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Abstract—Convolutional Neural Networks (CNNs) are at the
base of many applications, both in embedded and in server-
class contexts. While Graphics Processing Units (GPUs) are
predominantly used for training, solutions for inference often
rely on Field Programmable Gate Arrays (FPGAs) since they
are more flexible and cost-efficient in many scenarios. However,
existing approaches fall short to accomplish several conflicting
goals, like efficiently using resources on multiple platforms while
retaining deep configurability and allowing a quick Design Space
Exploration (DSE) towards the best solution. This paper proposes
a solution composed of highly configurable kernels designed for
resources time-sharing with an analytical model of their re-
source/performance characteristics. Building on such models, we
propose an Integer Linear Programming (ILP)-based approach to
effectively identify pareto optimal kernel configurations in terms
of throughput and resource consumption. We evaluate our DSE
on two state-of-the-art CNNs, showing how it identifies hundreds
of pareto optimal solutions in less than a minute. Guided from the
DSE configurations of the AlexNet network, we quickly identified
a candidate design for a Xilinx Virtex-7 XC7VX485T FPGA and
achieved a peak throughput of 4.05 ms per image, while we
measured a maximum estimation error of 6.69% with respect to
the proposed analytical models.

I. INTRODUCTION

CNNs have proved to be an effective class of algorithms

for features extraction and classification, whose application

spread across a wide range of markets, from embedded

systems to data centers and High Performance Computing

(HPC) systems. To sustain CNNs ever-increasing computation

demands, heterogeneous architectures are becoming the main

approach, as they offer more parallelism and fine-grained data

reuse opportunities with respect to Central Processing Units

(CPUs). Accelerators based on GPUs achieve high speedups

with respect to CPUs [1] and are largely employed during

CNN training, where their performance and programmability

allow to quickly iterate through the training phases. Instead,

for inference, where the CNN structure is fixed, GPUs power

demands become a bottleneck in many scenarios where energy,

power, and thermal budgets are limited; these limitations foster

the demand for other highly efficient heterogeneous solutions.

Recent evaluations have shown several advantages of imple-

menting CNNs on FPGAs [2] and Application Specific Inte-

grated Circuits (ASICs) [3], where the former offer an appeal-

ing tradeoff between energy efficiency and programmability,

which is especially important where applications frequently

evolve over time and the scale makes inflexible ASIC solutions

impractical. For these reasons, FPGA-based acceleration of

CNNs has become a lively research topic in both the embedded

[4] and the HPC domains [5]–[8]. Several aspects are key

for implementing CNNs on FPGAs. With respect to hardware

resources, scalability ensures the design to be easily portable

to a large variety of Field Programmable Gate Array devices,

whose resources have to be used with maximum efficiency.

With respect to the system designer, these solutions should

have high configurability to cover the large range of CNN

applications, which vary along several dimensions like net-

work structure, hyperparameters, data types etc. These goals

usually open up a very large design space whose exploration

can be overly time-consuming, thus causing the final design

choices to be sub-optimal; therefore, an ideal solution should

also rely on suitable models for automated DSE. To meet these

guidelines, this work proposes a comprehensive solution that

brings the following contributions:

1) an architecture to accelerate the feature extraction stage

of CNNs that focuses on scalability, using time sharing of

computing resources to minimize the number of resources

used for each convolution

2) a methodology to achieve high design configurability

while retaining productivity by using parameterizable

Hardware Description Language (HDL) kernels for the

compute-intensive parts and High-Level Synthesis (HLS)

kernels for the control parts

3) a performance and a resource model to quickly evaluate

different architecture configurations

4) an effective pareto optimal DSE to quickly explore the

network performance on different target devices

To explain these contributions, the text is organized as

follows. Section II reviews the main related work, highlighting

state-of-the-art solutions for CNN acceleration on FPGA. Sec-

tion III details the proposed architecture, discussing the design

choices and features of the proposed kernels. Section IV shows

the resource and performance model of these kernels, which

is used in section V to perform the DSE and derive the Pareto

optimal configurations for the system. Section VI evaluates

our solution with two state-of-the-art CNNs, showing how it

effectively targets multiple applications. Finally, section VII

discusses achievements, limitations and future works.

II. RELATED WORK

This Section describes different design methodologies in

the literature to compute CNN inference on FPGA, leveraging
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both manual and automatic strategies to perform the DSE.

