
Workshop on Resource Arbitration for Dynamic Runtimes (RADR) 
 
Pete Beckman  
Argonne National Laboratory 
Northwestern University 
Argonne, IL, USA  
beckman@anl.gov  
 
Emmanuel Jeannot  
TADaaM Team, Inria 
Talence, France  
emmanuel.jeannot@inria.fr  
 
Swann Perarnau 
Argonne National Laboratory 
Argonne, IL, USA  
swann@anl.gov 
 
Abstract 
The question of efficient dynamic allocation of compute-node resources, such as cores, by 
independent libraries or runtime systems can be an nightmare. Scientists writing application 
components have no way to efficiently specify and compose resource-hungry components. 
As application software stacks become deeper and the interaction of multiple runtime layers 
compete for resources from the operating system, it has become clear that intelligent 
cooperation is needed. Resources such as compute cores, in-package memory, and even 
electrical power must be orchestrated dynamically across application components, with the 
ability to query each other and respond appropriately. A more integrated solution would 
reduce intra-application resource competition and improve performance. Furthermore, 
application runtime systems could request and allocate specific hardware assets and adjust 
runtime tuning parameters up and down the software stack.  
The goal of this workshop is to gather and share the latest scholarly research from the 
community working on these issues, at all levels of the HPC software stack. This include 
thread allocation, resource arbitration and management, containers, and so on, from 
runtime-system designers to compilers. We will also use panel sessions and keynote talks to 
discuss these issues, share visions, and present solutions.  
 
Scope 
Over the last five years, the number of nodes in large supercomputers has remained largely 
unchanged. In fact, the Oak Ridge National Laboratory computer leading the Top500 list, 
Summit, has fewer nodes than its predecessor, which is 20 times slower. Machines are 
getting faster not by adding nodes, but by adding parallelism, cores, and hierarchical 
memory to each compute node. This shift in how computers are scaled up makes it 
imperative that parallel computer resources within a node be carefully orchestrated to 
achieve maximum performance. Dynamically allocating and managing threads and the 
mapping of these threads to cores is a challenge that requires cooperation and coordination 
between the different components of the software stack. 
 

908

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

DOI 10.1109/IPDPSW.2019.00150



Figure 1: Software stack with different parts using threads 
 
At the application level, a software component might use pthreads to express and 
coordinate concurrency. The application might also be linked to computational libraries, 
such as PETSc or Intel’s MKL that could be multithreaded. Moreover, other parts of the 
application may use OpenMP parallel section (which are implemented with threads). 
Furthermore, the runtime system may need its own parallel resources, for example, to 
spawn progress engines for message libraries or remote invocation handlers. Currently, each 
component in this complex software stack is unaware of the other pieces. Therefore, 
threads can compete for cores and cause profound slowdowns to intranode collective 
operations and barriers. Moreover, currently, no mechanisms exist to query for unused 
cores, to reserve some of them, or to check which part of the application is using them. 
Resource allocation and partitioning by the operating system must be adaptive and well 
connected to user-level software components. 
There has been research progress in this field. Tools such as hwloc can provide information 
on systems, such as topology. However, hwloc is not designed to handle direct allocation 
and partitioning resources. Likewise, it does not provide the interfaces required for software 
components to negotiate how to improve performance of the application through 
cooperative sharing of resources. Other approaches have been proposed, such as 
application composition, dynamic topology management or topology-aware core selection. 
Resource partitioning, enforced by the operating system using containers or within multi-
kernels are also being investigated. Each of those approaches brings its own set of benefits 
and challenges, that need to be discussed within the community, compared with each other, 
and evaluated against benchmarks and use cases yet to be identified. As a relatively new and 
specific research area, it is difficult for researchers to find a place where to submit papers 
and discuss solution with the whole community. Therefore, we think it is of great interest for 
the HPC community to provide a venue to present these work in all their specificity and 
foster new discussions. 
 
 
 
 
 
 
 
 

909



PProgram Committee 
 
Program Chairs:  

� Pete Beckman  
� Emmanuel Jeannot  

 
Publicity Chair: 

� Swann Perarnau 
 
Program Committee:  

� Dorian Arnold, Emory University. 
� Denis Barthou, Bordeaux INP. 
� Siegfried Benkner, University of Vienna. 
� George Bosilca, Univ Of Tennessee. 
� James H Cownie, Intel. 
� Carter Edwards, Nvidia. 
� Hal Finkel, Argonne Ntl Lab. 
� Karl Fuerlinger, LMU, München. 
� Balazs Gerofi, U. Tokyo – Riken. 
� Brice Goglin, Inria. 
� Raymond Namyst, Univ. Of Bordeaux. 
� Stephen Olivier, Sandia Ntl Lab. 
� Tapasya Patki, Lawrence Livermore Ntl Lab. 
� Marc Perache, CEA. 
� Swann Perarnau, Argonne Ntl Lab. 
� Rolf Riesen, Intel. 
� Sameer Shende, U. of Oregon. 
� Christian Terboven, RTW Aachen. 

 
Program 
This year, we have selected one paper to be presented at this workshop and invited three 
keynote speakers. The topics covered by these talks will show the importance and the 
variety of the RADR challenges. 
 
We hope to see you at this first edition of RADR and that this workshop will be a place for 
fruitful and lively interactions.  
 
 
 
 
 
 
 
 
 
 

910


