
Compile-time Parallelization of Subscripted
Subscript Patterns

Akshay Bhosale and Rudolf Eigenmann

Univeristy of Delaware, Newark, DE, USA.
{akshay,eigenman}@udel.edu

Abstract. An increasing number of scientific applications are making
use of irregular data access patterns. An important class of such pat-
terns involve subscripted subscripts, wherein an array value appears in
the index expression of another array. Even though the information re-
quired to parallelize loops with such patterns is often available in the
program, present compiler techniques fall short of analyzing that infor-
mation. In this paper we present a study of subscripted subscripts, the
properties that define the subscript arrays, and an algorithm based on
symbolic range aggregation, that will help prove the presence of some of
the properties of the subscript array in the program. We show that, in an
important class of programs, the algorithm can boost the performance
from essentially sequential execution to close to fully parallel.

Keywords: automatic parallelization · subscript array · aggregation

1 Introduction

In this paper we develop compile-time analysis techniques to understand pro-
gram patterns that involve subscripted subscripts, such as a[b[i]], and to use this
information for automatic parallelization. To the best of our knowledge, this is
the first time compile–time techniques have been developed that can success-
fully parallelize programs exhibiting subscripted subscripts without the help of
runtime techniques. In this initial paper, we have developed the algorithms, and
applied them by hand. The full implementation will be described in a forthcom-
ing contribution.

Two motivations met to initiate the research behind this paper. Scientific ap-
plications increasingly make use of irregular data structures, often represented
in the form of sparse matrices. Algorithms operating on such data structures
commonly involve indirection arrays, leading to subscripted subscript patterns.
Currently, there are no known compile-time analysis techniques that can auto-
matically parallelize such patterns. The second motivation came from an effort
to find loops in existing scientific programs that were parallelized manually, but,
when feeding the serial versions of the programs to the Cetus [1] translator, it
could not detect that the loops were parallel. We did this for the latest version
of the NAS parallel benchmarks. We found that (other than a few cases that

ar
X

iv
:1

91
1.

05
83

9v
1

 [
cs

.D
C

]
 1

3
N

ov
 2

01
9

2 F. Author et al.

exhibited compiler bugs) the primary reason Cetus couldn’t match manual par-
allelization was the presence of subscripted subscripts. Similar experiments with
other compilers or translators, such as Rose [15], Intel’s ICC Compiler [8] and
the PGI [14] compiler also yielded the same result. We also found that, in many
such programs, the necessary and sufficient information that the involved loops
can in fact be parallelized was present in the program code and was not depen-
dent on the input data. While investigating this information can be complex, the
opportunity exists to develop compile-time analyses to do this detection. The
present contribution pursues this goal.

The key to successful compile-time parallelization of the subscripted subscript
patterns we encountered is the detection of certain properties of the indirection
arrays and their content, such as monotonicity and injectivity. This observation,
per se, is not new. Others have developed techniques that make use of run-time
methods, such as inspector/executor schemes to detect the properties and then
execute the involved loops in parallel [13], or they have successfully analyzed
certain properties, but not yet succeeded in automatic parallelization [10, 12].
In our work, we found that the needed properties can be derived from the code
that creates and modifies the subscript array contents.

In this paper, we present a first analysis to do so, which is sufficient to
parallelize a class of programs. We also present a study of other patterns, for
which the development of analysis techniques is our ongoing work.

In summary, in this paper we make the following contributions:

– We present an empirical study of subscript patterns and argue that these
patterns can be investigated at compile time, in a way that enables automatic
parallelization.

– We describe an algorithm that analyzes the array properties that are needed
for automatic parallelization of an initial program viz. representative of a
class of programs.

– We present performance results after applying the techniques and automatic
parallelization by hand.

The remainder of the paper is organized as follows. Section 2 presents our
study of subscripted subscript patterns. Section 3 describes the algorithm for
deriving properties of arrays that show up as index arrays in to-be-parallelized
loops. Section 4 discusses related work. Section 5 shows performance results
of programs exhibiting subscripted subscript patterns, after applying the tech-
niques presented in Section 3. Section 6 presents conclusions.