The authors of [4] aim to accelerate state-of-the-art CNN

models for large-scale image classification targeting embed-

ded FPGAs. To overcome the off-chip memory bandwidth

bottleneck, due to the number of CNN parameters and slow

memories, they introduce an automatic data quantization flow

and apply a singular value decomposition approach to signifi-

cantly reduce the fully connected weights footprint. However,

when compared with the theoretical estimates, their on-board

VGG-SVD benchmark, targeting a Xilinx Zynq XC7Z045,

experiences a 47% performance degradation due to limited

efficiency of the off-chip memory bandwidth. To alleviate off-

chip memory access bottlenecks, [9] proposes an analytical

model to balance the performance of computational, on-chip

and off-chip resources, providing an optimal match between

their usage. To enhance the on-chip memory bandwidth, they

also propose a bi-dimensional interconnection between on-

chip memory and computational units.

While [4] and [9] employ manual analytical models to perform

the CNN DSE, the authors in [5], [10]–[12] propose automatic

tool flows to infer the best network configuration. In [10],

the authors use a bi-dimensional systolic array pattern to

implement an end-to-end automation flow for CNNs targeting

FPGAs. The systolic array network is composed of a grid

of pipelined processing units, leveraging meshed local con-

nections to better exploit FPGAs routing resources achieving

higher working frequencies. This work uses a two-phase DSE.

The first phase relies on performance and resource models to

identify the best pre-designed template. Whereas, the second

phase uses the hardware generation flow of the target device to

reach the best performance. Such flow automatically generates

the host code and bitstream starting from a user-written code

and pragmas. The work is evaluated on an Arria 10 GT

1150 board against AlexNet [13], achieving a throughput of

360.4 GFLOPS, and VGG-16 [14], where they obtained 460.5

GFLOPS for the floating point implementation and 1171.3

GOPS for the fixed point implementation. Zhang et al. [12]

propose a DSE technique to identify the optimal architectural

solutions, in terms of both performance and resource usage,

over a large design space and leveraging on both the roofline

model [15] and the Computation to Communication Ratio

(CTC). The design space is created by applying to the de-

scribed network a set of optimizations such as on-chip reuse

buffering and loop transformations, e.g. tiling, pipelining and

unrolling. Implementing AlexNet on a Xilinx Virtex-485T at

100MHz, this work achieves 61.62 GFLOPS.

In [11] the authors implement the 2D Winograd algorithm [16]

to improve their FPGA-based CNNs design. In particular, the

authors use this algorithm to generate a tile of elements in the

output feature map with a reduced resource usage than other

implementations, thus obtaining better results while employing

the same number of resources. To balance this computational

performance increment, they design line-buffers to cache the

feature maps before and after the Winograd transformation.

Then, they propose a DSE and use it to derive an automatic

tool flow. Their implementation of AlexNet and VGG-16,

implemented on a Xilinx ZC706 platform, reaches 1006.4

GOPS and 2940.7 GOPS respectively at 200 MHz.

To improve the energy-efficiency of FPGA-based CNN ac-

celerators, Zhang et al. [5] propose a pipelined FPGA cluster,

where seven FPGAs are connected through a ring topology.

Then, the authors propose an analytical model to easily map

CNNs on a multi-FPGA architecture. Such a model is able to

determine the best implementation depending on the selected

objective – i.e. energy, latency or throughput –. The results

of different AlexNet and VGG-16 implementations, where

different implementations have different objectives, show a

maximum throughput of 825.6 GOPS and 1280.3 GOPS on a

cluster of four and six Xilinx Virtex VX690T respectively.

CNNs represent a computationally intensive class of algo-

rithms, whose structure and topology are constantly evolving

and used in a wide range of different context, from embedded

systems to data centers. As a result, an efficient DSE is crucial

to guarantee both performance and reusability of the designed

architecture on different platforms. For this reason, manual

[4], [9] and platform-specific [5], [10]–[12] DSEs, easily

limit the heterogeneity CNNs acceleration require. In this

paper, we propose an architectural independent approach to

compute CNNs inference on FPGA. Specifically, we propose

a scalable and productive design methodology, together with

an automatic pareto optimal DSE, able to quickly estimate the

network performance for different target FPGAs.

III. PROPOSED CNN ARCHITECTURE

This Section details the methodology we employ for the

acceleration of the CNNs inference on FPGAs. The proposed

solution combines the benefit of HDL and HLS design flows

to easily setup whichever CNN on the target accelerator.

Moreover, data quantization and time-sharing are exploited to

minimize resource utilization and allow the implementation of

CNN inference on a wide number of FPGAs families.

