
THESIS

ACCELERATING THE BPMAX ALGORITHM FOR RNA-RNA INTERACTION

Submitted by

Chiranjeb Mondal

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2021

Master’s Committee:

Advisor: Sanjay Rajopadhye

Louis-Noel Pouchet

Anton Betten

Copyright by Chiranjeb Mondal 2021

All Rights Reserved

ABSTRACT

ACCELERATING THE BPMAX ALGORITHM FOR RNA-RNA INTERACTION

RNA-RNA interactions (RRIs) are essential in many biological processes, including gene tran-

scription, translation, and localization. They play a critical role in diseases such as cancer and

Alzheimer’s. An RNA-RNA interaction algorithm uses a dynamic programming algorithm to

predict the secondary structure and suffers very high computational time. Its high complexity

(Θ(N3M3) in time and Θ(N2M2) in space) makes it both essential and a challenge to parallelize.

RRI programs are developed and optimized by hand most of the time, which is prone to human

error and costly to develop and maintain.

This thesis presents the parallelization of an RRI program - BPMax on a single shared memory

CPU platform. From a mathematical specification of the dynamic programming algorithm, we

generate highly optimized code that achieves over 100× speedup over the baseline program that

uses a standard “diagonal-by-diagonal” execution order. We achieve 100 GFLOPS, which is about

a fourth of our platform’s peak theoretical single-precision performance for max-plus computation.

The main kernel in the algorithm, whose complexity is Θ(N3M3) attains 186 GFLOPS. We do this

with a polyhedral code generation tool, ALPHAZ, which takes user-specified mapping directives

and automatically generates optimized C code that enhances parallelism and locality. ALPHAZ

allows the user to explore various schedules, memory maps, parallelization approaches, and tiling

of the most dominant part of the computation.

ii

ACKNOWLEDGEMENTS

I want to thank my advisor Dr. Sanjay Rajopadhye for his guidance and encouragement in

developing this thesis. I am also grateful to him for accepting me as a student, spending his

precious time with me, and guiding me through the basics of high-performance computing and

polyhedral compilation. I would also like to thank Dr. Louis-Noel Pouchet and Anton Betten for

their valuable inputs.

I would also like to thank the Melange team at CSU. I want to thank Louis Narmour and

Tomofumi Yuki for their support of ALPHAZ.

I must acknowledge the continuous encouragement from my parents Anurupa Mondal and

Tarak Chandra Mondal, my sisters Anindita and Aparajita. Finally, I would like to mention the

tremendous support from my wife Priyanka throughout the master’s program, without whom this

journey would not have been possible at all.

iii

DEDICATION

I would like to dedicate this thesis to my parents, wife, and children (Prachi and Pragyan).

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1

1.1 Contribution . 3

1.2 Thesis Structure . 3

Chapter 2 Background . 4

2.1 Related Work . 4

2.2 BPMax Algorithm . 6

2.3 Polyhedral Model . 8

2.4 ALPHAZ . 9

Chapter 3 Method . 13

3.1 Phase I . 16

3.1.1 Optimum Schedule for Double max-plus Operation 16

3.1.2 Parallelization Approach . 18

3.1.3 Insights from Phase I . 18

3.2 Phase II . 18

3.2.1 Parallelization Approach . 20

3.2.2 Tiling R0 . 22

3.2.3 Insights from Phase II . 23

3.3 Phase III . 23

3.3.1 Parallelization Approach . 23

3.3.2 Tiling Integration and Subsystem Scheduling 24

3.4 Memory Optimization . 25

3.5 Performance Tuning . 26

3.6 Validation of Program Correctness . 27

Chapter 4 Results . 28

4.1 Max-plus Machine Peak Analysis . 29

4.2 Performance Analysis of Double Max-plus Computation 33

4.3 BPMax Performance Improvement . 37

4.4 Code Generation Metric . 39

Chapter 5 Future Directions . 40

Bibliography . 41

v

LIST OF TABLES

3.1 BPMAX ORIGINAL SCHEDULE . 14

3.2 DOUBLE MAX-PLUS SCHEDULE . 18

3.3 BPMAX FINE-GRAIN SCHEDULE . 22

3.4 BPMAX COARSE-GRAIN SCHEDULE . 22

3.5 BPMAX HYBRID SCHEDULE . 23

3.6 BPMAX HYBRID SCHEDULE WITH TILING . 24

4.1 CPU PARAMETERS OVERVIEW . 28

4.2 MAX-PLUS THEORETICAL MACHINE PEAK . 29

4.3 Xeon E-2278G (Coffee Lake) Peak Memory Bandwidth 30

4.4 Xeon E5 1650v4 (Broadwell) Peak Memory Bandwidth 32

4.5 AUTO-GENERATED CODE STATISTICS . 39

vi

LIST OF FIGURES

2.1 The four cases defining table F . 6

2.2 Polyhedral iteration space for prefix-sum . 9

2.3 Code generation methodology . 10

3.1 BPMax dependency overview . 13

3.2 BPMax Original Schedule . 15

3.3 Double max-plus dependency . 17

3.4 Decomposition of double max-plus computation for an inner triangle 17

3.5 Decomposition of R3 computation for an inner triangle 19

3.6 Decomposition of R4 computation for an inner triangle 20

3.7 Illustration of F -table entry update with R1 and R2 21

3.8 A matrix instance of max-plus operation . 22

3.9 BPMax memory map without optimization . 25

3.10 BPMax optimized memory map . 26

3.11 Memory mapping schemes . 27

4.1 Xeon E-2278G (Coffee Lake) roofline for max-plus 31

4.2 Xeon E5 1650v4 (Broadwell) roofline for max-plus 32

4.3 Double max-plus single core performance comparison on Coffee Lake and Broadwell . 33

4.4 Double max-plus performance comparison on Coffee Lake 35

4.5 Double max-plus speedup comparison on Coffee Lake 35

4.6 Double max-plus performance comparison on Broadwell 35

4.7 Double max-plus speedup comparison on Broadwell 35

4.8 Effect of tiling parameters (i2 × k2 × j2) on double max-plus performance (sequence

length - 16 x 2500) on Coffee Lake . 36

4.9 Effect of hyper-threading on tiled double max-plus performance on Coffee Lake 36

4.10 BPMax performance comparison on Coffee Lake . 38

4.11 BPMax speedup comparison on Coffee Lake . 38

4.12 BPMax performance comparison on Broadwell . 38

4.13 BPMax speedup comparison on Broadwell . 38

vii

Chapter 1

Introduction

Ribonucleic acid (RNA) is the origin of life. It plays an essential role in the coding, decoding,

regulation, and expression of genes. RNA is a single strand formed by a sequence of four different

types of nucleotides – Adenine (A), Uracil (U), Guanine (G), and Cytosine (C), which form a

repeating structure. Different nucleotides may form bonds of varying strength. A single RNA

strand folds into itself. Also, two different RNA strands can interact with each other, resulting

in the secondary structure, which may provide valuable information about a biological function.

Guanine forms the strongest bond with Cytosine, Adenine forms the next strongest bond with

Uracil, and Uracil forms the weakest bond with Guanine. A single RNA strand folds into itself.

