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Abstract—The advances in data, computing and networking
over the last two decades led to a shift in many application
domains that includes machine learning on big data as a
part of the scientific process, requiring new capabilities for
integrated and distributed hardware and software infrastructure.
This paper contributes a workflow-driven approach for dynamic
data-driven application development on top of a new kind of
networked Cyberinfrastructure called CHASE-CI. In particular,
we present: 1) The architecture for CHASE-CI, a network of
distributed fast GPU appliances for machine learning and storage
managed through Kubernetes on the high-speed (10-100Gbps)
Pacific Research Platform (PRP); 2) A machine learning software
containerization approach and libraries required for turning such
a network into a distributed computer for big data analysis;
3) An atmospheric science case study that can only be made
scalable with an infrastructure like CHASE-CI; 4) Capabilities
for virtual cluster management for data communication and
analysis in a dynamically scalable fashion, and visualization
across the network in specialized visualization facilities in near
real-time; and, 5) A step-by-step workflow and performance
measurement approach that enables taking advantage of the
dynamic architecture of the CHASE-CI network and container
management infrastructure.

Index Terms—networking, Kubernetes, workflows

I. INTRODUCTION

Over the last two decades, massive changes occurred in
data collection and analysis. These new advances including
on demand computing, Big Data and the Internet of Things,
and new forms of machine learning, lead to a new age for
Artificial Intelligence with a high dependency on networking
and connectivity. All fields of scientific research have also
observed major changes in how science is being conducted
today, creating requirements for cyberinfrastructure (CI) that
is as dynamic and data-driven as the science it supports.
Scientific endeavor today often includes distributed scientific
applications running on a continuum of computational re-
sources with the need for near real-time big data processing
capabilities to process data streaming from remote instruments
or large scale simulations. Due to such influences, one of the
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most rapidly growing core research fields is machine learning
(ML) with large datasets, either static or streaming.

Research at the frontier of this emerging discipline requires
use of large amounts of compute time (more and more on
Graphics Processing Units, GPUs) and specialized non-von
Neumann (NvN) processors, along with ability to use, measure
and scale a rapidly growing number of software libraries and
technologies while moving data from its source rapidly for
archival and processing.

Moreover, as the number of applications that need such
capabilities grew, a need emerged for development tools and
user-facing environments to interact with these new forms
of CI and ML, and build scientific applications on top of
them. A big challenge here is the integration of CI capabilities
(including a networks stack, ranging from high-level tools and
interfaces, down to low-level hardware) in a way that matches
the dynamic needs of executing applications in user workflows.

The United States National Science Foundation (NSF)
funded two data movement and storage CI projects, the Pacific
Research Platform (PRP) and its successor National Research
Platform (NRP), to build a new research CI that addresses all
of the following aforementioned challenges and needs:

1) The ability to share affordable GPU resources among
many researchers;

2) Exploitation of new-generation energy efficient NvN
processors;

3) Access to a wide array of ML algorithms;
4) Access to, or the ability to rapidly gain, expertise in

managing and measuring such systems; and, critically,
5) The facilitation of rapid access, movement and storage

of extremely large datasets.
A third NSF project called CHASE-CI, a Cognitive Hard-

ware and Software Ecosystem Community Infrastructure, was
funded to enable deployment, measurement and utilization
of machine learning libraries and storage on top of the
PRP infrastructure, and development of user workflows that
can dynamically be measured and configured on top of the
deployed network, hardware and software.

Contributions. The discussion in the paper relates to this
need for and importance of facilitating user workflows on
top of the existing and up and coming dynamic networks for
distributed advanced computing. In particular, we present:
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1) The architecture for CHASE-CI, a network of distributed
fast GPU appliances for machine learning and storage
managed through Kubernetes on the high-speed (10-100
Gbps) Pacific Research Platform (PRP),

2) A machine learning software containerization approach
and libraries required for turning such a network into a
distributed computer for big data analysis,

3) An atmospheric science case study that can only be
made scalable with an infrastructure like CHASE-CI,

4) Capabilities for virtual cluster management for data
communication and analysis in a dynamically scalable
fashion, and visualization across the network in special-
ized visualization facilities in near real-time, and

5) A step-by-step workflow and performance measurement
approach that enables taking advantage of the dynamic
architecture of the CHASE-CI network and container
management infrastructure.