2 Empirical Study of Subscripted Subscript Patterns

Figure 1 shows our findings of the use of index arrays in programs of the most
recent NAS Parallel Benchmark Suite [2] and the SuiteSparse [6] programs. We
analyzed the programs for loops with subscripted subscript patterns and prop-
erties of the index arrays that make the loops parallelizable.

Compile-time Parallelization of Subscripted Subscript Patterns 3

Fig. 1. Analysis of subscripted subscript patterns in the NAS parallel benchmarks
v3.3.1. and the SuiteSparse v5.4.0.

In the NPB Suite, of the ten programs, we found six that contained parallel
loops accessing arrays that used the values of other arrays in their subscript
expressions. In the SuiteSparse, four of the eight programs analyzed contained
parallelizable loops with such patterns. Common to all these patterns is that the
parallel loop contains a single array write reference with a subscript expression
that contains the value of another array, but there is no read reference of the
written array. To parallelize the loop, the compiler would need to prove that
there is no self output dependence. The properties are:

From UA benchmark (NPB 3.3):

1: for (miel = 0; miel < nelt; miel++) {

2: iel = mt_to_id[miel];

3: id_to_mt[iel] = miel;

4: }

Fig. 2. The outer loop is parallelizable, as array mt to id, whose value is used in the
subscript of array id to mt, is injective. Injectivity of mt to id ensures that writes
of id to mt go to different elements in different iterations. Hence there is no output-
dependence.

1. Injectivity: An array is said to be injective if a[i] 6= a[j], ∀i 6= j. Write ac-
cesses to an array containing an injective array as a subscript can be done
in parallel, because all array accesses reference different elements. Figure 2
shows an example where injectivity is the defining property for paralleliza-
tion.

2. Monotonicity: We encountered three variations of montonicity in the bench-
mark applications.

4 F. Author et al.

(a) Montonically increasing or decreasing: An array is monotonically increas-
ing if a[i] ≤ a[j], ∀i < j and monotonically decreasing if a[i] ≥ a[j],
∀i < j. This implies non-strict monotonicity. Figure 3 shows an example
where non-strict monotonicity is sufficient for parallelizing the outer, ‘j’
loop.

From CG benchmark (NPB 3.3):

1: for (j = 0; j < lastrow - firstrow + 1; j++) {

2: for (k = rowstr[j]; k < rowstr[j+1]; k++) {

3: colidx[k] = colidx[k] - firstcol;

4: }

5: }

Fig. 3. In this example, values of array rowstr are used in the subscript of array colidx.
Since rowstr is monotonic, the ranges rowstr[j] to rowstr[j + 1] − 1 do not overlap
across iterations of the outer loop.

(b) Strictly monotonically increasing or decreasing: An array is strictly mono-
tonically increasing if a[i] < a[j], ∀i < j and strictly monotonically de-
creasing if a[i] > a[j], ∀i < j. Strict monotonicity implies injectivity.

(c) Monotonic difference between arrays: In this case, the difference between
two arrays is monotonic and the loop index traverses this difference. Fig-
ure 4 shows an example. Non-strict monotonicity is sufficient for paral-
lelization of the loop in this case.

From CG benchmark (NPB 3.3):

1: for (j = 0; j < nrows; j++){

2: if (j > 0){

3: j1 = rowstr[j] - nzloc[j-1];

4: }

5: else{

6: j1 = 0;

7: }

8: j2 = rowstr[j+1] - nzloc[j];

9: nza = rowstr[j];

10: for(k = j1; k < j2; k++){

11: a[k] = v[nza];

12: colidx[k] = iv[nza];

13: nza = nza + 1;

14: }

15: }

Fig. 4. In this example, the difference between consecutive elements of arrays rowstr
and nzloc is monotonic. The range from j1 to j2−1 is non-overlapping across iterations
of the ‘j’ loop, which makes it parallelizable.

Compile-time Parallelization of Subscripted Subscript Patterns 5

3. Injective or Monotonic subsets: In this case only a part, or a subset, of the
subscript array is monotonic (Non-strict or Strict) or injective. The loop can
be parallelized, if the access pattern ensures that only those array elements
are referenced that exhibit the property. In the benchmark codes that we
analyzed we came across subscript arrays with injective subsets. Figure 5
shows such an example.