Also, two different RNA strands can interact with each other, resulting in the secondary structure.

Knowledge of such structure can provide useful information about a biological function and may

be used in experiments. Mortimer et al. [23] highlights the emerging relationships between such

RNA structure and the regulation of gene expression.

RNA-RNA interactions have been moved to the spotlight in biology since the mid-1990s with

significant RNA interference discovery. Researchers have long been studying these interactions

and proposed different models. Chitsaz et al. [4] developed piRNA - one of the most compre-

hensive thermodynamic models for RRI. It has an Θ(N4M2 + N2M4) time and Θ(N4 + M4)

space complexity, where M and N are the numbers of nucleotides present in each RNA sequence.

It uses 96 dynamic tables. However, running this compute and the memory-intensive program is

exceptionally challenging. It takes days and months to get experimental results. So, Ebrahimpour-

Boroojeny et al. [8] retreated from the slow comprehensive model and developed the BPPart [9] to

obtain base-pair partition function and BPMax to maximize the base-pair. They use a simplified

energy model and consider only base-pair counting. Both of them have similar asymptotic time

and space complexity of Θ(M3N3) and Θ(M2N2). BPPart uses 11 tables, and BPMax uses a

1

single one. Nevertheless, the original implementation of even BPMax suffers from poor memory

locality, lacks auto-vectorization, and runs extremely slow for longer input sequences.

Ebrahimpour-Boroojeny et al. [8] conclude that BPMax captures a significant portion of the

thermodynamic information. The Pearson and Spearman’s rank correlation between piRNA and

BPMax is 0.904 at −180°C and 0.836 at 37°C highlighting its importance. BPMax and other RRI

algorithms such as piRNA [4], IRIS [26], and RIP [16] follow similar recurrence patterns. So,

besides the practical usefulness of BPMax, the learning and insights gleaned from the BPMax op-

timization approach can be applied to the other RRI interaction algorithms with similar recurrence

patterns.

Performance optimization requires exploiting parallelism and locality at multiple levels. It

is a difficult task and often leads to hand-crafted code. Manual optimization is neither easily

portable (e.g., to different platforms where different kinds of optimization are needed) nor easily

maintainable (e.g., changing the optimization strategy may require changes to many parts of the

code). This challenge grows as the complexity of the program increases. It is highly desirable

that the optimized programs get generated from a simple correct program together with a set of

performance tuning hints or directives.

Fortunately, RRI algorithms fit the requirements of the polyhedral model [11–13, 27–29, 31–

33], a mathematical formalism that allows for just such program transformations. The polyhe-

dral compilation has been the subject of intense research for 35 years. Yet, even a state-of-the-art

polyhedral tool like PLUTO [1,2] does not yield satisfactory performance. Specifically, Varadara-

jan [36] evaluated the performance of PLUTO on a simple program that implements the equa-

tion: Xi1,j1,i2,j2 =
j1−1
∑

k1=i1

j2−1
∑

k2=i2

Xi1,k1,i2,k2 ×Xk1+1,j1,k2+1,j2 , which is a core computation of RRI

algorithms, and found it to be significantly lower than the hand-written baseline implementation.

Many of the performance optimization strategies need some careful thoughts by an expert. This

gap can be bridged by a tool that allows semi-automatic transformation like Chill [3]. At CSU, we

are developing and working with a similar tool, ALPHAZ [38], that operates at a higher level of

abstraction for generating optimized code.

2

1.1 Contribution

• We optimize the RRI program - BPMax on a single CPU machine using a polyhedral code

generation tool - ALPHAZ .

• It is the first time a complex RRI program like BPMax has been optimized using ALPHAZ in

its entirety. Previous attempts were limited to a micro-kernel only. It is also the first attempt

to optimize BPMax on the CPU.

• We generate highly optimized code for BPMax that achieves more than 100× speedup over

the original program. It is close to one-fourth of our platform’s theoretical machine peak.

• The most compute-intensive part of BPMax achieves a 223× speedup over the original im-

plementation, and a 2× improvement over a similar kernel optimized by Varadarajan [36].

It is close to 40% of our platform’s machine peak.

1.2 Thesis Structure

Chapter 2 sets up the context with related work and background to highlight the BPMax al-

gorithm, recurrence equations involved in the algorithm, discuss the polyhedral model’s role, and

application of ALPHAZ in code optimization using a trivial example. Chapter 3 discusses multiple

phases of the optimization process, the rationale behind different schedules, processor allocations,

memory mappings, and tiling. We go over our performance results in Chapter 4. Finally, Chapter 5

presents our conclusion and future directions for BPMax and other RRI applications.

3

Chapter 2

Background

This chapter highlights the related work, BPMax algorithm, summarizes the polyhedral model,

and then provides a brief background of our code generation tool - ALPHAZ .

2.1 Related Work

One of the early studies on interactions between nucleotides of single RNA was proposed by

Nussinov [24] in 1978 that predicts secondary structure based on the probability that maximizes

the number of base pairs in it. Nussinov’s algorithm has a complexity of Θ(N3) time and Θ(N2)

space. In 1981, Zuker and Stiegler [39] came up with a more sophisticated algorithm to predict

an optimal secondary structure through free energy minimization (FEM). An energy minimization

algorithm assumes that the correct structure has the lowest amount of free energy. Most of the

RNA secondary structure prediction uses a dynamic programming algorithm. Although, it has also

been formulated as a Bayesian inference problem [5].

There were prior works on the optimization and parallelization of these algorithms on the CPU

platform. Li et al. [21] worked on the CPU and GPU versions of the Nussinov [24] RNA folding.

Swenson et al. [35] worked on a parallel secondary structure prediction program for multi-core

desktop. Palkowski et al. [25] used the polyhedral model to optimize Nussinov’s [24] algorithm.

Rizk et al. [34] presented a GPU implementation of Zuker’s algorithm [39]. However, most of the

optimization efforts were related to single RNA strand folding.

Varadarajan [36, 37] applied semi-automatic transformation using ALPHAZ for a simplified

surrogate mini-app that mimicked the dependence pattern to focus only on the most compute-

intensive portion of the original piRNA. The original shared-memory OpenMP programs related

to BPMax, BPPart, and piRNA try to achieve maximum parallelization without auto-vectorization

and suffer very poor locality. She exploited locality using both coarse and fine-grain parallelism

and achieved around 31× speedup.

4

Glidemaster [14] achieved significant speedup on a windowed version of the BPMax on GPU.

However, only up to a limited number of nucleotide sequences or a window of nucleotide sequences

can be processed on GPU due to memory constraints. Also, the cost of moving data out of the GPU

memory negatively impacts the overall performance. So, it is crucial to speed up the algorithm on

the CPU to avoid these constraints. It can also further open up the possibility of a higher degree of

parallelism over multiple machines.

