Hardware resources analysis of BNNs splitting for
FARD-based multi-FPGAs Distributed Systems

Giorgia Fiscaletti, Marco Speziali, Luca Stornaiuolo, Marco D. Santambrogio, Donatella Sciuto
Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Milan, Italy
{giorgia.fiscaletti, marco.speziali } @mail.polimi.it
{luca.stornaiuolo, marco.santambrogio, donatella.sciuto } @polimi.it

Abstract—FPGAs have proven to be valid architectures to
accelerate the inference phase of Convolutional Neural Networks
(CNNs). State-of-the-art works also demonstrated that it is
possible to take advantage of a distributed FPGA-base system
to improve performance, power consumption and scalability
of such algorithms. However, the hardware resource usage,
communication, and the nodes management become main aspects
when dealing with an embedded distributed scenario. In this
context, FINN optimizes the FPGA-based CNNs with binarization
and FARD is a framework that allows the acceleration of fog
computing-based application with FPGAs. In this work, we
present how to extend FARD to deal with job-based applications
rather than the event-based fog computing scenario. In particular,
we analyzed two PYNQ-Z1 connected each other and we imple-
mented a distributed BNN algorithm based on FINN’s CnvW2A2.
Results show how hardware resources vary according to the
division of the network when splitting after each convolutional
layer.

Index Terms—Binarized Neural Networks, BNN, PYNQ, em-
bedded, distributed

I. INTRODUCTION

The last decade saw an exponential growth of convolu-
tional neural networks (CNN) as one of the most exploited
computational models in fields such as image recognition,
natural language processing, anomaly detection, and so on.
Alongside the development of convolutional neural networks
and their newly discovered applications, there is a grow-
ing need for infrastructures that are capable to perform the
complex calculations required in this computational model.
Also, these new systems need to be able to provide a large
amount of memory - necessary to process and transfer the
huge volume of data that flows throughout the network, as
well as the required parameters - and computational power.
A solution to lighten computations and significantly reduce
power consumption and memory footprint has been shown to
be the use of Binarized Neural Networks (BNNs) [1]. It has
been demonstrated in different works - i.e. [1]-[3] - that it is
possible to quantize and reduce the precision of weights and
activations with just a minimum loss of accuracy. This way, all
the heavy floating-point computations can be easily mapped
to low-precision arithmetic operations. In particular, almost all
the computations performed in BNNs can be reduced to binary
operations. This is where FPGAs come in handy, as noted by
Zhou et al. [2] in their work on neural networks with low
bitwidth parameters. FPGAs are well known for being very

suitable to achieve great performance when dealing with logic
and fixed precision values, and therefore with binary values.

In this work, we propose an analysis of the hardware
resource usage while modifying the CNN splitting point and
we describe how FARD [4], a framework to implement fog
computing distributed system accelerators, is modified to deal
with this kind of applications. This is a continuation of our
previous work BNNsplit [5], where we explored splitting
strategies for Xilinx FINN BNNs [6]. With respect to the pre-
vious work, where the division of the network was performed
in order to minimize the amount of data that is sent from one
layer to another, now it takes into consideration balancing the
amount of hardware resources on each node.

The rest of this paper is organized as follows: section II
presents the background, including the description of FARD
and of the chosen BNN algorithm. Section III lists significant
works in literature and section IV describes the methodology
and the strategies adopted in this project. In Section V we
show our system analysis and the achieved results. Finally,
Section VI is dedicated to underline the conclusions and the
future directions of this work.

II. BACKGROUND
A. FINN and BNNsplit

In our study presented in BNNsplit [5], we have obtained
interesting reductions in terms of occupied area and latency, as
well as dissipated dynamic power. The promising results are
due to the high level of parallelism and the reduced latency of
FPGAs, which made them the best solution to this problem.
This led us to the division of the neural network we chose
among those proposed in FINN [6] (shown in Fig. 1), opening
the possibility of transferring the architecture to a distributed
system. The use of more PYNQ boards allowed us to reach a
moderate reduction of the dynamic power dissipated, and adds
a further level of parallelism to the single board solution. These
results are promising in view of a potential use of the system
to accelerate neural networks that require more resources than
those offered by a single FPGA.