From CSparse (SuiteSparse 5.4.0)

1: for (i = 0; i < m; i++) {

2: if (jmatch [i] >= 0) {

3: imatch [jmatch [i]] = i;

4: }

5: }

Fig. 5. In this example the subset formed by only the non-negative elements of array
jmatch is injective. The access pattern makes sure that elements from only this injective
subset are referenced.

4. Simultaneous monotonicity and/or injectivity: Some benchmark applications
involve loop nests with arrays consisting of multiple levels of indirection at
their subscripts, such as A[B[C[i]]]. Both subscript arrays possess certain
properties for the enclosing loop to be parallelizable.

(a) Simultaneous Monotonicity and Injectivity: The innermost subscript ar-
ray is monotonic whereas the outermost subscript array is injective and
hence the outer loop becomes parallelizable. Figure 6 shows such an
example, extracted from the SuiteSparse library.

(b) Simultaneous Injectivity: Both subscript expressions are injective. Fig-
ure 7 shows an example. Injectivity of multiple nested subscript expres-
sions ensures that different values of the innermost expression – typically
the loop index – imply different values of the outermost expression. Note
that, in addition to the subscript arrays, the expressions in which the
arrays appear need to be injective as well.

From CSparse (SuiteSparse 5.4.0)

1: for (b = 0; b < nb; b++){

2: for (k = r[b]; k < r[b+1]; k++) {

3: Blk[p[k]] = b;

4: }

5: }

Fig. 6. The outer loop in this example can be parallelized since array r is monotonically
increasing and array p is injective.

5. Disjoint Injective Expressions: In 4.(b), the subscript arrays were part of
a single expression. In some benchmark applications, we came across loops

6 F. Author et al.

where more than one expression factored in at the subscript of an array.
As shown in Figure 8, each individual subscript expression produces a set
of unique values. In addition, the two sets of values are mutually exclusive.
This makes sure that the loop index maps to a unique set of values and
hence the mapping is injective.

From UA benchmark(NPB 3.3)

1: for(index = 0; index < num_refine; index++){

2: miel = action[index];

3: iel = mt_to_id_old[miel];

4: nelt = nelttemp+(front[miel]-1)*7;

5: ...;

6: ...;

7: ...;

8: ...;

9: for(i = 0; i < 7; i++){

10: tree[nelt + i] = ntemp + ((i + 1) % 8);

11: }

12: ...;

13: ...;

14: }

Fig. 7. The subscript of array tree on line 10 will contain arrays action and front.
Both are injective. The expressions on lines 4 and 10 produce injective values in every
iteration of the outer loop. Also the expression on line 4 is strictly monotonic, increasing
by 7 in successive iterations of the outer loop.

From UA benchmark(NPB 3.3):

1: for (miel = 0; miel < nelt; miel++) {

2: iel = mt_to_id_old[miel];

3: if (ich[iel] == 4) {

4: ntemp = (front[miel]-1)*7;

5: mielnew = miel + ntemp;

6: } else {

7: ntemp = front[miel]*7;

8: mielnew = miel + ntemp;

9: }

10: mt_to_id[mielnew] = iel;

11: ref_front_id[iel] = nelt + ntemp;

12: }

Fig. 8. In this example, two subscript expressions can appear at the subscript of array
mt to id on line 10. The two expressions , one on line 5 where ntemp is (front[miel]−
1) ∗ 7 and on line 8 where ntemp is front[miel] ∗ 7 produce sets of values which are
strictly monotonic as well as mutually exclusive. Hence unique values appear at the
subscript of mt to id on line 10 in every loop iteration.

Compile-time Parallelization of Subscripted Subscript Patterns 7

In the examples discussed above, the properties were verified to be present
and the loops parallelizable due to these properties. A key observation in our
study was that, in many cases, the program code creating the content of the
subscript arrays is present in the programs, and an advanced programmer is
able to determine from that code that the arrays have the necessary properties
discussed in the above examples. The code creating the properties was not shown.
Figure 9 shows the essence of one of these code sections (lines 1–15), followed
by the to-be-parallelized loop.