5

2.2 BPMax Algorithm

BPMax uses weighted base-pair counting for base-pair maximization. It considers both inter-

molecular and intramolecular base-pairings but disallows pseudo-knots or crossings. Mathemati-

cally, it produces a four-dimensional triangular table - F -table (a triangular collection of triangles)

based on two RNA sequences. Figure 2.1 shows the main cases defined by Ebrahimpour-Boroojeny

et al. [8] for the F -table using the Eddy-Rivas diagrams, used in describing bioinformatics algo-

rithms on sequences. Recurrence equations 2.1 and 2.2 show the complete specification of BP-

Max [8]. There are five reductions, R0, R1, R2, R3, and R4, each of which is highlighted in a

different color. We use the same colors to highlight the dependence pattern in Chapter 3. The blue

reduction (R0) represents the double max-plus operation. It is the most compute-intensive portion

of the algorithm.

Figure 2.1: The four cases defining table F

6

Fi1,j1,i2,j2 = max























































































































































































































































































S
(2)
i2,j2

j1 ≤ i1

S
(1)
i1,j1

j2 ≤ i2

iscore(i1, i2) i1 = j1 and i2 = j2

max

























































































































Fi1+1,j1−1,i2,j2 + score(i1, j1),

Fi1,j1,i2+1,j2−1 + score(i2, j2),

S
(1)
i1,j1

+ S
(2)
i2,j2

,

j1−1
max
k1=i1

j2−1
max
k2=i2

Fi1,k1,i2,k2 + Fk1+1,j1,k2+1,j2 → R0

j2−1
max
k2=i2

S(2)(i2, k2) + Fi1,j1,k2+1,j2 →R1

j2−1
max
k2=i2

Fi1,j1,i2,k2 + S(2)(k2 + 1, j2) →R2

j1−1
max
k1=i1

S(1)(i1, k1) + Fk1+1,j1,i2,j2 →R3

j1−1
max
k1=i1

Fi1,k1,i2,j2 + S(1)(k1 + 1, j1) →R4

























































































































otherwise

(2.1)

Si,j = max











0 j − i ≤ 4

max[Si+1,j−1 + score(i, j),
j−1
max
k=i

Si,k + Sk+1,j] otherwise
(2.2)

7

2.3 Polyhedral Model

The Polyhedral model [11–13, 27–29, 31–33] is a mathematical framework for automatic opti-

mization and parallelization of affine programs. A polyhedron is the intersection of finitely many

half-spaces. It can be bounded (polytope) or unbounded. The model provides an abstraction to

represent static control parts like variables, iteration space (loop nests), and dependencies using

integer points in polyhedra.

Listing 2.1: Prefix sum

f o r (i n t i =0 ; i <7 ; i ++) {

sum [i] = 0 ;

f o r (i n t j =0 ; j <= i ; j ++)

sum [i] += a r r a y [j] ;

}

Let us consider the prefix sum code highlighted in Listing 2.1 which computes the prefix sum of an

array of size 7. The iteration space for this computation can be represented using the intersection

of the finite half-spaces or set of inequalities such as j ≤ i, i ≤ 6 and j = 0. The points in the

iteration spaces are marked with the dots represented by the polyhedron with vertices (0, 0), (0, 6),

and (6, 0). The data space is usually one or more dimensions less than the iteration space. As a

result, the data access functions are many-to-one mappings from iteration to data space. Polyhedral

transformation functions are affine. A function f : Rm 7→ R
n is affine if there is a matrix A ∈

R
m×n and a vector~b ∈ R

n such that ∀~x ∈ R
m, f(~x) = A~x+~b. An affine transformation preserves

the collinearity and convexity of points while transforming a polyhedron into another polyhedron,

leading to the model’s clean closure properties under the program transformation.

Going back to the original equation, a concise way to look at this computation would be to

view it as an equation: sum[i] =
i

∑

j=0

array[j]. The idea behind a polyhedral tool like ALPHAZ is

exactly the reverse. It allows the user to express one or more system of affine recurrence equations

as a program, transform them using the polyhedral transformations that reduce the complexity of

8

Figure 2.2: Polyhedral iteration space for prefix-sum

the program, use a better processor and memory allocation, and then produce optimized code for a

language of interest.

2.4 ALPHAZ

ALPHA [22] is a strongly typed functional language based on systems of affine recurrence equa-

tions defined over polyhedral domains. It was developed by Mauras [22] in 1989. Subsequently, it

was extended to include subsystems and reductions [6, 7, 10, 19, 20]. ALPHAZ is a tool that allows

program transformations and user-directed compilation of ALPHA programs. It provides a general

framework for analysis, transformation, and code generation in the polyhedral equational model.

ALPHAZ is similar to an earlier tool - MMALPHA [15] , which targets field-programmable gate

array-based hardware design. On the other hand, ALPHAZ targets code generation for multipro-

cessor shared-memory programs and focuses on programs with reduction operations.

Most of the polyhedral code optimization tools use hard-coded transformation strategies and

generate code automatically. But the performance of such code often falls short of a hand-written

9

optimized version. To avoid fixed transformation strategies, tools like Chill [3], Hailde [30], and

ALPHAZ [38] implement various code transformation APIs and present them to the users. It allows

users to choose different transformations for a specific problem, enabling a large exploration space

for the optimization process.

Figure 2.3: Code generation methodology

ALPHAZ code optimization process has two parts – input specification and compilation script.

Input specification allows a user to express the computation using mathematical equations. The

compilation script takes inputs (e.g., scheduling, parallelization, memory-mapping, and tiling

transformations) from the user to generate optimized C code corresponding to the input specifi-

cation. Figure 2.3 highlights the code optimization methodology using ALPHAZ .

All the transformations in ALPHAZ are semantics preserving. However, it is the responsibility

of the user to ensure the transformations are valid. We use three important classes of transforma-

tions - target mappings, memory mappings, and tiling-related transformations. Target mappings-

related transformations determine the execution order of the program. It allows the user to specify

schedule and processor allocation for each variable present in the system. It also allows the user

to specify one or more dimensions of the schedule to be executed in parallel by different threads.

Memory mappings-related transformations allow multiple variables with different dimensions to

share the same memory map based on affine function. It also allows multiple variables with the

same dimension to share memory space. Tiling transformations chop the iteration space to improve

10

data locality and adjust parallelization granularity. Target and Memory mappings-related transfor-

mations require the user to specify affine functions to indicate the schedule or memory map. The

affine functions are expressed as (ListOfIndices 7→ ListOfIndexExpressions).

• A schedule (i, j 7→ j, i) tells ALPHAZ that the iteration domain is 2-dimensional represented

by i, j as the ListOfIndices, and the points in this iteration domain should be visited in the

order given by the ListOfIndexExpression j and i.

• A memory map (i, j 7→ j, i) tells ALPHAZ that the mapping is associated with a 2-D variable

whose (i, j)-th element is stored at a location specified by ListOfIndexExpressions -

(j, i). It also allows the user to save memory if there is an opportunity for many-to-one

mapping. E.g., (i, j, k 7→ i, j).

Efficient scheduled code generation depends on the choice of target and memory mappings-

related transformations. Algorithm 1 highlights the ALPHA program for matrix multiplication.

Algorithm 2 presents a compiling script for matrix multiplication that produces the C code high-

lighted in Listing 2.2.