The chosen strategy for the division of the convolutional
neural network was to split it between two layers, and more
specifically we looked for the point in the neural network
where there is the smallest amount of data transferred between
the two layers. This led us to chose our split point between
the last convolutional layer and the first fully connected layer,

s

DEER

Max pool

Conv. 1

Conv. 0

Conv. 4 Conv.5

Conv. 2 Conv.3 Max pool

Fully connected

Fig. 1. The topology of the CnvW2A2 BNN: 6 convolutional layers followed by 3 fully connected layers.

since the computations performed in the fully connected part
of the neural network do not affect the size of the data - while
the convolutions are used to reduce the size of the original
data and extract the features.

B. FARD

Fog Acceleration through Reconfigurable Devices (FARD)
[4] is a fog computing distributed system designed to allow
seamless cooperation across heterogeneous fog computing
nodes. Inside FARD, two different aspects are coexisting:
hardware acceleration and distributed run-time management.
The system is built upon the concepts of peer, task, event and
application. An application is a collection of tasks, where tasks
can be different and can be replicated across the distributed
system. All the tasks can communicate with each other through
a dedicated overlay network sending messages and generating
events. Each task is a python executable that can leverage
multiple python files and that can load bitstreams onto the
FPGA. Within this context, a peer is an instance of a task that
is running inside the FARD distributed system.

III. RELATED WORKS

Using the same nomenclature as in the survey [7] that lists
the most recent approaches to map CNNs on FPGAs, our
solution supports BNN models targeting Xilinx SoC devices
with a Streaming architecture. With respect to similar solutions
listed in the survey, we recognized the following limitations:
fpgaConvNet and DeepBurning does not support multi-FPGA
systems and executing different parts of a CNN with the
multi-bitstream design requires complete reconfiguration of
the FPGA; Haddoc2 unrolls its input and output feature maps
and the dot products of convolutions completely, increasing
the DSPs and the on-chip storage required to map the CNN,
limiting the size of models that can be mapped; AutoCodeGen
supports data-driven control mechanisms for each CNN stage,
but it uses single-layer parametrized blocks and does not
support multi-bitstream designs and distributed systems.

Although the variety of works of CNNs on FPGA is
very higher, only a few papers exploit a system with mul-
tiple FPGAs. This is the case of [8], [9] where a deeply
pipelined multi-FPGA architecture is used both for training
and inference of CNNs. However, deeply pipelined multi-
FPGA architecture fits only a specific class of algorithms
within the distributed scenarios and authors described a custom

communication infrastructure to deal with distributed nodes
communication, instead of trying to generalize the technique.

Finally, other works, such as [10], [11], extended FINN in
the past. The former proposes an extension to the original ver-
sion of the framework with support for arbitrary precision and
more flexibility in the end architecture and target platforms, in-
cluding hardware cost estimation for given devices. The latter
proposes an extension for parametric hardware architectures
of Long Short-Term Memory layers on FPGAs which offers
full precision flexibility and allows for performance scaling
offering different levels of parallelism within the architecture.

IV. METHODOLOGY

A. FARD improvements

In order to make FARD more suited for our purpose we
extended it to add support for jobs and pipelines. A job has
the same role as a task, the key difference lies in its life cycle.
A job has the main purpose of processing a fixed-size batch
of data, after the processing completes, the job is killed. As
depicted in Figure 2, a pipeline is a set of jobs, each one with
a specific position in the flow of data.

These extensions are needed in order to share the system
among users. With fasks the user would need to manually
kill the task in order to free the system resources. With jobs
the system resources are freed up as soon as the data have
been processed. More precisely the life cycle of a job is the
following: the FARD’s API receives a job request in which
is specified the processing load (number of chunks of data to
process, in our case a set of images to classify) and the actual
data to process. After the message as been received by the node
manager (the component responsible for orchestrating tasks
and jobs) the jobs are spawned and the pipeline is orchestrated
(each job receives is configuration in the pipeline configuring
itself and uploading the bitstream to the FPGA). Once every
Jjob has received the configuration, the first job (position 0 in
the pipeline) starts processing the data in its input queue (filled
by the node manager with the data sent to the API) and starts
to fill its output queue, the second job does the same until the
last job which output queue is automatically sent to the API’s
caller, ending the pipeline and its jobs.