Outline. The rest of this paper is organized as follows. In
Section II, we introduce the CHASE-CI infrastructure and
explain our container management approach in CHASE-CI
(contributions 1 and 2). Section III introduces the atmospheric
science study and describes each step of a machine learning
workflow within this study in detail (contribution 3). In
Sections IV and V, we introduce the Kubernetes constructs
for virtual cluster and resource management using names-
paces and pods (contribution 4).We introduce a collaborative
workflow integration, measurement and execution approach
(contribution 5) in Section VI . We review our other related
work in Section VII and conclude in Section VIII.

II. CHASE-CI INFRASTRUCTURE

The CHASE-CI project takes advantage of existing CI to
put machine learning tools at the fingertips of researchers.
High-bandwidth data transfer and access to GPUs provides
a framework for a variety of machine learning workflows.
The hardware backbone of CHASE-CI is the Pacific Research
Platform (PRP), a partnership of more than 20 institutions,
including four NSF/DOE/NASA supercomputer centers [1].
By deploying Data Transfer Nodes (DTNs) at partner sites, the
PRP (with the support of CENIC [2]) established a high-speed
cloud connected on 10G, 40G and 100G networks using the
ESnet Science DMZ [3] model as a basis for its architecture.
The Science DMZ model consists of simple, scalable networks
with a focus on security and high-performance computing.
DTNs are responsible for the efficient movement of large
amounts of scientific data to and from remote sites. Perfor-
mance is optimized by minimizing data transfer on Local
Area Networks (LANs), favoring high-bandwidth Wide Area
Networks (WANs) such as the fiber connecting PRP sites.

Data Transfer Nodes at PRP endpoints are named Flash
I/O Network Appliances (FIONAs) and, as the name im-
plies, contain high performance Network Interface Controllers
(NICs) and high capacity Solid State Drives (SSDs). They can
be built to different specifications depending on budget and
network capabilities. The basic FIONA machines at Calit2
each contain dual 12-core CPUs, 96 GB RAM, 1TB SSD,

Fig. 1. Running Kubernetes/Rook/Ceph On PRP Allows the Deployment of
a Distributed PB+ of Storage for Posting Science Data

and two 10 GbE interfaces [1]. CHASE-CI adds clouds of
game GPUs and NvN machines to the PRP. Multi-tenant,
“FIONA8” machines containing eight game GPUs each have
been installed at various PRP sites, along with over a petabyte
of storage (SSD and NVMe) for hosting scientific data. Using
a containerized, self-healing ecosystem built with open source
tools laid the framework for promoting workflows in an
extensive hyperconverged system named “Nautilus”. Figure 1
shows the FIONA8 and storage nodes distributed on the PRP
backbone and managed dynamically through containerization.

A. Container Orchestration in CHASE-CI

Kubernetes is the container orchestration engine used for
management and deployment in Nautilus. It is an increasingly
popular tool first open-sourced by Google in 2014 [4]. Us-
ing containers guarantees environmental consistency, resource
isolation, and portability. The same container can run on a
variety of systems, as each containerized application deploys
with its software dependencies. A Kubernetes cluster consists
of hardware resources (compute and memory), containerized
applications, and a set of policies which define the desired
behavior of the cluster. The cluster is further split into different
namespaces that allow for separation of deployment execution.
This namespace is a grouping of containers that can all talk
to each other and can share a common data store. A frame-
work is provided to define policies pertaining to networking,
security, load balancing, fault tolerance, updates, and resource
management. In addition to policies for scheduling containers,
software is needed to run the containers. The Nautilus cluster
uses the open-source Docker platform for operating-system-
level virtualization, i.e. “containerization” [5].

As many devices are not supported natively in Kubernetes,
a device plugin is deployed to provide low-level access to
CHASE-CI GPUs from within a container [6]. Using these
runtime hooks, researchers can leverage the hardware using
the CUDA API [7] to drastically reduce the amount of
compute time needed for data analytics and training artificial
intelligence algorithms on large data sets. Many machine
learning projects use a Jupyter Notebook to run their hardware
accelerated training using high-level tools such as Tensorflow
and PyTorch, and these are easily deployed on multi-GPU



nodes. However, using custom containers, such as the case
study discussed in Section III, allows powerful scalability and
granular control of the workflow.