Algorithm 1 Matrix Multiplication in Alphabets

1: affine MM {N,K,M | (M,N,K) > 0}
2: input

3: float A {i, j | 0 ≤ i < M &&0 ≤ j < K} ;

4: float B {i, j | 0 ≤ i < K &&0 ≤ j < N} ;

5: output

6: float C {i, j | 0 ≤ i < M &&0 ≤ j < N};

7: local

8: //local variables

9: output

10: C[i, j] = reduce(+, [k], A[i, k] * B[k, j]);

11

Algorithm 2 Matrix Multiplication Command Script

1: //Step− 1 : ParseAlphabet

2: prog=ReadAlphabets("MM.ab");

3: system = “MM”;

4: outDir="./src";

5:

6: //Step− 2 : Performpolyhedral transformation

7: Normalize(prog);

8: setSpaceTimeMap(prog, system, “C”, "(i, j, k 7→ i, k, j)", “(i, j 7→ i,−1, j)”);

9: setParallel(prog, system, “”, "0");

10:

11: //Step− 3 : Generate code

12: generateWriteC(prog, system, outDir);

13: generateScheduleC(prog, system, outDir);

Listing 2.2: Generated code - Matrix multiplication

d e f i n e S1 (i , j , i 2) C(i , i 2) = 0 . 0

d e f i n e S0 (i0 , i1 , i 2) C(i0 , i 2) = (C(i0 , i 2)) + ((A(i0 , i 1)) * (B(i1 , i 2)))

{

i n t c1 , c2 , c3 ;

pragma omp p a r a l l e l f o r p r i v a t e (c2 , c3)

f o r (c1 =0; c1 <= M−1; c1 +=1){

f o r (c3 =0; c3 <= N−1; c3 +=1){

S1 ((c1) , (− 1) , (c3)) ;

}

f o r (c2 =0; c2 <= K−1; c2 +=1){

f o r (c3 =0; c3 <= N−1; c3 +=1){

S0 ((c1) , (c2) , (c3)) ;

}

}

}

}

12

Chapter 3

Method

In this section, we first go over the BPMax dependencies, describe the limitations of current

BPMax implementation, and then go over the different phases of the optimization process.

BPMax algorithm computes a four-dimensional sparse table F (i1, j1, i2, j2) shown in Fig-

ure 3.1. The sparsity can be viewed as a triangle of triangular collections, where (i1, j1)-th tri-

angle is denoted by F (i1, j1) and often referred to as an inner triangle. The (i2, j2)-th element

of F (i1, j1) is denoted as Fi1,j1,i2,j2 . Figure 3.1 shows the complete BPMax dependencies for an

Figure 3.1: BPMax dependency overview

F -table element highlighted in red, which is dependent on all the blue, yellow, purple, orange, and

green points of the F -table, S(1)-table, and S(2)-table. Each color represents the computation of a

particular reduction operation (R0 − R4). All these reduction operations need to be completed to

update the point highlighted in red. R0 is the most compute-intensive (Θ(M3N3)) reduction that

13

uses the points outside the current triangle. E.g., to compute the R0 for the red point, the numbered

blue points towards the left are added with the corresponding blue points towards the south, and

then the max of all these values are computed. Now, R3 and R4 also use the elements from the

external triangles as one of the operands and S(1) as the other operand. E.g., the numbered-yellow

and purple points from the F -table are added with the corresponding yellow and purple points

from the S(1)-table, and then the max of yellow and purple results are computed to produce the

R3 and R4, respectively. These two reductions have a complexity of Θ(M3N2). The remaining

two reductions, R1 and R2, have intra-triangular dependencies. E.g., the numbered orange and

green points from the F -table are added with the corresponding orange and green points from the

S(2)-table, and then the max of orange and green results are computed to produce the R1 and R2,

respectively.

Table 3.1 highlights the original 6-D schedule of each one of these reductions. Figure 3.2

demonstrates the key issue with the original schedule, which fills up the F -table diagonal by di-

agonal. It is a wavefront-like parallelization of the 6-D schedule space. All the diagonal points

Table 3.1: BPMAX ORIGINAL SCHEDULE

Reductions Schedules

S(1) (i1, j1, k1 7→ j1 − i1, i1, k1)
S(2) (i2, j2, k2 7→ j2 − i2, i2, k2)
R0 (i1, j1, i2, j2, k1, k2 7→ j1 − i1, j2 − i2, i1, i2, k1, k2)

a

R1, R2 (i1, j1, i2, j2, k2 7→ j1 − i1, j2 − i2, i1, i2, k2)
a

R3, R4 (i1, j1, i2, j2, k1 7→ j1 − i1, j2 − i2, i1, i2, k1)
a

aParallel Dimension 2 (0 based)

are computed simultaneously, exposing maximum level of parallelism. It accesses all the inner

triangles (highlighted in light red) towards the left of the diagonal points (red points Figure 3.2).

Thus, the total amount of the active data elements required to compute all these points simulta-

neously can exceed the last-level cache for a larger input size, triggering a lot of data movement

between different levels of caches and main memory. Memory reuse is almost impossible as we

14

move to the next diagonal. Thus, the original program suffers from poor data locality. Also, each

of these reductions in the original implementation has loop carried dependencies, preventing auto-

vectorization. Keeping these challenges in mind, we have staged our optimization process into

Figure 3.2: BPMax Original Schedule

three different phases. In the first phase, we optimize the double max-plus operation. Then, we

attempt first level optimization of the entire BPMax program. We explore various schedules and

parallelization approaches to enable auto-vectorization and improve the data locality. We also tile

the most compute-intensive portion in the second phase. However, we observe that tiling the en-

tire program with a single ALPHAZ system generates very inefficient code. Thus, we express the

BPMax using ALPHAZ subsystem in the third phase. We also explore different memory optimiza-

tions, parallelization approaches to maximize resource utilizations.

15

3.1 Phase I

Previously, Varadarajan [36] optimized a double reduction kernel that uses double-precision

multiply and add operation. But, it had the same data access pattern. She achieved 31× perfor-

mance improvement by using loop permutations to take advantage of the auto-vectorization. This

phase’s primary goal is to use the same schedule and replace it with the max-plus operation and

get a baseline performance estimation for the R0.

3.1.1 Optimum Schedule for Double max-plus Operation

Let us recall the double max-plus reduction:

Fi1,j1,i2,j2 =
j1−1
max
k1=i1

j2−1
max
k2=i2

Fi1,k1,i2,k2 + Fk1+1,j1,k2+1,j2 (3.1)

In the previous section, we concluded the limitations of the base version of the BPMax due

to the poor reuse across the diagonal elements of the multiple inner triangles for producing R0,

R3, R4. Instead of using this wavefront-like parallelization of the six-dimensional schedule space

for R0, Varadarajan’s [36] schedule filled up one inner triangle at a time to reduce the required

amount of active data and increases the chances of reuse. When we fill up one inner triangle at

a time, the first two schedule dimensions iterate over the triangles and the last four dimensions

of the schedule compute the reduction result for each element. The outer triangle can only be

filled diagonally or "bottom-up left to right" to honor the double max-plus dependence highlighted

in Figure 3.3. Thus, the first two schedule dimensions can be (j1 − i1, i1) or (M − i1, j1) or

(−i1, j1). Now, the computation of F (i1, j1) needs all the F (i1, k1) triangles towards the west and

F (k1 + 1, j1) triangles (i1 ≤ k1 < j1) towards the south illustrated in Figure 3.3. More precisely,

the computation of each element of F (i1, j1) requires a set of F (i1, k1) and F (k1+1, j1) triangles.