From the viewpoint of the end user the API has not
been extended in a drastic way, a new method is now
available: api.send_job_data (app_id, job_data)

1
1
:
API -
1
1
1
1
1

Y
®
m
\ 4

input queue output queue

API

\ 4
®
m
Y

input queue output queue

Fig. 2. FARD extension with pipelines. A pipeline is a set of n jobs, each one with a specific position in the flow of data.

1st BNN part 2nd BNN part
per image
network

Fig. 3. System design: division of the CnvW2A2 BNN in two parts
implemented on two connected PYNQ-Z1 boards.

which is used to send the input data to the node man-
ager. Apart from that the only difference is the FardJob
class which extends FardTask and provides the method
job._parse_config(config) in which the user pro-
vides the implementation of the job’s function (the posi-
tion in the pipeline can be accessed from the property
self.config.pipeline.position).

B. Proposed design

Figure 3 shows the system design used to collect the results
described in the next section. The selected BNN was divided
into two parts and the two resulted kernels process memory
batches of ap_uint<64> via AXI4 ports, that are converted
into streams at the beginning of the computation. The stream
is then processed enabling task-level pipelining with the
#pragma HLS DATAFLOW, allowing the overlapping of the
redundant BNN operations on the multiple feature maps in
order to increase concurrency and throughput. The first part
of the BNN takes one or more pictures as input, which is quan-
tized and packed into a 32x32 image on the host side. The im-
age(s), now represented by an ap_uint<64> vector, are then
converted on the kernel into a stream<ap_uint<64>>,
which will go through the operations performed by the layers
of the first kernel. Once the processing is completed, the last
layer returns for each image a stream of data that represents
the output of the first kernel. The resulting stream must be
transformed again to a stream<ap_uint<64>>, in order
to convert it back to an ap_uint<64> memory block and
transfer it to the following board throughout the network.

Both the conversion to stream<ap_uint<64>> and the
following one to ap_uint<64> must take into account the
number of channels for the output feature maps, the channel
size and the size of the output feature maps. These values are
used to calculate the number of bits of the partial result, in
order to compute both the conversions correctly without losing
relevant information.

V. EVALUATION

The neural network we chose is the same used in [5]
(shown in Fig. 1), and it was divided as mentioned in previous
sections. Fig. 4a shows the increase of resource utilization in
the first part of the network, while moving the split point at
the end of different layers. The chosen split point is located
at layer 5 - the increase of resource utilization generated by
the fully connected layers (6 to 8) was not relevant and hence
not reported in the figure. The significant growth of the area
occupied on the board by the application is balanced out by
the massive reduction in size of the data transferred between
the layers, that begins with more than 12000 Bytes/img in
output at layer O and reaches a value of only 64 Bytes/img
at layer 5 [5]. The percentage values of resource utilization
are shown in detail in Table I. While LUT and FF experience
an almost linear growth, we can notice that the BRAM grows
almost exponentially: this is due to the increase of parameters
loaded on the board by adding more layers. A close-up on
the difference in terms of resource usage on a single board
between the full network and both the convolutional and fully
connected portions of the net is presented in Fig. 4b. Both the
fully connected and the convolutional parts leave some free
space on the board - more significant for the fully connected,
that could be eventually occupied by different applications by
means of partial reconfiguration.

For what concern the modified FARD framework, a new
application (two_stage_bnn_app) has been created and
configured as followed:

« node 0 has been configured to be the first node in the
pipeline and to start the job first_stage with the role
of computing the first stage of the classification (first half
of the neural network)

o node 1 has been configured to be the second (and last)
node in the pipeline and to start the job second_stage
with the role of computing the second (last) stage of the
classification (second half of the neural network)

The average response time on 30 runs of 20 images each

is 0.084s with a standard deviation of 0.0075s. As a further

— WT% 100 = LT
LUTRAM % - t‘F”RAM
80% | —— FF% = BRAM
BRAM % I DSP
DSP % 80 BUFG
BUFG %
- 60% — 2
2 - c
g £ 60
= N
S g
8 il o
5 40% //,/ / L ¢
¢ _— _ 2 w0
= — > &
- L
/ = -
200 i T g
% / = .
-~ = 20
0% — . :
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Full Convolutional FullyConnected
Division point Part
a) b)
Fig. 4. a) On left, the increase of resource utilization at different split points. The BRAM grows almost exponentially with the rise of the amount of

parameters loaded on the board. b) On right, the resource utilization of full BNN and the two splitted parts when the division is performed after Layer 5. The
Convolutional part consumes nearly 10% less resources than the full network, while the fully connected part has a much lower resource usage.