1: for(i = 0; i < ROWLEN; i++){

2: count = 0;

3: for (j = 0; j < COLUMNLEN; j++){

4: if(a[i][j] != 0){

5: count++;

6: column_number[index++] = j;

7: value[ind++] = a[i][j];

8: }

9: }

10: rowsize[i] = count;

11: }

12: rowptr[0] = 0;

13: for(i = 1; i < ROWLEN + 1; i++){

14: rowptr[i] = rowptr[i-1] + rowsize[i-1];

15: }

16:

17: #pragma omp parallel for private(j,j1)

18: for(i = 0; i < ROWLEN+1; i++){

19: if(i == 0){

20: j1 = i;

21: }

22: else{

23: j1 = rowptr[i-1];

24: }

25: for(j = j1; j < rowptr[i]; j++){

26: product_array[j] = value[j] * vector[j];

27: }

28: }

29:

Fig. 9. Example of parallel loop using index array (lines 17–28) and the code filling the
index array (lines 1–15). Here, monotonicity of array rowptr enables the parallelization
of the outer loop on line 18.

In order to parallelize the outer loop (lines 17–28), one must ensure that
the index ranges of the inner loop do not overlap for different values of i. These
ranges are essentially from rowptr[i − 1] to rowptr[i]. They do not overlap if
rowptr[i − 1] <= rowptr[i], which is the same as saying rowptr is monotonic.
Non-strict monotonicity is sufficient, in this case. This property can be derived

8 F. Author et al.

from the code on lines 1–15. Line 14 creates a monotonic relationship between
two consecutive array elements, if the value rowsize[i− 1] is non-negative.

This is the case, as the code on lines 1–10 assigns a non-negative value, count,
to each array element within the index range of interest. Count is initialized to
0 (line 2) and is only incremented (line 5).

In our study we have found several similar patterns, hence Figure 9 represents
a class of programs using subscripted subscripts. The next section presents a
compiler algorithm that analyzes this class. While our study found the more
complex examples described in this section as well, a key observation was that
the subscript array properties that are needed to guarantee parallelizability could
be derived from the program code itself and were not dependent on input data.
The content of the index arrays are input dependent, but the key properties
needed for parallelization tend to be invariant.

3 Compile-time Algorithm for Index Array Analysis

3.1 Algorithm Overview

Our algorithm determines the properties described in the previous section as
follows. The algorithm proceeds in program order, analyzing the loops in each
nest from inside out. At each loop level, it proceeds in two phases to analyze the
values of the variables of interest. There are two types of variables of interest:
integer scalars and integer arrays with simple subscripts. For the current algo-
rithm, “simple subscript” means index expressions of the form i+ k, where i is
the loop variable and k is a constant.

Phase 1 analyzes the loop body and determines the effect of one iteration on
the variable’s value. Phase 2 then aggregates this expression across all iterations,
determining the effect of the entire loop on the scalar or array. After Phase 2,
the loop is collapsed, that is, it is substituted by a set of expressions representing
the effect of the loop. The algorithm then proceeds with the next outer loop.

3.2 Representation

Our representation of a variable value is a symbolic expression that may contain
ranges of the form [l : u], where the lower bound l and upper bound u are
symbolic expressions. Values are may ranges, i.e., the actual value may be any
one in the range.

x : [lb : ub] – (scalar) variable x has possible value range between lb and
ub at current program point.

For arrays, the representation includes a subscript range. Subscript ranges are
must ranges, i.e., the indicated value holds for all array elements in that range.

y : [sl : su], [vl : vu] – all elements of array y in index range sl : su have
a value in the range of vl to vu.

Compile-time Parallelization of Subscripted Subscript Patterns 9

The representation makes use of several special symbols, referring to partic-
ular values of a variable being analyzed:

– λ refers to the value of the variable at the beginning of the loop iteration
being analyzed. This will be used in Phase 1 and for scalars.

– Λ refers to the value of the variable at the beginning of the loop. This is useful
in the aggregation step of Phase 2. Λ will also be used in the expression that
represents the effect of the loop after collapsing, where it refers to the value
before the expression.

– ⊥ indicates an unknown value, e.g., if an expression is too complex for the
compiler to analyze or represent.

– Instead of a value (range) the representation may indicate an array property,
such as Monotonic inc/dec or Injective.