Now, two column-adjacent and row-adjacent elements of F (i1, j1) have significant re-use from the

F (i1, k1) and F (k1 + 1, j1), respectively.

The third dimension of the schedule iterates over these triangles to accumulate the max-plus

result of the inner triangle. It is the same as the outer reduction index k1. Figure 3.4a demonstrates

16

Figure 3.3: Double max-plus dependency

this accumulation sequence over k1. The inner three dimensions of the schedule iterate over each

set of these triangles and produce the final result using matrix-product like operation highlighted in

Figure 3.4b. Except, it only performs a fraction of cubic max-plus operations. The performance of

this computation is dependent on certain loop permutations. E.g., permutations with loop carried

dependencies prevent auto vectorizations. Because of this, we choose j2 as the innermost loop.

Table 3.2 highlights different schedules used for the R0.

(a) First level Decomposition (b) Second level Decomposition

Figure 3.4: Decomposition of double max-plus computation for an inner triangle

17

3.1.2 Parallelization Approach

We apply similar parallelization approaches used by Varadarajan [36] - coarse and fine-grain.

Typically, the terms - fine and coarse-grain are used to highlight the thread and vector level par-

allelization. But, our definitions of fine and coarse-grain are based on how we process an inner

triangle. Each thread computes one inner triangle in coarse-grain parallelization. In fine-grain

parallelization, multiple threads work together to compute one inner triangle where each thread

processes one or more rows of an inner triangle.

Table 3.2: DOUBLE MAX-PLUS SCHEDULE

Schedule Parallelization Parallel

Approach Dimensionb

(i1, j1, i2, j2, k1, k2 7→ j1 − i1, i1, k1, i2, k2, j2) Fine-grain (diagonala) 3

(i1, j1, i2, j2, k1, k2 7→ −i1, j1, k1,−i2, k2, j2) Fine-grain (bottom-upa) 3

(i1, j1, i2, j2, k1, k2 7→ j1 − i1, i1, k1, i2, k2, j2) Coarse-grain 1
adiagonal and bottom-up refer to how the inner triangles are filled up
bParallel dimension is 0 based

3.1.3 Insights from Phase I

We are able to achieve significant performance improvement for R0 from Phase I. However,

we notice a significant collapse in performance when the input sequences are longer. It highlights

the possibility of further improvements of R0 beyond loop permutations.

3.2 Phase II

In this phase, we find a complete schedule for BPMax that enables automatic vectorization for

all the variables and estimate the other reduction term’s overhead. Then, we optimize the other

reduction terms R1−4, parallelize BPMax using coarse and fine-grain schedule, and also explore

tiling of the double max-plus operation.

18

Previously, we noticed that the double-max plus reduction needs to access the F -table elements

only. However, the other reductions have additional dependencies on either S(1) or S(2). R1, R2

depend on S(2) and R3, R4 depend on S(1). S(1) and S(2) have smaller complexities (Θ(M3) and

Θ(N3), where M and N are the lengths of the two sequences) compare to the other reduction

terms. We generate these two tables before filling up the F -table.

For BPMax optimization, we apply the same schedules for R0 used in the previous phase.

Next, we choose the R3 and R4. These two reductions have complexities of Θ(M3N2), which

is significantly lower than the complexity of R0 (Θ(M3N3)). However, R3 and R4 use the same

amount of data as R0 but perform fewer operations. So, they need to be optimized. Figure 3.1

highlights that R3 requires the same inner triangles towards the south of F (i1, j1) and S(1), whereas

R4 requires the same inner triangles towards the west of F (i1, j1) and S(1). To take advantage

of the re-use, we can decompose the R3 similar to R0 as a set of max-plus operations between

F (k1 + 1, j1) and S(1) highlighted in Figure 3.5. However, it is an element-wise operation instead

of the matrix product-like operations observed in R0. Similarly, R4 can also be expressed as a set

of element-wise max-plus operations between S(1) and F (i1, k1) highlighted in Figure 3.6. With

this approach, R3 and R4 use the same first three dimensions of the schedule as R0. The inner two

dimensions of the schedule determine how the element-wise operations are computed.

(a) First level Decomposition (b) Second level Decomposition

Figure 3.5: Decomposition of R3 computation for an inner triangle

19

(a) First level Decomposition (b) Second level Decomposition

Figure 3.6: Decomposition of R4 computation for an inner triangle

After accumulating all the results from R0, R3, and R4 into F (i1, j1), we update the elements

of F (i1, j1) using R1 and R2. The dependencies are now restricted to the current triangle. All the

elements of the inner triangle except the first diagonal (i2 == j2) elements must evaluate R1 and

R2. Then onwards, R1 and R2 are needed to be evaluated before updating Fi1,j1,i2,j2 . These two

reductions are dependent on the elements towards the south and west of Fi1,j1,i2,j2 present within

F (i1, j1). So, F (i1, j1) can only be filled diagonally or bottom-up and then left to right. Fi1,j1,i2,j2

is updated after the R1 and R2 results are available. This process continues until all the elements

of the inner triangle are updated. The inner three dimensions of the schedule for R1 and R2 can

be (j2 − i2, i2, k2), (N − i2, j2, k2), (−i2, j2, k2), (j2 − i2, k2, j2), (N − i2, k2, j2), or (−i2, k2, j2)

etc. We choose j2 as the innermost loop nest to take advantage of the automatic vectorization. We

ensure that F -table gets updated after k2 reaches j2. Figure 3.7 briefly highlights the final update

sequence of an inner triangle.

3.2.1 Parallelization Approach

We observe that the coarse-grain parallelism works on all the BPMax reductions. But the fine-

grain parallelism violates the dependency of the final F -table update, R1, and R2. Table 3.3 and

3.4 show various multi-dimensional optimized schedules.

20

(a) Step 1: Let us assume that we are about to update the next element of F (i1, j1): Fi1,j1,i2,j2 . Results of R0, R3,

and R4 corresponding to all the elements of F (i1, j1) are already accumulated in F (i1, j1). Let us also assume that

R1 and R2 are also computed for Fi1,j1,i2,j2 element. Thus, it gets updated with the maximum of the Fi1,j1,i2,j2 , R1,

and R2.

(b) Step 2: Next, we attempt to update Fi1,j1,i2,j2+1 highlighted in thick bordered light red box. R1, and R2 are not

computed yet for Fi1,j1,i2,j2+1. Thus we need to compute these two reduction results before updating this point.

(c) Step 3: In this step, we compute R1 for Fi1,j1,i2,j2+1. It requires all the F (i1, j1)-table elements towards the south

of Fi1,j1,i2,j2+1 and all the S(2)-table elements towards the west of the corresponding S(2)-table element.