TABLE I
RESOURCE UTILIZATION OF THE 1%t FPGA AT DIFFERENT SPLIT POINTS.

Split LUT% | LUTRAM% | FF% | BRAM% | DSP%
Layer 0 | 13.55 5.51 10.26 | 1.79 2.73
Layer 1 | 27.69 21.36 1693 | 3.93 6.36
Layer 2 | 37.15 23.56 16.93 | 12.50 9.09
Layer 3 | 44.51 25.32 29.77 | 26.79 13.64
Layer 4 | 54.27 28.13 38.07 | 52.50 14.55
Layer 5 | 58.35 28.17 44.62 | 88.93 14.55

improvement of these performances, it is possible to delegate
the message-based communication to the sole purpose of
orchestrating the system behavior and dedicate a socket-based
communication for the data chunks transfers.

VI. CONCLUSION

In this work, we presented an evaluation of the resource
usage when a CNN, more specifically a BNN, has to be split
among different nodes of an FPGA-based distributed system.
In particular, the resource utilization progressively increases
when the split point moves forward among the convolutional
layers. There is a significant growth in BRAM utilization,
due to the necessity to load weights and activations for the
new layers. Moreover, we described how to extend the FARD
framework to support job-based applications, like those related
to CNN-based algorithms. Although the communication la-
tency results are not optimal, we have laid the foundations for
building an optimized version that can benefit from future use
of sockets-based communication. In addition to this, we plan
a more in-depth analysis of larger CNN architectures, where
the mentioned improvements together with a splitting strategy
able to balance hardware resources, communication load, and
system throughput could bring to even better results.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

M. Courbariaux and Y. Bengio, “Binarynet: Training deep
neural networks with weights and activations constrained to +1
or -1 CoRR, vol. abs/1602.02830, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” CoRR, vol. abs/1606.06160, 2016. [Online]. Available:
http://arxiv.org/abs/1606.06160

M. Kim and P Smaragdis,
CoRR, vol. abs/1601.06071,
http://arxiv.org/abs/1601.06071

S. Barbieri, F. Casasopra, R. Brondolin, and M. D. Santambrogio, “Fog
acceleration through reconfigurable devices,” in 2019 IEEE 5th Inter-
national forum on Research and Technology for Society and Industry
(RTSI). IEEE, 2019, pp. 138-143.

G. Fiscaletti, M. Speziali, L. Stornaiuolo, M. Santambrogio, and D. Sci-
uto, “Bnnsplit: Binarized neural networks for embedded distributed fpga-
based computing systems,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2020.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA *17.
ACM, 2017, pp. 65-74.

S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
arXiv preprint arXiv:1803.05900, 2018.

C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient
cnn implementation on a deeply pipelined fpga cluster,” in Proceedings
of the 2016 International Symposium on Low Power Electronics and
Design. ACM, 2016, pp. 326-331.

T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and
M. Herbordt, “Fpdeep: Acceleration and load balancing of cnn training
on fpga clusters,” in 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 1EEE,
2018, pp. 81-84.

F. Kistner, B. JanBen, F. Kautz, M. Hiibner, and G. Corradi, “Hardware/-
software codesign for convolutional neural networks exploiting dynamic
partial reconfiguration on pynq,” in 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 1EEE,
2018, pp. 154-161.

V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn,
and M. Blott, “Finn-1: Library extensions and design trade-off analysis
for variable precision Istm networks on fpgas,” in 2018 28th Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2018, pp. 89-897.

networks,”
Auvailable:

neural
[Online].

“Bitwise
2016.