In the context of CNNs accelerations, convolutional layers

represent the most critical computational kernel, as they con-

tain most of the network operations, and as a consequence,

they consume most of the accelerator resources. An inaccurate

design of the convolutional layer easily leads to degradation

of the overall system performance. Moreover, the convolu-

tional layer latency often dictates the performance of the

entire accelerator, as it usually represents the computational

bottleneck. For these reasons, it is crucial to fully exploit the

parallel architecture offered by FPGA devices to minimize the

convolution latency. Generally speaking, convolutional layers
are always followed by an activation layer, and, sometimes, by

a pooling layer. When the network computes quantized data,

a requantization layer is included between the activation and

the pooling layer. In this work, the aforementioned quartet

– or trio, if the pooling layer is absent – is named coarse-
layer and, as detailed in Section III-E, the features extraction

stage of a CNN can be viewed as a chain of pipelined coarse-

layers. The proposed methodology can leverage the same

hardware resources to implement several subsequent coarse-
layers, namely stage. Going deeper in the hierarchy, a coarse-
layer consists in the components shown in Figure 1:

• The Convolutional Core, whose function is to compute

the convolutions on the input feature-maps and to perform
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the accumulations to calculate the output feature-maps

values. This core is in essence devoted to implementing

the convolutional layer, excluding bias addition.

• The Pooling Core, which performs sub-sampling on the

features maps to implement the pooling layer.

• The Data Movement Finite State Machine (FSM), a set of

cores that orchestrate data movement as well as storage

of the intermediate results.

• The Requantization Core, whose function is to requantize

the accumulated output from the Convolutional Core

to bring it in the range of the output feature-maps,

performing also bias addition and non-linear activation,

essentially implementing the bias addition of the convo-
lutional layer as well as the activation layer.

Each of the aforementioned components will be further

analyzed in the remainder of this Section. For space reasons,

we will focus on the main features of each component.

A. Convolutional Core

The convolutional core contains most of the CNN opera-

tions, and results to be computationally intensive even when

high parallelism impose a substantial data movement from

the off-chip memory. The outcome of this core is a volume,

composed of a set of bi-dimensional matrices, named output

feature-maps. Specifically, the core input feature-maps are

convolved with a set of N×N filters and the resultant volume

is summed element-wise to obtain a single bi-dimensional

output feature-map. The described computational pattern keeps

room for two principal parallelism opportunities, named Intra-
FM and Intra-layer parallelisms. Intra-FM parallelism relies

on the data dependencies absence to compute the output

feature-map; as a result, a set of convolutions are computed

concurrently and a reduction tree is used to create the out-

put feature-map element. Intra-layer parallelism exploits data

reuse to convolve the same layer input feature-maps with

different weights-set to compute several output feature-maps

in parallel. The above-mentioned parallelism paradigms can

easily saturate the FPGA computational resources; even when

low-precision fixed point arithmetic is adopted, Digital Signal

Processings (DSPs) are not able to fulfill the available paral-

lelism: consequently, a fine-grained tuning of the convolutional

layer parallelism dictates both the overall performance and

the parallelism to infer on the other components. To exploit

both Intra-FM and Intra-layer parallelisms while saving DSPs

resources, this methodology implements a time-sharing ap-

proach to compute each convolution with one DSP primitive.

Each DSP is used as Multiply and Accumulate (MACC) unit

to perform an element-wise multiplication between the input

feature-map and the correspondent filter while accumulating

these partial results. To allow a single DSP to perform this

computation, the input datapath flows at a sub-multiple of the

clock frequency, whose value changes according to the filter

dimension. To the best of our knowledge, this is the first work

in the literature to exploit time-sharing for optimizing the CNN

inference on FPGA. This approach offers a substantial DSPs

count reduction and can exploit larger Intra-layer and Intra-

FMs parallelism, resulting in less off-chip data movement.

Moreover, the proposed hardware design relies on parame-

terized HDL-based cores that allow specifying the following

parameters: filter and input feature-map dimensions, bit-width

of data and weights buses, padding and stride factors, Intra-FM

and Intra-layer parallelisms. Such parameters allow to easily

tailor the oveall architecture to the target network and device.

The Convolutional Core architecture is shown in Figure 2.

