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Abstract—The SuiteSparse GraphBLAS C-library implements
high performance hypersparse matrices with bindings to a variety
of languages (Python, Julia, and Matlab/Octave). GraphBLAS
provides a lightweight in-memory database implementation of
hypersparse matrices that are ideal for analyzing many types of
network data, while providing rigorous mathematical guarantees,
such as linearity. Streaming updates of hypersparse matrices
put enormous pressure on the memory hierarchy. This work
benchmarks an implementation of hierarchical hypersparse ma-
trices that reduces memory pressure and dramatically increases
the update rate into a hypersparse matrices. The parameters
of hierarchical hypersparse matrices rely on controlling the
number of entries in each level in the hierarchy before an
update is cascaded. The parameters are easily tunable to achieve
optimal performance for a variety of applications. Hierarchical
hypersparse matrices achieve over 1,000,000 updates per second
in a single instance. Scaling to 31,000 instances of hierarchical
hypersparse matrices arrays on 1,100 server nodes on the MIT
SuperCloud achieved a sustained update rate of 75,000,000,000
updates per second. This capability allows the MIT SuperCloud
to analyze extremely large streaming network data sets.

I. INTRODUCTION

The global Internet is expected to exceed 100 terabytes per
second (TB/s) by the year 2022 creating significant perfor-
mance challenges for the monitoring necessary to improve,
maintain, and protect the Internet, particularly with the rising
social influence of adversarial botnets encompassing a signifi-
cant fraction of Internet traffic [1]–[3]. Origin-destination traf-
fic matrix databases are fundamental network analysis tool for
a wide range of networks, enabling the observation of temporal
fluctuations of network supernodes, computing background
models, and inferring the presence of unobserved traffic [4]–
[8]. Rapidly constructing these traffic matrix databases is a
significant productivity, scalability, representation, and perfor-
mance challenge [9]–[16].

Our team has developed a high-productivity scalable
platform—the MIT SuperCloud—for providing scientists and
engineers the tools they need to analyze large-scale dynamic
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data [17]–[19]. The MIT SuperCloud provides interactive
analysis capabilities accessible from high level programming
environments (Python, Julia, Matlab/Octave) that scale to thou-
sands of processing nodes. Traffic matrices can be manipulated
on the MIT SuperCloud using distributed databases (SciDB
and Apache Accumulo), D4M associative arrays [17], [20],
and now the SuiteSparse GraphBLAS hypersparse matrix
library [21]–[23].

For IP network traffic data, the IP address space requires a
hypersparse matrix (#entries << #rows and #columns) that is
either 232×232 for IPv4 or 264×264 for IPv6. Our prior work
represented traffic matrices using D4M associative arrays us-
ing sorted lists of strings to describe the row and column labels
of an underlying standard sparse matrix [24]. D4M associative
arrays provide maximum flexibility to represent the row and
columns with arbitrary strings and are extremely useful during
the feature discovery stage of algorithm development. For IP
traffic matrices, the row and column labels can be constrained
to integers allowing additional performance to be achieved
using a hypersparse matrix library. In either case, the memory
hierarchy presents a significant performance bottleneck as
doing lots of updates to slow memory is prohibitive. This
work benchmarks an implementation of hierarchical hyper-
sparse matrices that reduces memory pressure and dramatically
increases the update rate into a hypersparse matrices.

II. HIERARCHICAL HYPERSPARSE MATRICES

The SuiteSparse GraphBLAS library is an OpenMP accel-
erated C implementation of the GraphBLAS.org sparse matrix
standard. Python, Julia, and Matlab/Octave bindings allow
the performance benefits of the SuiteSparse GraphBLAS C
library to be realized in these highly productive programming
environments. Streaming updates to a large hypersparse matrix
can be be accelerated with a hierarchical implementation
optimized to the memory hierarchy (see Fig. 1). Rapid updates
are performed on the smallest hypersparse matrices in the
fastest memory. The strong mathematical properties of the
GraphBLAS allow a hierarchical implementation of hyper-
sparse matrices to be implemented via simple addition. All
creation and organization of hypersparse row and column
indices are handled naturally by the GraphBLAS mathematics.
If the number of nonzero (nnz) entries exceeds the threshold
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Fig. 1. Hierarchical hypersparse matrices store increasing numbers of nonzero entries in each layer (adapted from [19]). If layer Ai surpasses the nonzero
threshold ci it is added to Ai+1 and cleared. Hierarchical hypersparse matrices ensure that the majority of updates are performed in fast memory.

ci, then Ai is added to Ai+1 and Ai is cleared. The overall
usage is as follows

• Initialize N -level hierarchical hypersparse matrix with
cuts ci

• Update by adding data A to lowest layer

A1 = A1 +A

• If nnz(A1) > c1, then

A2 = A2 +A1

and reset A1 to an empty hypersparse matrix of appro-
priate dimensions.

The above steps are repeated until nnz(Ai) ≤ ci or i = N .
To complete all pending updates for analysis, all the layers are
added together

A =

N∑
i=1

Ai

Hierarchical hypersparse matrices dramatically reduce the
number of updates to slow memory. Upon query, all layers
in the hierarchy are summed into the hypersparse matrix. The
cut values ci can be selected so as to optimize the perfor-
mance with respect to particular applications. The majority
of the complex updating is performed by using the existing
GraphBLAS addition operation.

III. SCALABILITY RESULTS

The scalability of the hierarchical hypersparse matrices
are tested using a power-law graph of 100,000,000 entries
divided up into 1,000 sets of 100,000 entries. These data
were then simultaneously loaded and updated using a varying
number of processes on varying number of nodes on the
MIT SuperCloud up to 1,100 servers with 34,000 processors.
This experiment mimics thousands of processors, each creating
many different graphs of 100,000,000 edges each. In a real
analysis application, each process would also compute various
network statistics on each of the streams as they are updated.
The update rate as a function of number of server nodes is
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Fig. 2. Update rate as a function of number of servers for hierarchical Grap-
BLAS hypersparse matrices and other previous published work: Hierarchical
D4M [19], Accumulo D4M [25], SciDB D4M [26], Accumulo [27], Oracle
TPC-C benchmark, and CrateDB [28]

shown on Fig. 2. The achieved update rate of 75,000,000,000
updates per second is significantly larger than the rate in prior
published results. This capability allows the MIT SuperCloud
to analyze extremely large streaming network data sets.
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