Vast amounts of fast storage is paramount to the efficiency
of machine learning workflows. As shown in Figure 1, Nau-
tilus uses Rook, an embedded strain of the Ceph cloud-native
storage system [8]. Ceph provides block, object, and POSIX
compliant file storage as a service within the cluster. Massively
scalable, Ceph replicates and dynamically distributes data
between storage nodes while monitoring their health. Based
on RADOS [9], Ceph is largely autonomous and ensures
high availability. Data is easily mounted and shared between
containers running in Nautilus, as well as compatible with
other cloud storage solutions such as Amazon S3, OpenStack
Swift, and various supercomputer storage architectures via the
Ceph Object Store [10], e.g., at the San Diego Supercomputer
Center (SDSC).

Equipped with a cloud of compute and storage nodes,
hundreds of GPUs, and kilometers of high-bandwidth fiber
paths between institutions, Nautilus needs software to monitor
the health, availability, and performance of resources. Grafana
is an open source platform for time series analytics [11]. It
graphs cluster health and performance data using a functional
query language provided by Prometheus [12]. Grafanas web-
based dashboard (e.g., Figure 3) is accessible from a browser,
providing a quick debugging solution for cluster users and
administrators.

III. A CHASE-CI CASE STUDY: OBJECT SEGMENTATION
WORKFLOW

Often, earth science phenomena (e.g., rain clouds, flash
floods, droughts, wildfires, ocean temperatures) are not clearly
defined and change dynamically in time and space, making
it challenging to apply rapid object segmentation to the
earth sciences. Most segmentation approaches, including Deep
Learning algorithms, only extract pixel-level segmentation
masks, and typically do not consider the temporal information
of the data. However, the CONNected objeECT, or CON-
NECT algorithm [21], [22] focuses on keeping track of the
entire life-cycle of a detected earth science phenomena by
connecting pixels in time and space. Previous work on the
CONNECT algorithm focused on using MATLAB functions
using a single CPU, limited memory, and storage hardware,
and no access to Data Transfer Nodes (DTNs) on a high
speed research network. To improve on this approach, we used
CHASE-CI resources to accelerate the CONNECT workflow.
We experimented with Machine Learning approaches that
were optimized for GPU acceleration in order to do rapid
object segmentation using National Aeronautics and Space
Administration (NASA) data.

The CHASE-CI resources provided unique capabilities with
the combination of a high speed research network, FIONA8s,
Ceph Object Store, and accessible GPUs using Kubernetes
orchestration. These capabilities allow for flexible workflow
environments, at-scale machine learning for object segmenta-
tion, and automated deployment across the CHASE-CI kuber-

netes cluster. The combination of these resources innovated
the CONNECT workflow in several ways, including:

1) Rapid data transfer between a FIONA and Ceph cloud-
based object storage, which is distributed across the
Pacific Research Platform (PRP): This is performed
harnessing Unidata’s Thematic Real-time Environmen-
tal Distributed Data Services (THREDDS) [19] server
maintained on a node within the PRP allowing Kuber-
netes to transfer data into the Nautilus system.

2) Applying a new object segmentation algorithm: Instead
of using MATLAB functions that use a single CPU to
do the object segmentation, a new algorithm, Flood-
Filling Network (FFN) [20], was used. The FFN was
applied to NASA data using 50 NVIDIA 1080ti GPUs
based on Tensorflow. For this case study, 455GB of 3-
hourly, NASA Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA V2)
dataset from January 1, 1980 to May 31, 2018 was
used. The MERRA V2 reanalysis product represents the
satellite era using a state-of-the-art assimilation system,
known as the Goddard Earth Observing System Data
Assimilation System Version 5 [16], [18]. The data
has a temporal frequency of 3-hourly from 00:00 UTC
(instantaneous), with a 3-D spatial grid at full horizontal
resolution. The resolution is 0.5 x 0.625 in latitude and
longitude (i.e., global resolution of 576x361 pixels), and
42 vertical levels in the atmosphere. This data is used in
this case study for calculating Integrated Water Vapor
Transport (IVT) from the assimilated meteorological
field data archive (M2I3NPASM).