The Memory Subsystem feeds a set of Convolution Ker-
nels, guaranteeing a dataflow communication pattern, while

a Weights Engine loads and distributes the weights windows

to each Convolution Kernel, whose output is hierarchically

accumulated by the Accumulation Core to create the corre-

sponding output feature-maps. A detailed description of each

component follows.

a) Memory Subsystem: The CNN convolutional layers

require concurrent access to several neighbor elements of the

input feature-maps: to perform the convolution, these elements

need to be slid and processed over a filter. The presented

methodology relies on bi-dimensional line buffers to give

concurrent access on all the filter elements while performing

a dataflow computation. Specifically, an input channel streams

sequentially the elements of the input feature-maps, while a

chain of FIFOs is used to cache a suitable number of rows

and output concurrent elements, preserving data locality. The

concept of on-chip buffering implemented in the Memory

Subsystem is based on the micro-architecture proposed in

[17]. The implemented Memory Subsystem exploits Intra-FM

parallelism, as the bit-width of its data-bus can be set to buffer

several input feature-maps concurrently. Intra-layer parallelism

is instead extracted from the Memory Subsystem outputs, as

the same data are used to compute different output feature-

maps. All datapaths of these blocks flow at a sub-multiple

of the clock frequency to allow all the Convolution Kernels

to compute data through the time-sharing technique. When

the stride factor is greater than one, the updating frequency

dynamically changes depending on the spatial location of the

elements within the FIFO chains: this optimization allows
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to freeze the FIFO chains only when its output has to be

processed by the Convolution Kernels to produce valid ele-

ments, while running at full frequency to skip dummy elements

windows. Finally, to orchestrate the data stream, a controller

is in charge of handling FIFOs read and write enables.

b) Convolution Kernels: The Memory Subsystem out-

puts are consumed by a set of Convolution Kernels that

perform the element-wise multiplications between the input

feature-maps elements and weights, as well as their accumu-

lations. This computation is performed by MACC units and

Multiplexers (MUXs): both these functional blocks work at

full frequency and leverage the datapath slowness to consume

data while sharing computational resources. In particular, each

clock cycle of the time-sharing period is used to multiply the

i-th element of the input window; the MUX output is fed

to the MACC unit, which performs the multiplication with

the corresponding weight and accumulates the partial result.

After N × N clock cycles, where N × N is the filter size,

the accumulator outputs the final result and resets its content.

When using Intra-layer parallelism, the same data are streamed

to different MACCs and multiplied with different weights.

c) Weights Engine: In CNN convolutional layers, the

same weights window is slid over the whole input feature map.

This computational pattern allows improving data locality by

saving the weights window in small memories until the input

feature map is completely processed. This solution requires a

high peak bandwidth: when a new set of feature-maps have to

be computed, slowness in loading memories-weights implies

computation stalls, which impact on throughput. Moreover,

depending on Intra-FM and Intra-layer parallelisms, the num-

ber of weights loaded in each iteration widely varies. To

avoid stalls, weights are loaded and saved on-chip before

the Memory Subsystem starts to forwards valid data to the

Convolution Kernels. To properly orchestrate the weights

loading, a tailored gearbox engine has been implemented.

The gearbox automatically distributes data from off-chip to

on-chip memories, providing weights to each MACC unit

until the input feature-maps are completely processed. All on-

chip memories share the same controlling structure: memories

must be written to store the gearbox data at the beginning of

each Convolution Kernels run, and must provide data to the

MACC units during the computation. If the off-chip memory

bandwidth is not enough to avoid computational stalls, the

Memory Subsystem freezes, and stops producing data to

the Convolution Kernels until the Weights Engine completes

weights loading. From that moment, the Weights Engine starts

writing data to the MACC units, guaranteeing synchronism

and coherency with the input datapath.

d) Accumulation Core: The results of several Convolu-

tion Kernels are summed element-wise to create the output

feature-map elements. To this purpose, the proposed method-

ology exploits a hierarchical accumulator strategy, where each

hierarchy level is in charge of performing a partial data

reduction until the output feature-map element is generated.

Accumulators are generated through top levels parameters to

match the Intra-FM and Intra-layer parallelisms.

B. Pooling Core

The proposed Pooling Core architecture shares the same

memory access pattern of the Convolutional Core. A FIFO

chain collects the output feature-maps produced by one of

the Requantization Core described in Section III-C, while its

output is consumed by tailored Pooling Kernels. The Pooling

Kernel does not require specific computational resources, as

it just needs one comparator working at full frequency to find

the maximum value of the window.