3.3 Algorithm for Phase 1

Our algorithm makes use of the symbolic range analysis [4] method to analyze
the body of the given loop. Both integer scalars and arrays are analyzed. Scalar
values are initialized to λ. Phase 1 computes a symbolic range expression for the
variables of interest at the end of the loop body. The values may contain the loop
index, and the initial value (λ) as parameters. If the range expressions contain
other variables, for which range expressions are known, these expressions will be
substituted. If the values are not known, the range expression becomes unknown
(⊥).

For example, at the end of the loop on lines 3–8, of Figure 9 the variable
count will be

count: [λ : λ+ 1]

The values for arrays column number and value will be set to ⊥, as there is
insufficient information available about their right-hand-side expressions and the
index expressions are not of the form i+ k.

We will explain Phase 1 for the loops on lines 1 and 13 in Section 3.5.

3.4 Algorithm for Phase 2

Phase 2 aggregates the values computed by a single loop iteration across the
iteration space, producing the values computed by the entire loop. This can
be straightforward in the case where the value range expression of the variable
contains neither the loop index nor λ, and, in case of an array, the subscript is
a simple expression. In that case, the aggregated value is the same as the one
produced by a single iteration. For array values, the loop index in the subscript
expression is simply replaced by the iteration range. Consider the following ex-
ample. As we will see, Phase 1 yields the expression for line 10:

rowsize: [i], [0 : COLUMNLEN − 1]

10 F. Author et al.

meaning a single iteration of the i-loop assigns a value range [0 : COLUMNLEN−
1] to the array element rowsize[i]. Aggregation now expands the subscript [i] to
the full loop range [0 : ROWLEN − 1]. The value expression is loop invariant,
hence it is the same for all array elements. The total effect of the loop is

rowsize: [0 : ROWLEN − 1], [0 : COLUMNLEN − 1]

For scalars, if a bound of the value range expression contains λ, the aggre-
gated bound is computed by applying the expression (which represents the effect
of one loop iteration) repeatedly n times, where n is the number of iterations. In
the case of an expression λ+k, where k is a constant, this amounts to Λ+n ∗k.
Note that Λ now represents the variable value at the beginning of the loop. Our
current algorithm does not handle more complex bound expressions. In the ex-
pression [λ : λ+ 1], both bounds get processed in this way. The range expression
for count of the entire loop becomes [Λ : Λ+ COLUMNLEN − 1].

The most advanced case of aggregation, needed for our example, is the re-
currence relationship on line 14. Phase 1 determines:

rowptr: [i], rowptr[i− 1] + [0 : COLUMNLEN − 1]

Notice that [0 : COLUMNLEN − 1] has already been determined above to
be the value range of array rowsize, in the subscript range 0 : ROWLEN − 1.
Also note that this is a non-negative number. In the case of this recurrence re-
lationship (the array element referring back to the value written in the prior
iteration) and the added term being a non-negative value, the aggregation step
determines that the relationship between adjacent array elements is “monoton-
ically increasing”, and this holds for the entire array range:

rowptr: [1 : ROWLEN],Monotonic inc

There are a number of advanced cases of aggregation, which however are
not needed for our initial algorithm. For example, an expression (or bound)
of the form λ + i (i being the loop index, and loop bounds 0 : n − 1) will

yield Λ +
∑n−1

0 i = Λ + n(n − 1)/2. Also, if phase 1 determines x : [i], [i]
(i.e., the loop body contains the array assignment x[i] = i), aggregation yields
x : [0 : n − 1], Identity. The full aggregation algebra analyzing and expressing
these cases will be presented in a forthcoming paper.

3.5 Example

The algorithm proceeds in the following sequence of phases for the code shown
in Figure 9: Phase 1, followed by Phase 2 for the loops on lines 3, 1, 13. The
phases yield the values:

Phase 1 (3): count : [λ : λ+ 1]; column number : ⊥; value : ⊥
Phase 2 (3): count : [Λ : Λ+COLUMNLEN−1]; column number : ⊥; value : ⊥

Phase 1 (1): count : [0 : COLUMNLEN−1]; rowsize : [i], [0 : COLUMNLEN−
1]

Compile-time Parallelization of Subscripted Subscript Patterns 11

Phase 2 (1): count : [0 : COLUMNLEN −1]; rowsize : [0 : ROWLEN −1], [0 :
COLUMNLEN − 1]