Fig. 2. Workflow steps

The accelerated workflow was developed to use multiple
Docker images for job specific tasks. As illustrated in Fig-
ure 6, the steps taken in the accelerated workflow include:
1. downloading data from THREDDS and data preparation, 2.
model training, and 3. distributed multi-GPU model inference.
Step 4, the final step, is visualization. In addition, the Nautilus
Grafana dashboard was used to monitor jobs at each step



of the workflow and is reported below. Over the next four
subsections, we describe a step-by-step description of the
accelerated workflow.

A. Step 1: THREDDS Data Download

Three Docker images were created for handling the down-
loading steps necessary for transferring data to the Ceph
Object Store (which can be seen by all nodes in the custer).
THREDDS is a web server that provides metadata and data
access for scientific datasets using a variety of remote data
access protocols 1. THREDDS provides a data subset tool that
allows for selection of a variable within files, and provides
the capability to transfer only that specific variable instead of
the entire file. Using this capability (for this case study we
selected Integrated Water Vapor Transport (IVT)) we reduced
our total archive size from 455GB to 246GB. This allowed us
to significantly reduce the need to download entire files with
many variables and metadata, greatly increasing the speed at
which data is transferred.

Fig. 3. Kubernetes data download job orchestration: 10 Workers, managed
by a Redis job queue (each color represents a worker). Total time to run is
37 minutes with a total data size transfer of 246GB (112,249 NetCDF files).
Graph shows CPU and Memory usage during this time.

Fig. 4. Network usage during download job run. IOPS: Max 593MB/s.
Throughput: Max 2.64GB

1THREDDS remote data access protocol catalog:
http://its-dtn-02.prism.optiputer.net:8080/thredds/catalog.html

The first step uses 10 Kubernetes workers (pods) and were
set up through a Job resource to download the 246GB (112,249
NetCDF files) from THREDDS. The Kubernetes Job handles
how each worker pod is set up and allows for easily scaling
the number of workers present. The Job also handles creating
pods on different nodes if pods are shut down by the system
or crash. To execute the data download, each worker uses the
open source Aria22 file transfer software that allows multiple
parallel downloads (20 parallel downloads in our case) to
retrieve urls stored in a list of data files streamed from a Redis
queue. The Redis queue holds a list of files that contain urls
to download from the THREDDS server, each pod pops a
message off the queue and uses the file path included in the
message as input to Aria2. Aria2 then downloads all the urls
listed in the file.

The Redis queue was developed to keep track of which files
were downloaded and to distribute the work across pods. The
workers continue to process messages in the Redis queue until
all files within the Redis database have been downloaded. With
112,249 NetCDF files in total, each worker also merges the
small individual files into larger (Hierarchical Data Format)
files for input into the FFN model and transfers the larger
file to the Ceph Object Store. Once completed, the data has
been transferred from an online archive, processed, and stored
in the Ceph Object Store for future Kubernetes training and
inference jobs.

Step 1’s total run time is 37 minutes with IOPS of 593MB/s
(max) and throughput of 2.64GB (max) as seen in Figures 3
and 4. Each color in Figure 3 represents an individual worker.

B. Step 2: Model Training

Once the data has been transferred to the storage volume
(CephFS accessible by all nodes) and the data has been split
up into the appropriate number of subsets, a single additional
Docker image is spawned for model training. The model
selected to do rapid segmentation was the FFN model and
was adapted to do segmentation of NASA data.

Fig. 5. Training job - Purple shows the data preparation job. Green is the
FFN algorithm training on a 576x361x240 data volume.