C. Data Movement Cores

The data movement cores are in charge of handling data

movement inside each stage. They are in essence FSMs, where

each state is determined by the current coarse-layer they are

computing. These cores are implemented using Vivado HLS,

and are thus described using a high-level language – i.e. C++

–. For each state, nested for-loops handle data transfers to and

from the different cores, counting the total number of elements

and number of iterations to perform before the computation for

the coarse-layer is completed. In particular, two main cores can

be identified, namely Data FSM and Weights FSM. The Data
FSM is interposed between two subsequent convolutional lay-

ers to perform data collection and reordering, as well as to pre-

process data for the subsequent Convolution Kernel, as data

between adjacent layers need to be normalized. Specifically,

data coming from the previous coarse-layer are saved on-chip

and distributed to the Convolution Kernel. Data reordering is

necessary when the Convolutional Core computes a fraction

of output feature-maps at a time; therefore, data at the input of

the Data FSM are composed by a fragmented output feature-

maps and must be properly reordered to feed the following

coarse-layer correctly. The Weights FSM takes weights from

the off-chip memory and simply perform an element-wise

normalization of the Convolutional Core weights.

D. Requantization Core

As discussed in the literature [18], CNN inference with

lower-precision quantized networks can achieve results com-

parable to floating point arithmetic, with an accuracy loss of

only a few percentage points. Quantized networks are bene-

ficial for FPGA devices, as fixed-point arithmetic is lighter

than the floating point one, in terms of both latency and

resource consumption. Moreover, data quantization reduces

the memory footprint and memory bandwidth requirements,

because it exploits data types with reduced bit-width. As a

direct consequence of these considerations, this work leverages

8-bit integer arithmetics to perform the CNN computations,

which is also the choice of several industry leaders [19],

[20]. Nevertheless, in order to effectively work with 8-bit

quantized data, a Requantization Core is necessary in order

to correctly requantize the output feature-maps to avoid over-

flows. The requantization core is placed after the accumulation

hierarchy and performs data requantization, Rectified Linear

Units (ReLU) activation and biases addition. Indeed, from the

Convolution Kernel input and the Accumulator outputs, data

bit-widths have to be increased to avoid overflow during the
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Fig. 3. High-level overview of the proposed hardware accelerator.

computation. Therefore, once the convolution is performed and

the output feature-maps are created, the Requantization Core

rescales these elements at their original bit-widths. Lastly, it

is important to highlight that this core might consume a part

of the available DSPs, depending on what the HLS tool infers

during HLS synthesis. However, DSP utilization can be tuned

using HLS directives and it represents a small fraction of the

Convolutional Core DSP utilization.

E. CNN Hardware Accelerator

The proposed architecture follows a standard host-

accelerator scheme where the host – i.e. the CPU – is

responsible for the initial data pre-processing – if needed –

and the final results gathering after hardware acceleration takes

place. Data is first sent to the accelerator through a Peripheral

Component Interconnect Express (PCIe) interface, in order

to copy both weights and input data to the FPGA external

memory. The computation starts when all the weights are

transferred and the first image is streamed to the accelerator.

It is worth to note that weights are sent to the accelerator

only at the beginning of the first computation; from that

moment on, they reside on the FPGA external memory and a

controller is in charge of sending them to the Weights Engine

periodically. This solution allows to easily process multiple

input frames in a batch, which is a common scenario in real

applications, where models are used to process a collection

– sometimes a continuous stream – of frames. As a result,

the proposed acceleration methodology implements Inter-layer
parallelism: such parallelism is realized when the accelerator

executes layers in a pipelined fashion, which intuitively means

that while layer l is computing on a frame, layer l − 1 is

computing on the subsequent frame in the batch. This is the

general idea beyond Inter-layer parallelism, though the actual

implementation differs. Indeed, our architecture allows to

cluster subsequent layers into stages according to resource and

performance requirements. Each pipeline stage s implements

one or more subsequent coarse-layers and have a certain total

latency τs. The total latency to process a single frame will,

therefore, be
∑

s∈S τs as the frame needs to pass through all

the stages to be fully processed. However, as for a classical

pipeline, at steady state each stage s will be processing a

different input frame, therefore resulting in an increase of

the throughput since the time-per-frame will be given by the

slowest stage, i.e. maxs∈S τs. Figure 3 depicts the overall

system, showing the pipelined architecture of the accelerator

along with the aforementioned components.

IV. RESOURCES AND PERFORMANCE MODEL

Convolutional Cores are the key components of the design,

as they are the most resource-demanding and the actual

performance bound. Therefore, determining how many of them

to use – i.e. the number of stages – and their degrees of

internal parallelism, takes precedence over the other parts of

the accelerator. Pooling Cores, data movements FSMs and

Requantization Cores will simply be derived consequently.