Phase 1 (13): rowptr : [i], rowptr[i− 1] + [0 : COLUMNLEN − 1]
Phase 2 (13): rowptr : [1 : ROWLEN],Monotonic inc

4 Related Work

The importance of such array properties as monotonicity for array subscript anal-
ysis was recognized early-on by McKinley [11]. Gutierrez et al. [7] presented run
time techniques for using subscript array properties, especially monotonicity, for
parallelizing sparse matrix computations. Their techniques were primarily based
on pattern matching. Lin and Padua [10] took a stab at a compile-time tech-
nique to analyze the content of index arrays and automatically parallelize loops.
They used a form of demand-driven, interprocedural query propagation to ana-
lyze array properties, such as injectivity, monotonicity, closed-form values, and
closed-form bounds. They found several cases where they could detect closed-
form values and bounds. However, they were not yet able to detect injectivity or
monotonicity, which would have been needed to parallelize the encountered loops
automatically. The single indexed array analysis technique [9] used by Lin checks
for injectivity of the index array. The method analyzes index array sections de-
fined only in index gathering loops. We found that, in a majority of scientific
applications, index arrays are filled in more general loop patterns. In [12], Mo-
hammadi et al. describe additional properties, such as Triangularity and Periodic
Injectivity/Monotonicity similar to the subset property described in Section 2,
and propose a framework for automatically detecting these properties, based on
user-defined assertions w.r.t. the index arrays and loop dependence information.
The assertions are processed by a Z3 SMT solver to test whether the constraints
are satisfiable. Our work in contrast seeks to derive properties of index arrays
from the program directly, using the presented algorithm.

A large number of contributions investigate array values and data depen-
dences at runtime. Many “inspector-executor schemes” analyze access patterns
– often via stripped-down loops that only contain the code performing the actual
array accesses – and then decide on legality or optimization of the applicable
transformations. Initially, inspector-executor schemes were applied to improve
communication and scheduling operations by Saltz et al. [17]. More recently,
they were also applied in the context of dependence analysis and automatic par-
allelization in Sparse Matrix Computations, such as in the work by Mohammadi
et al [13] and by Venkat et al. [19]. A related method is runtime data-dependence
testing, which tracks references that may access the same memory location, pio-
neered by Rauchwerger and Padua [16]. While runtime methods can be powerful,
due to the availability of complete information on access patterns at execution
time, their Achilles’ heel is the significant overhead of the inserted inspection
and decision code.

12 F. Author et al.

Work related to our analysis methods include abstract interpretation and
loop aggregation methods. Abstract interpretation by Cousot and Cousot [5]
symbolically executes the program and tracks values in the form of symbolic ex-
pression. A difficulty is the interpretation of loops, whose bounds are unknown in
most cases. “Widening and narrowing” has been proposed to ensure termination
of the algorithms in the presence of control flow cycles. The original method is
general for any control flow, but does not yield precise information about loop
bounds. The Range Analysis [4] method that we use as a basis for analyzing
loop bodies, uses a form of abstract interpretation.

A technique that can produce precise information for the forms of loops that
compile-time techniques usually attempt to parallelize, is the aggregation of in-
formation gathered in the loop body across the iteration space. This method was
applied by Tu and Padua in array privatization [18] to analyze array sections
that are defined and used. We use a similar method, extended to capture the
effect of certain recurrence relationships, which allow us to gather such array
properties as monotonicity. Understanding these effects is the key to extend-
ing the work by Lin and Padua, mentioned above, for successfully recognizing
parallel loops.

5 Evaluation

We have applied the presented array analysis techniques to the CG code of
the latest NAS Parallel Benchmarks v3.3.1 by hand. The example shown in
Figure 9 is the key pattern in this code. The technique of Section 3 finds a
monotonically increasing property of array rowptr. Based on this information,
the data dependence test can determine that the iteration ranges for the loop
on line 25 are non-overlapping in different iterations of the outer loop (line 18).
The implementation of this data dependence test is not part of the present
contribution; it is ongoing work. Key for this paper is that independence can be
proven at compile time, based on rowptr’s property of monotonicity.

