Sept 2004, pp. 327–336.

[7] Altera, “Altera sdk for opencl, best practices guide,” Altera,
Tech. Rep., Apr 2015, last accessed on 15th June 2016.
[Online]. Available: https://www.altera.com/content/dam/altera-www/
global/en_US/pdfs/literature/hb/opencl-sdk/aocl_optimization_guide.pdf

[8] Xilinx, “Sdaccel development environment, user guide,” Xilinx,
Tech. Rep., Oct 2015, last accessed on 15th June 2016.
[Online]. Available: http://www.xilinx.com/support/documentation/sw_
manuals/xilinx2015_3/ug1023-sdaccel-user-guide.pdf

1https://github.com/waqarnabi/mp-stream