Moreover, their impact on the resulting execution time will

be negligible. Indeed, the larger part of the total operations

count is given by the Convolutional Core which is the larger

contributor to the total stage latency. Moreover, DSPs usage

is often the most constraining resource of the Convolutional

Cores. For this reason, the proposed model relies on its

estimation for a good assessment of the feasibility of the entire

design. It is worth reminding that thanks to the proposed time-

sharing, just one DSP is needed to perform an entire convo-

lution, independently from the filter dimension. For a given

Convolutional Core c, the total DSP usage is a function of the

chosen Intra-FM parallelism δc and Intra-layer parallelism κc:

DSPc(δc, κc) = δc · κc (1)

To estimate the total number of clock cycles τc of a given

Convolutional Core c, the following equation can be used:

τc(δc, κc) =
(τcompute + τload) · |Fl−1| · |Fl|

δc · κc
(2)

where |Fl−1| and |Fl| represent the cardinalities of respectively

the input and output feature-maps, τcompute is the number

of cycles for computing the rows and columns of a single

input/output feature-map pair, while τload are the cycles spent

in loading data for each input/output feature-map pair. Overall,

τcompute can be evaluated as:

τcompute = ml · nl · ρ2l (3)

where (ml, nl) represent the size – rows m and columns n –

of the output features maps and ρ is the kernel size. On the

other hand, τload can be expressed as:

τload = ml−1 · nl−1 −ml · nl (4)

where (ml−1, nl−1) represent the size – rows m and columns

n – of the padded input feature-maps. The total execution

time Tc will be then simply given by dividing τc by the target

frequency Hc: Tc = τc/Hc. Notice that the term ρ2l stems from

the fact that the proposed implementation uses time-sharing.

V. DESIGN SPACE EXPLORATION

In this Section, we describe our pareto optimal design space

exploration that allows exploring CNN architectures that are

both optimal in terms of throughput and DSPs resource con-

sumption. The proposed design space exploration focuses on

the Convolutional Cores, as they represent the key components

in determining resource and performance of the final design.
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A. Stages characterization

First of all, given the set of Convolutional Cores C within

the CNN, such cores can be grouped in a set of stages S. A

stage s ∈ S consists in a set of Convolutional Cores Cs ⊆ C.

Every stage s ∈ S has to satisfy a number of requirements

needed for achieving an efficient implementation of the stage:

1) To simplify routing of the final hardware design, we

require the Convolutional Cores of the stage to be con-

nected one after the other, i.e. to form a chain of cores.

2) Since the same hardware is shared by the Convolutional

Cores within the stage, all the Convolutional Cores c ∈
Cs must have the same kernel size ρs, the same Intra-FM

parallelism δs and the same Intra-layer parallelism κs.

3) For best efficiency, we require that, for all c ∈ Cs, the

Intra-FM parallelism δs is a submultiple of |F c
l−1| and that

the Intra-layer parallelism κs is a submultiple of |F c
l |.

Overall, a stage s ∈ S can be uniquely identified by the

tuple s = (Cs, δs, κs). Therefore, by taking into account

the previously defined constraints, for a CNN containing |C|
convolutional layers, there exists at most O(|C|2 · |Fmax

l−1 | ·
|Fmax

l |) different stages, where Fmax
l−1 = maxc∈C{|F c

l−1|}
and Fmax

l = maxc∈C{|F c
l |}. Hence, since the number of

different stages within a CNN has a manageable size, we can

enumerate all possible stages and compute the corresponding

latency and DSP resource consumption of each stage. In partic-

ular, since the Convolutional Cores share the same hardware,

the number of DSPs of a stage s = (Cs, δs, κs) ∈ S is:

DSPs = δs · κs (5)

On the other hand, the stage latency is the sum of the latencies

of the Convolutional Cores within the stage:

τs =
∑

c∈Cs

τc(δs, κs) (6)

B. System characterization

The final system contains a subset A of all the possible

stages S. Indeed, each stage s ∈ S implements a subset of the

Convolutional Cores Cs and the final accelerator must contain

a single implementation of each Convolutional Core. In order

to define the feasible system solutions and optimize them in

terms of resource consumption and performance, we define an

ILP model. First, we characterize a system implementing the

target CNN with the binary variables xs∀s ∈ S, where xs = 1
if and only if stage s is used in the final system (i.e. if and

only if s ∈ A). Then, for a feasible system, we require that

each Convolutional Core is implemented by exactly one stage:
∑

s∈S|c∈Cs

xs = 1 ∀c ∈ C (7)

Furthermore, in order to obtain an efficient hardware im-

plementation, we prevent pairs of subsequent Convolutional

Cores ci ∈ s1 and ci+1 ∈ s2, where neither κs1 is a multiple

of δs2 and δs2 is a multiple of κs1 :

xs1 + xs2 ≤ 1 ∀s1, s2 ∈ S | ci ∈ s1, ci+1 ∈ s2 ∧
κs1/δs2 ∧ δs2/κs1

(8)