The FFN model uses a 3D convolution neural network (3D
CNN) developed by Google based on Tensorflow. The 3D

2Aria file transfer software: https://aria2.github.io/

http://its-dtn-02.prism.optiputer.net:8080/thredds/catalog.html


CNN is able to separate objects within a 3D volume of spatial
data or images by using a deep stack of 3D convolutions [20].
The network is trained to take an input object mask within the
networks field of view to infer the boundaries of the objects.
Training the model relies on a labeled dataset, differentiating
the objects with numerical values representing categories of
objects. In our case, it is a binary representation of locations
on earth where intense large-scale moisture transport (IVT)
processes exist. The CONNECT dataset [23] is used for
training, which includes segmented IVT objects in binary
label representation. These labeled objects are then used to
train the FFN for 30 days of data (240 3-hourly images)
and a file size of 381MB providing a training volume of
576x361x240 voxels. The training was performed on a single
NVIDIA 1080ti GPU using CUDA 9 and Tensorflow 1.13.0-
rc1. A detailed description of the model is beyond the scope
of this paper and FFN model and parameters can be reviewed
on github (https://github.come/ffn) [20]. Step 2’s total run time
is 306 minutes. Figure 5 shows the performance comparison
between data preparation and training using the FFN algorithm
on a 576x361x240 data volume.

C. Step 3: Model Inference

The trained FFN model is then saved in the Ceph Object
Store, including all parameters and configurations needed to
do inference on new NASA data. Depending on the number
of GPUs available at the time (in this example 50 NVIDIA
1080ti GPUs were used) a series of kubernetes run files are
generated in order to distribute the inference job to many
workers, each with a dedicated GPU and subset of the new
NASA data. The number of GPUs in this section can scale
to any number depending on the number of inference jobs
needed. This is where its using the model previously generated
from the training step. The entire 246GB (576x361x112,249
or 2.3e10 voxels) is evenly distributed across the 50 GPUs and
the total inference time is 18 hours 53 minutes (1133 minutes).
Ongoing experiments with model settings are expected to
improve the inference time and will be reported on in future
publications.

Note that the training volume is removed from the test data
volume for all validation metrics. Because Nautilus contains so
many GPUs, CHASE-CI is an ideal situation and environment
to run this step. It would take a long time for a limited number
of GPUs to produce the same result without access to this GPU
cluster.

D. Step 4: JupyterLab Visualization

The Ceph Object Store contains all workflow files and
model results, which allows for efficient analysis of results and
visualization using Nautilus’s JupyterLab3. JupyterLab can be
accessed with just a web browser and mitigates the need to
do large scale data results file transfers to a local machine
for post-processing analysis. Using a web browser, a Nautilus
JupyterLab instance can be spawned with the Ceph Object

3JupyterLab Environment: https://github.com/jupyterlab/jupyterlab

Fig. 6. Inference job - Top) Number of CPUs being utilized, Middle) Memory
utilization, Bottom) Number of GPUs being utilized.

TABLE I
NAUTILUS RESOURCE SUMMARY TABLE FOR ALL STEPS IN THE

WORKFLOW

Step 1 Step 2 Step 3 Step 4
# of Pods 14 1 50 1
# of CPUs 42 1 50 1
# of GPUs 0 1 50 1
Data Processed 246GB 381MB 246GB 5.8GB
Memory 225GB 14.8GB 600GB 12GB
Total Time 37m 306m 1133m NA

Store mounted. A visualization notebook is then used to load
the most recent results, plot out the segmented objects, and
calculate object statistics for post-processing analysis. The
researcher benefits greatly due to the ability to quickly access
the model results while also accessing the flexible resources
provided by the Nautilus cluster, allowing the researcher to
quickly make adjustments to the data, model, variables, and
parameters and then rerun the experiment.

E. Workflow Summary and Future Steps

Each of the workflow steps described in this case study
were developed to be deployed ”at-scale” and adaptable to new
resources and Machine Learning models as they come online
within Nautilus. As described in Step 2 and shown in Figure
5, model training is slow, including the pre-training steps of
building training partition volumes and data coordinates for
the FFN model. This is a challenge and is an area of active
research, but once a model is trained, the inference step allows
for rapid object segmentation at scales not possible without
access to a cluster of GPUs like the ones that are part of
Nautilus.



We continue to optimize the execution of this workflow
and add new strategies based on the measurements within
CHASE-CI and other cloud environments through Kubernetes.
In addition, the design of the workflow does provide the capa-
bilities of including other Machine Learning algorithms. Here,
we summarize our ongoing work towards planned workflow
extensions.