We briefly sketch the basic idea. We are extending the The Range Test [3],
which symbolically computes the array ranges being accessed in the iterations
of the loop being analyzed, and then tests if these ranges overlap. If they do
not, the iterations are independent and thus the loop can be parallelized. For
the loop on line 18, the Range Test finds that the inner loop (line 25) accesses
the array range product array[rowptr[i− 1] : rowptr[i]]. The key step in which
the extended Range Test looks for overlap of the array ranges is a comparison of
the range accessed in an arbitrary iteration i and the successor iteration i + 1.
This comes down to the comparison of the two range expressions rowptr[i− 1] :
rowptr[i] and rowptr[i] : rowptr[i + 1]. The monotonicity property shows that
rowptr[i] <= rowptr[i+ 1] for all values of i in the outer loop. Thus, the array
ranges being accessed do not overlap. The reader may notice a subtlety: the
first iteration is a special case, due to the if statement on lines 19–24. This case
could be handled by peeling the first iteration. However, symbolic analysis can

Compile-time Parallelization of Subscripted Subscript Patterns 13

do better and prove that there is no overlap even in the first iteration. This will
be described in a forthcoming paper on the implemented Range Test extension.

5.1 Performance Results

Figure 10 shows the performance results of the CG benchmark, which is essen-
tially an Unstructured Sparse Linear System Solver using the Conjugate Gra-
dient Method [2]. The benchmark includes several data sets, of increasing size,
referred to as Class A, B, C etc. The speedups for the 3 Classes using 2, 4, 6 and
8 threads, have been plotted. The speedup in this case, is the performance im-
provement achieved after parallelizing loops with subscripted subscript patterns
only, similar to the ones analyzed in Figure 9, relative to the original, sequential
execution. The execution times were recorded on a machine with an Intel Kaby
Lake R processor having 4 cores and 8 threads at 1.60GHz base frequency along
with 8GB of 1866 MHz DDR4 memory . We used gcc v7.3.0 on Ubuntu Linux
v18.04 to compile and run the application codes.

Fig. 10. Performance results of the CG benchmark (NPB 3.3).

For Class A, as the number of threads increases, the performance also in-
creases up to 6 threads. For 8 threads, the performance is only slightly better
than with 4 threads. On the other hand, for Classes B and C, the performance
gain is the highest with 8 threads. We attribute this behavior to the availabil-
ity of additional hardware resources for executing more than one thread per
core, which benefits large data sets but not the smaller ones. The key evaluation
result, for this paper, is that the parallel execution of loops with subscripted sub-
scripts, which our new techniques enable, gains significant performance. Current

14 F. Author et al.

parallelizers do not detect these loops as parallel, executing bulk of the program
sequentially.

6 Conclusions

We have presented a novel compile-time analysis method for subscripted sub-
scripts, which can gather sufficient information to successfully parallelize an im-
portant class of programs exhibiting sparse matrix patterns. The method finds
that certain arrays that are used in subscripts of other arrays are monotonic.
This property provides sufficient information to data-dependence analysis, allow-
ing it to detect that the enclosing loops are parallel. The CG code of the latest
version of the NAS parallel benchmark represents this class of patterns. Apply-
ing the techniques by hand to this code, yields a parallel program that gains a
speedup of 3.8 on four cores, demonstrating that the subscript patterns show up
in key program sections. Current compiler technology is unable to improve this
benchmark significantly. Our techniques are the first to fully automatically par-
allelize certain loops containing subscripted subscripts. These patterns, in turn,
are the key obstacle preventing current compiler technology from matching the
hand-coded parallelism in the NAS parallel benchmark suite.

References

1. H. Bae, D. Mustafa, J.-W. Lee, Aurangzeb, H. Lin, C. Dave, R. Eigenmann,
and S. Midkiff, “The cetus source-to-source compiler infrastructure: Overview
and evaluation,” International Journal of Parallel Programming, pp. 1–15,
2012, 10.1007/s10766-012-0211-z. [Online]. Available: http://dx.doi.org/10.1007/
s10766-012-0211-z

2. D. H. Bailey, “Nas parallel benchmarks,” Encyclopedia of Parallel Computing, pp.
1254–1259, 2011.

3. W. Blume and R. Eigenmann, “The Range Test: A Dependence Test for Symbolic,
Non-linear Expressions,” Proceedings of Supercomputing ’94, Washington D.C., pp.
528–537, Nov. 1994.