Algorithm 1 pareto optimal design space exploration

1: m← createILPModel(S)
2: φmax ← +∞ � the current initiation interval bound
3: P ← ∅
4: repeat
5: m.wφ ← 0, m.wΔ ← 1 � minimize DSPs
6: m.φmax ← φmax � bound on initiation interval
7: m.Δmax ← +∞
8: m.optimize()
9: feasible← m.isFeasible()

10: if feasible then
11: Δ← m.getObjectiveValue()
12: m.wφ ← 1, m.wΔ ← 0 � minimize initiation interval
13: m.Δmax ← Δ � bound on DSPs
14: m.φmax ← +∞
15: m.optimize()
16: φmax ← m.getObjectiveValue()
17: P ← P ∪ (φmax,Δ,m.getSolution())
18: φmax ← φmax − 1 � reduce initiation interval bound

19: until feasible
20: return P

As previously discussed, the proposed architecture is a

coarse grain pipeline of many stages. Hence, the initiation

interval φ of the pipeline, which determines its throughput, is

bounded by the slowest stage. Hence, we can introduce the

variable φ in our ILP model and the corresponding constraint:

φ ≥ τs · xs ∀s ∈ S (9)

On the other hand, the total amount of DSPs Δ used by the

system can be computed as:

Δ =
∑

s∈S
xs ·DSPs (10)

C. pareto optimal exploration

In order to identify all the pareto optimal solutions in

terms of DSP resource consumption Δ and initiation interval

φ, we optimize multiple ILP models in which we alternate

minimizations of resources and minimization of initiation

interval. For this purpose, we define two parameters: Δmax

and φmax and add the following constraints to our ILP model:

Δ ≤ Δmax, φ ≤ φmax (11)

and, as objective function, we minimize a linear combina-

tion of the initiation interval and DSP resource consumption:

argmin wφ · φ+ wΔ ·Δ (12)

The exploration works as described in Algorithm 1. The

procedure starts by finding the solution that requires the

least amount of DSPs Δ, then, solves a second ILP model

whose target is to minimize the initiation interval φ under the

constraint of using at most Δ DSPs resources, found from the

first solution. In this fashion, we guarantee that there exists

no solution with less DSPs and the same initiation interval,

or with the same DSPs and smaller initiation interval. Hence

the solution found is pareto optimal and is saved in the set

of pareto optimal solutions P . Then, the process repeats by

searching for a solution having an initiation interval of at most
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TABLE I
PERFORMANCE OF THE PARETO OPTIMAL DSE

CNN
Conv. Exec. time Design space Pareto optimal
layers [s] size solutions

AlexNet 5 37.47 2.78 · 1010 91
VGG-16 13 38.23 4.72 · 1032 233

TABLE II
CONFIGURATION OF ALEXNET, EXTRACTED FROM THE DSE,
IMPLEMENTED ON A XILINX VIRTEX-7 XC7VX485T FPGA.

Stage
Conv. Intra-FM Intra-layer

DSPs
Initiation Int.

layers parallelism parallelism [clock cycles]

S0 1 3 96 288 430985

S1 2 32 32 1024 599664

S2 3, 4, 5 128 8 1024 756000

φ − 1. Hence, the next iteration of the algorithm can only

find a different pareto optimal solution with smaller initiation

interval and higher DSP resource requirements. The process

iterates until no more feasible solutions can be found. This

happens when all the available parallelism is exploited and

the initiation interval cannot be reduced further.

Overall, the proposed algorithm allows identifying all the

available pareto optimal solutions before implementing the

design on any specific FPGA. Hence, the designer can leverage

on this approach to either identify a suitable FPGA board

for achieving the desired performance or, to seek for the best

possible implementation that fits within a target FPGA.

VI. EXPERIMENTAL EVALUATION

In this Section, we validate both the automated pareto

optimal DSE and the proposed CNN architecture. In particular,

with respect to the DSE, we considered two well-known

CNNs, namely AlexNet [13] and VGG-16 [14]. The DSE has

been performed on a Intel Core i7-4870HQ CPU @ 2.50GHz

processor, while Gurobi 8.1 [21] has been used for solving the

ILP models. Table I reports the execution time of the DSE,

the number of identified solutions, as well as the size of the

design space being explored. It is worth noting that the DSE

requires less than 40 seconds for both networks. For the VGG-

16 case, the DSE identifies all the 233 pareto optimal solutions

out of the 4.72 · 1032 possible network implementations (the

size of the design space has been computed with dynamic

programming on all the combination of stages S). Finally,

the identified pareto optimal solutions are shown in Figure 4

and Figure 5. As an example, from Figure 4, we can see

that the best performing solution requires 3,872 DSPs with

an estimated initiation interval of 430,985 cycles. In this con-

figuration, the performance is limited by the first convolutional

layer, which is the bottleneck and for which the proposed CNN

architecture cannot leverage additional parallelism.