1) Distributed Data Pre-processing: With any machine
learning process, the data pre-processing step is always a large
one. TensorFlow is the backend framework used for training
this model and the input to this system is translated from
NetCDF files to a binary representation in a protocol buffer file
(protobuf) format. This file representation is used to structure
the data and quickly access it in a serialized form. Currently,
this file input generation process is produced through a serial
process that creates the protobuf file. However, using new
advances in Tensorflow API and the Nautilus infostructure,
this can be modified to distribute this work in parallel to many
worker jobs. This would greatly decrease the time it takes to
make these input files. To accomplish this, the input NetCDF
files that need to be processed will be put into a queue and
distributed to worker jobs on the cluster. These jobs will be
handled by Kubernetes and will be able to scale up to any
needed number of jobs very easily by just changing the scaling
configuration of the Job structure. All the jobs will produce
their own protobuf output and then store it in the attached
CephFS directory that all nodes in the namespace can see.
All of these separate protobuf files can then be read in and
combined back together when setting up the training step. In
summary, this allows for much faster data pre-processing and
would in the future allow for training on more data since this
process can scale and handle the load on the system.

2) Distributed Training: Currently, the training on the data
sets provided is being done on a single GPU node instance
in Nautilus. Tensorflow does support distributed training4 and
we want to take advantage of this. In order to accomplish
this, Tensorflow and Kubernetes will have to establish a set of
pods that can support this parallel training job. This would
be done by first creating a Kubernetes ReplicaSet, which
contains a spec to run TensorFlow distributed training clients.
A ReplicaSet would be used because we would have a single
client image that would need to be scaled in order to take
advantage of the distributed training. Using the dynamic nature
of Kubernetes, we will work on scaling it up and down
depending on our needs and use the connected network to
establish communication between the pods. Hostnames will
be used instead of IP addresses by creating a service and
providing a much more dynamic way of communicating to
a pod even if its IP address changes. Once that is set up,
Tensorflow will be able to distribute the training set and train
in parallel. This in turn would speed up the time it takes to
complete the training step and give the ability to go through
the workflow faster.

4Distributed TensorFlow: https://www.tensorflow.org/deploy/distributed

3) Hyperparameters and Validation Datasets: When doing
machine learning, it is important to separate training and test
data. This is to avoid training on the test data for better
modeling. It is also important to evaluate hyperparameters of
the model. A Redis queue is being developed to store model
training/testing validation split methodologies and parameters
sets to be used in multi-model validation. A full object
segmentation comparison is being actively worked on and is
in preparation, including developing new validation data sets,
looking at specific events in time and geographic regions.

4) Visualization: Since the output is a hyper volume repre-
sentation, for future work we like to include the more advanced
visualization part inside of the workflow as the last step. This
would include using different 3D rendering packages (such as
Python Mayavi 3D rendering package or Python ipvolume 3D
rendering package) to display the results of the ML workflow
in near real time to the user. This could even go as far as
displaying the results on a large scale visualization system
that runs on Nautilus, such as the SunCAVE. The visualization
data could be piped through the same kubernetes orchestration
software to the display on the SunCAVE and could be rendered
out as data comes in.

5) Kepler 3.0 Workflow with PPODs: Currently, the work-
flow is set up as a series of kubernetes jobs that can be
controlled either through interacting with kubernetes directly
or through a Jupyter Notebook that can control each step of
the process. In the future we would like to move this towards
a collaborative workflow using the PPODS methodology and
the new Kepler 3.0 interface [24], [25]. This would promote
the collaboration effort of workflow design in a scientific
community setting. It would also allow this workflow to be
easily extended and tested through an educational lens.

IV. NAMESPACE MANAGEMENT

Supporting machine learning research in multiple disci-
plines across several campuses is an administrative challenge.
Fortunately, Kubernetes provides a framework to separate
projects while providing access to the same hardware re-
sources. A “Namespace” is a virtual cluster hosted within the
physical cluster being orchestrated by Kubernetes [4]. Names-
paces divide the cluster resources between the set of users,
providing the capability to organize and segment the needs
for each project into its own virtual subsection of the cluster.
They provide an independent scope for names, management,
and policies while scheduling jobs on the same hardware. Even
though two containers may be running on the same physical
machine, their affiliation to different namespaces means they
are isolated from one another and may be obeying a vastly
different set of resource policies or constraints. This facilitates
the creation of “user communities” which are loosely, but not
necessarily, grouped by project. Generally, the PI of a given
research group is granted the role “namespace administrator”,
responsible for managing the users and resources involved in
their research. Networking across namespaces is possible but
requires fully qualified domain names. Low-level Kubernetes



resources, such as Nodes and Persistent Volumes, are not in
the scope of any namespace.