(d) Step 4: Now, we compute R2 for Fi1,j1,i2,j2+1. It requires all the F (i1, j1)-table elements towards the west of

Fi1,j1,i2,j2+1 and all the S(2)-table elements towards the south of the corresponding S(2)-table element.

(e) Step 5: We have all the reduction results available at this point to update Fi1,j1,i2,j2+1. Next, we compute the R1

and R2 for updating the next F -table entry. This process continues until all the elements are updated.

Figure 3.7: Illustration of F -table entry update with R1 and R2

21

Table 3.3: BPMAX FINE-GRAIN SCHEDULE

Variable Schedulea

S(1), S(2) (i1, j1 7→ 0, 0, 0, 0, j1 − i1, i1, 0, 0)
F (i1, j1, i2, j2 7→ 1,−i1, j1, j1,−i2, 0, j2, 0)

R1, R2 (i1, j1, i2, j2, k2 7→ 1,−i1, j1, j1,−i2, 0, k2, j2),
R0 (i1, j1, i2, j2, k1, k2 7→ 1,−i1, j1, k1,−1,−i2, k2, j2)

R3, R4 (i1, j1, i2, j2, k1 7→ 1,−i1, j1, k1,−1,−i2, i2, j2)
aParallel dimension 5

Table 3.4: BPMAX COARSE-GRAIN SCHEDULE

Variable Schedulea

S(1), S(2) (i1, j1 7→ 0, j1 − i1, i1, 0, 0, 0, 0)
F (i1, j1, i2, j2 7→ 1, j1 − i1, i1, j1,−i2, j2, j2

R1, R2 (i1, j1, i2, j2, k2 7→ 1, j1 − i1, i1, j1,−i2, k2, j2)
R0 (i1, j1, i2, j2, k1, k2 7→ 1, j1 − i1, i1, k1, i2, k2, j2)

R3, R4 (i1, j1, i2, j2, k1 7→ 1, j1 − i1, i1, k1, i2, i2, j2),
aParallel Dimension 2

3.2.2 Tiling R0

The fine-grain parallelism for the R0 assigns one or more rows to each thread. Processing

each row needs to access one complete inner triangle below that row before moving to the next.

It motivates us to tile computations of one matrix instance of max-plus operation. It is a matrix

Figure 3.8: A matrix instance of max-plus operation

product-like computation, except only a fraction of work is being done here, and the access pattern

22

is imbalanced. We tile the three inner dimensions with k2 loop still in the middle and j2 loop as

the innermost. So, this chops (i2, k2, j2) iteration space, and we parallelize the outer i2 dimension.

3.2.3 Insights from Phase II

Loop permutations with automatic vectorization provide a significant speedup for the entire

BPMax program. However, we are not able to apply fine-grain parallelization to all the reduction

variables. We are successfully able to tile the double max-plus reduction. But, ALPHAZ produces

in-efficient code when the entire BPMax program is tiled for the double max-plus computation.

3.3 Phase III

In this phase, we handle the load imbalance between the threads and partially (R0, R3, R4)

apply tiling to BPMax.

3.3.1 Parallelization Approach

From the dependence analysis, it can be seen that the BPMax will quickly become DRAM-

bound for the coarse-grain schedule since each thread computes an inner triangle. But, it allows

us to parallelize all the reduction operations. On the other hand, fine-grain parallelization can be

applied to R0, R3, and R4, reducing the data movement between DRAM and last level caches

(LLCs). However, R1 and R2 are not easy to parallelize using fine-grain parallelization. These

Table 3.5: BPMAX HYBRID SCHEDULE

Variable Schedulea

S(1), S(2) (i1, j1 7→ 0, 0, 0, j1 − i1, i1, 0, 0, 0)
F (i1, j1, i2, j2 7→ 1, j1 − i1,M, 0, i1,−i2, j2, 0

R1, R2 (i1, j1, i2, j2, k2 7→ 1, j1 − i1,M, 0, i1,−i2, k2, j2) ,

R0 (i1, j1, i2, j2, k1, k2 7→ 1, j1 − i1, i1, k1, i2, k2, j2, 0),
R3, R4 (i1, j1, i2, j2, k1 7→ 1, j1 − i1, i1, k1, i2, i2, j2, 0),

aParallel Dimension 4

23

are optimum string parenthesization (OSP)-like computations that require further transformation

like middle serialization. If we use the fine-grain schedule without such transformation, only one

thread stays active during the processing of the two inner-reductions - (R1, R2), leading to lower

CPU resource utilization. We take advantage of the best of both worlds. We use the fine-grain

parallelism for R0, R3, R4 and the coarse-grain parallelism for F -table, R1, R2. We call this

hybrid schedule shown in Table 3.5. We expect this to improve the CPU utilization and limit

the data movement between DRAM and LLCs. However, there are limitations of this approach

discussed in the result section.

3.3.2 Tiling Integration and Subsystem Scheduling

ALPHAZ produces inferior code when the tiling is applied to a subset of reduction operations.

Table 3.6: BPMAX HYBRID SCHEDULE WITH TILING

Variable Schedule

Subsystem output (i1, j1 7→ M, i1, j1, 0)
a R0 (i1, j1, k1, k2 7→ k1, i1, k2, j1),

R3, R4 (i1, j1, k1 7→ k1, i1, i1, j1),
Subsystem Call (i1, j1 7→ 1, j1 − i1, i1, j1 − 4, 0, 0, 0)

b F (i1, j1, i2, j2 7→ 1, j1 − i1,M, i1,−i2, j2, 0)
R1, R2 (i1, j1, i2, j2, k2 7→ 1, j1 − i1,M, i1,−i2, k2, j2) ,

a - Subsystem schedule(parallel dimension 1)

b - Root system schedule(parallel dimension 3)

It is due to the insertion of additional schedule dimensions needed to isolate the tiling band. So,

we use ALPHA subsystem, which partitions BPMax computation into two systems. The subsystem

produces an inner triangle using R0, R3, and R4. Now, the primary system produces R1, R2,

consolidates the results from the subsystem, and computes the final F -table output. It allows us

to modularize the program and apply tiling transformation on R0, R3, and R4 efficiently. The

subsystem gets called for each instance of an inner F -table update. Finally, use equation construct

24

integrates these two systems. We invoke the subsystem call for each instance of the iteration space

defined by the schedule’s first two dimensions. Now, this requires us to specify the schedule for the

subsystem invocation. Both systems are integrated manually. We perform minimal preprocessing

since our code generator can not produce tiled code for the subsystem automatically. Few lines of

source code changes are made to achieve this. Table 3.6 summarizes the complete schedule for the

two systems.