In order to further validate the approach, we implemented in

hardware a configuration of AlexNet derived from the DSE on

a Xilinx Virtex-7 XC7VX485T FPGA, and we measured the

estimation error of the DSE. We chose the AlexNet network
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Fig. 4. Pareto optimal solutions of AlexNet identified by the DSE. The figure
highlights the implemented AlexNet configuration - red diamond -, as well as
the total number of DSP slices available on the target FPGA - dotted line -.
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Fig. 5. Pareto optimal solutions of VGG-16 identified by the DSE.

as it exhibits more heterogeneity in terms of configuration

parameters compared to VGG-16. Hence it allows to bet-

ter validate both the model reliability and the architecture

flexibility. As Figure 4 shows, most of the pareto optimal

solutions inferred by the DSE can be implemented on the

target FPGA, which is equipped with 2, 800 DSPs slices.

Among others, we choose the implementation described in

Table II and highlighted in Figure 4, as it represents a good

trade-off between parallelization degrees and overall resource

utilization. As reported in Table II, we split the network into

three stages, which represent three subsequent blocks of the

computational pipeline described in Section III-E. Specifically,

while the first and the second stages consist of a single coarse-
layer, the last stage exploits the clustering capability discussed

in Section III to implement the last three convolutional layers

with the same hardware resources. Table II also shows the

initiation interval of each stage, highlighting the third stage

to be the network computational bottleneck for the selected

configuration. As a result, when a batch of images is processed

sequentially, and the computational pipeline is completely

filled by the batch, the selected configuration should peak

at a throughput of 756,000 clock cycles per image. Figure 6

reports the on-board run-time of the network for several batch

sizes, including both the accelerator execution time and the

data transmission between the host and accelerator. At steady-

state - i.e. for a batch of 64 images -, the proposed imple-

mentation provides an experimental throughput of 4.05 ms
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Fig. 6. Throughput of the AlexNet network with different batch sizes.

TABLE III
RESOURCE CONSUMPTION OF THE IMPLEMENTED ALEXNET NETWORK

TARGETING THE XILINX VIRTEX-7 XC7VX485T FPGA.

LUTs Flip-Flops DSPs BRAMs

191,451 (63%) 390,556 (64%) 2,383 (85%) 1,511 (73%)

per image, corresponding to 585.68 GOPS that accounts for

both convolution and requantization operations. Consequently,

as the design target frequency is 200 MHz, Figure 6 shows

a throughput of 810,233 clock cycles per image. Hence, the

analytical model obtained an estimation error of 6.69% with

respect to the experimental measure that accounts also for

communication overheads of both PCIe and Double Data

Rate (DDR) data transfers. The resource utilization of the

selected AlexNet configuration is reported in Table III. As

claimed in Section IV, DSPs slices are the most used FPGA

resources. Compared to the theoretical estimation of Table II,

47 additional DSPs are required, which are mainly used to

perform data re-quantization after the Convolutional Core.

VII. CONCLUSIONS

This paper proposes an architecture to evaluate the CNN

feature-extraction stage on FPGA, along with reliable per-

formance and resource models to drive an automatic pareto

optimal DSE. The hardware architecture employs a dataflow-

like computational pattern to maximize throughput, as well

as a time-sharing technique to reduce the number of DSPs

required to perform each convolution. To improve the design

productivity, the proposed work relies on a mix of HDL and

HLS written modules to easily compose the target CNN.

The pareto optimal DSE allows to quickly identify candidate

implementations for FPGA devices with different resources

availability. The proposed DSE has been tested on both

AlexNet and VGG-16 and was able to identify up to 233 pareto

optimal solutions in 38.23 seconds. Finally, starting from the

DSE results, we implemented AlexNet on a Xilinx Virtex-7

XC7VX485T FPGA, achieving a throughput of 4.05 ms per

image, with a performance estimation error of 6, 69%. Future

work will extend the analytical models to consider resources

other than DSPs and estimate memory transfer bottlenecks.

Finally, we are working to address multi-FPGA scenarios.
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