While cluster segmentation by namespace provides the
chance for independent authentication policies, Nautilus uses
CILogon [13] for authentication across all namespaces. CIL-
ogon is an NSF-funded, open-source authentication tool de-
signed to federate identity across multiple authentication
management systems. It provides a low barrier of entry for
prospective Nautilus users, as over 2500 identity providers are
supported, allowing the use of home or campus credentials. In
this way, new users log on and “claim” their identity, rather
than creating a new one. Once authenticated, an administrator
can add them to their namespace from a web portal.

V. NODES AND PODS MANAGEMENT

Before pod orchestration frameworks such as Kubernetes
existed, a lot more emphasis was put on node management
when running a job or workflow. However, Kubernetes handles
a lot of the node and pod management, making the task of job
management and workflow coordination an optimization. The
workflow manager specifies the state configuration and passes
it on to Kubernetes, and Kubernetes creates the specified state
in its system. Kubernetes will then start monitoring to make
sure that the state specified is always correct and correct
internal systems when needed.

For example, when running the large download job in the
CONNECT workflow, the workflow manager tells Kubernetes
that a certain number of worker pods is needed to download
files and submit that job. It is important to note that Kubernetes
configures and manages the resources in an automatic fashion
based on the specification of what is needed, i.e., it does not
need a specification of ”how to do it”.

There are many different types of resources that can be
generated in Kubernetes. For a workflow it is usually the Job
resource that is most prevalent because it can execute batch
process at scale. Kubernetes will monitor these jobs which in
themselves create and run pods. The Pod is one of the most
fundamental pieces of Kubernetes but it is usually not created
directly. It is recommended to use Kubernetes scheduling
controllers (such as Jobs or ReplicaSets) [4] because they can
keep track of pods re-spawn them if any errors occur during
execution.

The CHASE-CI infrastructure is very dynamic in the fact
that nodes can join and leave the cluster at any time. Ku-
bernetes abstracts away this movement and it usually has no
effect on running pods if they are set up correctly. If a node
is taken offline the pods on that node will be rescheduled on
another node.

VI. COLLABORATIVE WORKFLOW MEASUREMENT,
INTEGRATION AND EXECUTION

Integrating and developing a workflow in a large scale
environment such as the Kubernetes GPU cluster in CHASE-
CI can be difficult when it’s applied to a group of collaborat-
ing developers or scientists. It’s necessary to keep everyone
on the same track but allow for diversified execution plans

and experimentation through effective collaboration. For this
purpose, we have created the PPoDS methodology to empower
computational data science teams with effective collaboration
tools during the exploratory workflow development phase.
PPoDS stands for “Process for the Practice of Data Science”.

We developed a web-based CHASE-CI interface to enable
the use of the PPODs methodology to transform this workflow
into a interactive execution plan with the list of steps connected
to each other in a visual and meaningful way, along with a set
of tools for measuring and testing the development of each
individual step in an analytical process towards integration.
We are currently developing the tools for capturing, mea-
suring, collecting and analyzing performance metrics during
exploratory workflow development and testing process.

The execution of the workflow needs to support the sep-
aration of steps so that each step can easily be tested inde-
pendently of one another. Each step can also be developed
without the concern of impeding on other workflow steps.
Development can happen in parallel and brought back to
execute together with the whole workflow whenever needed.

In the specific case of the CONNECT workflow, the work-
flow is already split up into multiple parts which allows it
to scale so well. If it was instead a monolith application, it
would be much harder to scale because it would first have
to be refactored and split out into multiple pieces. One of
the keys that makes the CONNECT workflow so successful
in scaling its ability to use worker jobs to split up individual
tasks. This allows it to easily scale in a environment that allows
for dynamic resource allocation.