3.4 Memory Optimization

The memory-overhead of our ALPHAZ generated code is M2 × N2. However, we only need

one-fourth of that memory. Even though it seems inefficient, the unused elements are never moved

between the memory hierarchies. Reduction variables also take up memory space by default, which

is wasteful. Without any memory optimization, coarse-grain parallelization requires P (number of

threads) instances of a 2 − D array for each reduction variables to be active in memory. Fine-

Figure 3.9: BPMax memory map without optimization

grain requires only a 2 −D array for each of the reduction variables illustrated in Figure 3.9. We

almost eliminate the need for extra memory usage for the reduction variables using memory map

25

transformations. R0, R3, and R4 are always computed before the final F -table update in all of

our schedules, So, we use memory map transformations for R0, R3 and R4 to share the memory

Figure 3.10: BPMax optimized memory map

with F -table. For the inner reductions - R1 and R2, our schedules update the final F -table entry

bottom-up and then left to right where j2 is the innermost loop. So, it accumulates intermediate

results along a row. Thus, only one row of an inner triangle is required for R1 and R2 to keep up

with the F -table update highlighted in Figure 3.10. Also, invocation of the subsystem calls creates

new variables and copies data around by default. We optimize these redundant data copies using

subsystem-related memory transformation.

3.5 Performance Tuning

We have attempted tuning various parameters such as tile size, OMP schedule, and memory

maps to improve the performance. To find an optimum tile size, we started with cubic tiles and

then adjusted the size of one or more dimensions to find a tile size that works moderately well

across various inputs. However, we noticed that rectangular tiles work better than cubic tiles. We

experimented the effect of OMP static, dynamic, and guided schedule and found that the OMP

dynamic-schedule works better than the static and guided-schedule due to an imbalanced work-

load. We also performed some manual memory optimizations. Scheduling transformation initial-

izes memory for each reduction body (corresponding to a variable), but when one variable shares

26

Figure 3.11: Memory mapping schemes

memory space with multiple variables, memory initialization becomes redundant. The current

code generator does not optimize it. We comment out these macros, which attempt duplicate ini-

tialization to eliminate redundancies. We have tried two different memory transformations for the

inner triangles highlighted in Figure 3.11 - 1 : (i2, j2 7→ i2, j2) and 2 : (i2, j2 7→ i2, j2 − i2) and

found that the option-1 always performs better.

3.6 Validation of Program Correctness

In addition to checking the final scores between reference and optimized version, we use

ALPHAZ toolset to verify the correctness of the optimized program using a verifier that compares

the outputs of a schedule code with the sequential code. However, this is not sufficient due to the

max-plus operation. We have developed a parallel version of the BPMax program to replace the

max-plus with the plus-plus operation and apply the same sequence of transformations and run it

through the verifier to ensure that our transformations and schedules do not change the semantics

of the original program. One major challenge was running the validation on the longer sequences

since the base, and sequential implementations are extremely slow.

27

Chapter 4

Results

We use Xeon E-2278G and Xeon E5-1650v4 to present the results of our approach. The CPU

properties are highlighted in Table 4.1. One of the main differences between these two architectures

is the number of available floating-point addition units (FPA) per core. Even though both of these

architectures have two floating-point multiply-add (FMA) units, Broadwell has only one floating-

point add unit, whereas Coffee Lake has two floating-point add units. Since the max operation

is also executed using the FPA unit, Broadwell architecture is significantly bottle-necked for the

max-plus computation.

Table 4.1: CPU PARAMETERS OVERVIEW

Parameters Xeon E5-1650v4 Xeon E-2278G

Micro-Architecture Broadwell Coffee Lake

Number of cores 6 8

Number of threads 12 16

Base Frequency (GHz) 3.6 3.4

Turbo Frequency (GHz) 4.0 5.0

L1 Cache (KB) - Per Core 32 32

L2 Cache (KB) - Per Core 256 256

L3 Cache (MB) - Shared 15 16

DRAM (GB) 16 32

Our optimized BPMax uses single-precision floating point. We measure the performance by

calculating the number of single-precision floating-point operations executed per second (FLOPS).

Now, GFLOPS indicates 109 floating-point operations per second. Although it is typically used

to highlight the double-precision performance, we implicitly use it in the BPMax optimization

discussion to highlight the single-precision performance.

28

4.1 Max-plus Machine Peak Analysis

We calculate the theoretical CPU machine peak using the following equation:

Single-precision Machine Peak (GFLOPS) = Number of Cores × Core Frequency (GHz)×

Number of vector operations×

Instructions per cycle

(4.1)

Max-plus computation involves an addition and a max operation. Based on the Intel Intrinsics

Guide [18], the number of instructions per cycle for both addition and max operation is 1 for

Broadwell and 2 for Coffee Lake. These machines have AVX-256, so each core can use 8 AVX

(Advanced vector extensions) registers simultaneously to perform eight single-precision opera-

tions. Table 4.2 highlights the theoretical machine peak for both of these platforms. The theoretical

max-plus machine peak of Coffee Lake and Broadwell are 435.2 and 172 GFLOPS, respectively,

when the cores run at the base frequency. We have observed that the processors run close to the

base frequency during our experiments. Thus, we use these numbers as the theoretical machine

peak.

Table 4.2: MAX-PLUS THEORETICAL MACHINE PEAK

Number Frequency Instructions Machine Peak Machine Peak

Processor of Cores (GHz) per cycle Single Core Total

[add, max] (GFLOPS) (GFLOPS)

[Base, Turbo] [Base, Turbo] [Base, Turbo]

Xeon E5-1650v4 6 [3.6, 4.0] [1, 1] [28.8, 32] [172.8, 192]

Xeon E-2278G 8 [3.4, 5.0] [2, 2] [54.4, 80] [435.2, 640]

Arithmetic Intensity of BPMax: BPMax computation can be summarized as Y = max(a +

X, Y). It uses three single-precision memory accesses to perform two arithmetic operations (max

and plus). So, its arithmetic intensity (AI) is 2
(3×4)

or 1
6
. We use AI to determine the peak perfor-

29

mance based on the maximum L1 and L2 bandwidths using the roof-line analysis. These band-

widths are typically the average throughput of a long sequence of load/store operations from one

level of cache to the other. We compute the memory bandwidth of any two levels of cache - Lx

and Ly using Equation 4.2 for all the cores, where Ly is closer to the core. It refers to Lx band-

width to Ly. With this notion, registers are considered as the last level of cache. We use maximum

bandwidth specification to compute the peak performance in our roof-line model.

Total Lx bandwidth to Ly = Number of Cores × Core Frequency (GHz)

× Latency to move the data from Lx to Ly in bytes/cycle

×
109

230
GB/second

(4.2)

Coffee Lake roofline: Intel® micro-architecture specification from wiki-chip [17] indicates that

the maximum L1 and L2 data cache bandwidths of Coffee Lake are 96 bytes/cycle and 64 bytes/-

cycle, respectively, whereas L3 bandwidth and DRAM bandwidths are 32 bytes/cycle and 39.74

GB/second, respectively. Table 4.3 highlights the total memory bandwidth of different levels of

caches for Coffee Lake using Equation 4.2. Based on this data, we have plotted the Coffee Lake

roofline model shown in Figure 4.1. BPMax’s arithmetic intensity of 1
6

corresponds to the second

Table 4.3: Xeon E-2278G (Coffee Lake) Peak Memory Bandwidth

Peak Max Memory Max Memory

Memory Bandwidth (per core) Bandwidth (1 core) Bandwidth (8 cores)

(bytes/cycle) Max (GB/s) (GB/s)

L1 Bandwidth to Register 96 303.98 2431.8

L2 Bandwidth to L1 64 202.65 1621.2

L3 Bandwidth L2 32 101.32 810.6

DRAM Bandwidth to L3 - 39.74 39.74

30

Figure 4.1: Xeon E-2278G (Coffee Lake) roofline for max-plus

data point on each series shown in Figure 4.1. Max-plus performance based on the maximum L1

and L2 bandwidths are 435 GFLOPS, 270 GFLOPS, respectively.