4. ——, “Symbolic range propagation,” in the 9th International Par-
allel Processing Symposium, 1995, pp. 357–363. [Online]. Available:
citeseer.nj.nec.com/blume95symbolic.html

5. P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,” in Pro-
ceedings of 4th ACM Symposium, 1977, pp. 238–252.

6. T. A. Davis, Direct Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, 2006. [Online]. Available: https://epubs.siam.org/doi/
abs/10.1137/1.9780898718881

7. E. Gutiérrez, R. Asenjo, O. Plata, and E. L. Zapata, “Automatic parallelization
of irregular applications,” Parallel Computing, vol. 26, no. 13-14, pp. 1709–1738,
2000.

8. Intel. (2011) Automatic parallelization with intel compilers. Intel. https://
software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers ,
visited 10-21-2019.

http://dx.doi.org/10.1007/s10766-012-0211-z
http://dx.doi.org/10.1007/s10766-012-0211-z
citeseer.nj.nec.com/blume95symbolic.html
https://epubs.siam.org/doi/abs/10.1137/1.9780898718881
https://epubs.siam.org/doi/abs/10.1137/1.9780898718881
https://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
https://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers

Compile-time Parallelization of Subscripted Subscript Patterns 15

9. Y. Lin and D. Padua, “Analysis of irregular single-indexed array accesses and its
applications in compiler optimizations,” in International Conference on Compiler
Construction. Springer, 2000, pp. 202–218.

10. ——, “Compiler analysis of irregular memory accesses,” in Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, ser. PLDI ’00. New York, NY, USA: ACM, 2000, pp. 157–168.
[Online]. Available: http://doi.acm.org/10.1145/349299.349322

11. K. S. McKinley, “Dependence Analysis of Arrays Subscripted by Index Arrays,”
Rice University, Tech. Rep., June 1991, tR91-162.

12. M. S. Mohammadi, K. Cheshmi, M. M. Dehnavi, A. Venkat, T. Yuki, and M. M.
Strout, “Extending index-array properties for data dependence analysis,” 2018.

13. M. S. Mohammadi, T. Yuki, K. Cheshmi, E. C. Davis, M. Hall, M. M. Dehnavi,
P. Nandy, C. Olschanowsky, A. Venkat, and M. M. Strout, “Sparse computation
data dependence simplification for efficient compiler-generated inspectors,” in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2019. New York, NY, USA: ACM, 2019,
pp. 594–609. [Online]. Available: http://doi.acm.org/10.1145/3314221.3314646

14. PGI. (2018) Pgi compiler user’s guide. Nvidia. [Online]. Available: https:
//www.pgroup.com/resources/docs/18.4/openpower/pgi-user-guide/index.htm

15. D. Quinlan and C. Liao, “The rose source-to-source compiler infrastructure,” in
Cetus users and compiler infrastructure workshop, in conjunction with PACT, vol.
2011. Citeseer, 2011, p. 1.

16. L. Rauchwerger and D. A. Padua, “The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction parallelization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 2, pp. 160–??, 1999.
[Online]. Available: citeseer.nj.nec.com/rauchwerger95lrpd.html

17. J. Saltz, R. Mirchandaney, and K. Crowley, “Run time parallelization and schedul-
ing of loops.” IEEE Transactions on Computers, vol. 40, no. 5, pp. 603–612, May
1991.

18. P. Tu and D. Padua, “Automatic Array Privatization,” in Proc. Sixth Workshop
on Languages and Compilers for Parallel Computing, Portland, OR. Lecture Notes
in Computer Science., U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds.,
vol. 768, August 12-14, 1993, pp. 500–521.

19. A. Venkat, M. S. Mohammadi, J. Park, H. Rong, R. Barik, M. M. Strout, and
M. Hall, “Automating wavefront parallelization for sparse matrix computations,”
in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2016, p. 41.

http://doi.acm.org/10.1145/349299.349322
http://doi.acm.org/10.1145/3314221.3314646
https://www.pgroup.com/resources/docs/18.4/openpower/pgi-user-guide/index.htm
https://www.pgroup.com/resources/docs/18.4/openpower/pgi-user-guide/index.htm
citeseer.nj.nec.com/rauchwerger95lrpd.html

	Compile-time Parallelization of Subscripted Subscript Patterns