As a part of our future work, in order to encompass the
PPoDS methodology, we would also like to add in testing to
this workflow. Creating tests for each piece of the workflow
steps can allow for much quicker development and implemen-
tation of new steps. It gives you the ability to test for specific
outputs when specific inputs are put into place. If you refactor
the code or add in new steps you can run these tests to make
sure that you haven’t broken anything else in the code.

Finally, the workflow would all be moved to the new
workflow interface that supports collaborative notebook in-
teraction between all CHASE-CI users and developers. The
CONNECT workflow would be presented as a series of steps
in the UI where each step could easily be worked on. The
workflow steps would be centralized in one location where
every one working on the project could see them. It would
allow for easier project management and the ability to scale
out development.

VII. RELATED WORK

In addition to using multi-threaded software to leverage
multiple GPUs for training neural networks, researchers can
utilize their access to graphics cards for hardware-accelerated
data visualization. In January 2019, Calit2 visualization re-
searchers Joel Polizzi and Isaac Nealey used the CHASE-
CI infrastructure to schedule and debug a scalable OpenGL-
based visualization application [14] across 11 remote GPU
nodes. They were able to lead a Virtual Reality content



demonstration at University of California, Merced from an
immersive visualization space at University of California, San
Diego [15], driving graphical displays in Merced with input
from a motion tracked wand in San Diego with unnotice-
able latency. Kubernetes object labeling conventions enabled
straightforward targeting of specific nodes, and the high-
bandwidth optical network between PRP sites enabled rapid
inter-node communication and read speeds to the visual data.
It is notable that graphics and machine learning processes
can cohabitate, as remote researchers have the ability to run
GPU compute jobs on the same hardware which is being used
locally for visualization.

JupyterHub is also an integral part of the CHASE-CI
Kubernetes GPU cluster. This software allows for a web
based environment to automatically be generated per user on
demand. The Jupyter Notebook instance that is generated is at-
tached to a GPU on the cluster and can be automatically taken
advantage of through framework software such as TensorFlow.
This process allows for quick development of code without
the hassle of setting up any code or configuration locally on
your system. Building on top of this, JupyterLab provides a
great way to interact with notebooks and the node that it is
connected to. It allows for collaboration between groups that
need to use the same code and run it on a GPU resource.

There are also many other machine learning workflows
that are taking advantage of the CHASE-CI infrastructure.
These workflows are split up into different namespaces5 to
separate resources. Examples of these other projects include
CARL-UCI, trying to apply the mechanisms in neuromod-
ulation to reinforcement learning and use the signals from
neuromodulation to modulate the learning and acting of the
reinforcement learning algorithms. The GPU specific soft-
ware they use includes Cuda, Pytorch, OpenAI gym, Conda,
and Tensorboard. Another workflow running on the cluster
includes ECEWCSNG from UCSD. This project includes
building deep learning algorithms that can effectively combine
data from other autonomous systems for safety applications.
The GPUs are highly utilized from this workflow and the
software used includes conda, tensorflow, caffe, numpy, and
opencv.

VIII. CONCLUSION

There is a need for new workflow approaches that can
be coupled with advanced cyberinfrastructure for efficient
development and execution. In this paper, we presented the
CHASE-CI software and hardware ecosystem that enables de-
velopment and execution of collaborative, measurable, scalable
and portable machine learning workflows.

CHASE-CI provides an ideal infrastructure to rapidly test
and build ML applications with a workflow layer that can op-
timize execution through Kubernetes. By coupling a dynamic
cyberinfrastructure and the workflow process, we provided a
new step-by-step workflow development approach for machine

5Machine Learning Namespaces in CHASE-CI: http://ucsd-
prp.gitlab.io/nautilus/namespaces/

learning applications that drastically reduces execution bottle-
necks by constantly measuring, learning, and informing every
aspect of a machine learning workflow.

The representative segmentation workflow shows how care-
ful measurement and analysis of a step by step ML workflow
activity can enable reduction of execution time significantly
through dynamic resource configuration via Kubernetes. The
experimental results and performance measurements were
presented using the CHASE-CI dashboard visualizations in
Grafana.
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