Broadwell roofline: Figure 4.2 presents the Broadwell roofline model using a similar analysis.

Table 4.4 highlights the total memory bandwidth of different levels of caches for Broadwell using

Equation 4.2. The roofline shows that the max-plus performance based on the maximum L1 and

L2 bandwidths are 172 GFLOPS.

31

Table 4.4: Xeon E5 1650v4 (Broadwell) Peak Memory Bandwidth

Peak Max Memory Max Memory

Memory Bandwidth (per core) Bandwidth (1 core) Bandwidth (6 cores)

(bytes/cycle) Max (GB/s) (GB/s)

L1 Bandwidth to Register 96 321.86 1931.1

L2 Bandwidth to L1 64 214.57 1287.4

L3 Bandwidth L2 32 107.28 643.7

DRAM Bandwidth to L3 - 76.8 76.8

Figure 4.2: Xeon E5 1650v4 (Broadwell) roofline for max-plus

32

4.2 Performance Analysis of Double Max-plus Computation

In this subsection, we go over the results of our optimization approach for double max-plus

computation. First, we discuss the double max-plus performance on a single core of Xeon E5-

1650v4 (Broadwell) and Xeon E-2278G (Coffee Lake) highlighted in Figure 4.3. We use the

fine-grain bottom-up schedule that uses loop permutation and the tiled version of the fine-grain

diagonal schedule to compare the single-core performances. Figure 4.3 shows the performance of

the double max-plus computation with these two versions of the code, when M is fixed to 32 and

N is varied between 750 to 4000. We have not presented the base version since it only attains a

tiny fractional GFLOPS performance. The tiled version of the program highlighted by the dotted

line reaches more than 50% of the machine peak on both Broadwell (dotted blue line) and Coffee

Lake (dotted dark-green line). But the loop permuted version that uses the fine-grain schedule

attains only about 45% and 30% of the max-plus machine peak on Broadwell (blue line) and

Coffee Lake (dark-green line). We observe the performance drop on both of the machines when

N exceeds 2500. For this schedule, the maximum amount of memory required for each k2 loop is

Figure 4.3: Double max-plus single core performance comparison on Coffee Lake and Broadwell

33

approximately one row of the inner-triangle of size N for the result, one row of the inner-triangle of

size N for one of the operands, and an entire inner triangle of size N2

2
for the other operand. So, the

total size is 2×N + N2

2
. For a 16 MB L3 cache, the value of N is approximately 2895. Therefore

this schedule works better up to a sequence length of 2500. However, we observe the performance

drops afterward. The tiling transformation improves locality and maintains the performance as N

increases in size. It also uses automatic vectorization. However, the tiled version of the program

performs poorly on Broadwell when N was larger than 3000. The F -table footprint is very close

to the DRAM capacity (16 GB) of Broadwell when M = 32, N = 4000, triggering swapping

(disk-access) that reduces CPU utilization. Our tiling approach does not consider the tiling at the

disk level. Thus, we restrict N to 3000 for the rest of our experiments.

Figure 4.4 and Figure 4.5 show the performance and speedup comparison of double max-plus

between different schedules using eight threads on Coffee Lake. Figure 4.6 and Figure 4.7 present

the same comparison using six threads on Broadwell. Performance of the code version with the

original code achieves only about 1 GFLOPS highlighted in the dark red. We notice that the

coarse-grain parallelization highlighted in the light red performs very poorly since it generates a

lot of DRAM traffic, making the program slower. There is a minor difference between computing

the inner triangles of F -table diagonally vs. bottom-up and left to right highlighted in orange and

blue. In both cases, all the threads work on one inner triangle before moving to the next. The

black color represents the performance corresponding to the tiled version. The tiled version of the

code performs better than the non-tiled fine-grain version of the program and maintains the same

performance with longer sequences. It attains a maximum performance of 187 and 117 GFLOPS

on Coffee Lake and Broadwell, respectively. These correspond to a 223× and 178× improvement

over the base implementation taken from the BPMax program. On Coffee Lake, it is a speedup

improvement of more than 100% over the basic loop-permuted version of the fine-grain schedule.

We observe almost 200% speedup improvement on Broadwell.

Figure 4.8 shows the effect of different tile sizes on double max-plus performance. We have

chosen a fixed sequence length of M = 16 and N = 2500 to perform this experiment. We have

34

Figure 4.4: Double max-plus performance comparison on Coffee Lake

Figure 4.5: Double max-plus speedup comparison on Coffee Lake

Figure 4.6: Double max-plus performance comparison on Broadwell

Figure 4.7: Double max-plus speedup comparison on Broadwell

35

explored different tile sizes (i2 × k2 × j2) and found that the cubic tiles perform poorly. We get the

best result when j2 is not tiled, and the tile sizes of i2 and k2 are such that tile_sizei2 × tile_sizek2

fits in the L1 cache and tile_sizek2 × j2 fits in the L2 cache. tile_sizei2 is also dependent on the

length of the sequence length N since this determines the total workload for each core. Thus, the

results shown in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7 use problem-specific best tile

dimensions. Tile dimensions of (32 × 32 × N) are used when N ≤ 2048, (32 × 16 × N) for

N = 2500, and (64× 16×N) when N > 2500. We have also experimented with hyper-threading

and tiling on Coffee Lake and found that hyper-threading hurts the performance when tiling is

applied. We observe a (3 − 5%) degradation with hyper-threading over eight threads highlighted

in Figure 4.9.

Figure 4.8: Effect of tiling parameters (i2 × k2 × j2) on double max-plus performance (sequence length -

16 x 2500) on Coffee Lake

Figure 4.9: Effect of hyper-threading on tiled double max-plus performance on Coffee Lake

36

4.3 BPMax Performance Improvement

We have chosen three different values of M (16, 25, 32) and five different values of N (750,

1024, 2048, 2500, 3000) to measure the BPMax performance for each combination of M and N .

Figure 4.10 and 4.11 show the performance improvements and speedup of various versions of

the BPMax program on Coffee Lake using 8 threads. We use the original BPMax program as

the reference since no better CPU version of the BPMax program is available. The coarse and

fine-grain version of the program performs the worst, highlighted in light red and blue. As seen

in the previous section, the coarse-grain schedule severely impacts double max-plus computation,

affecting the overall performance. Fine-grain parallelism works better for R0, R3, R4, but we

cannot parallelize the R1, and R2 computations. The performance and speedup with the hybrid

schedule are highlighted in green. It performs better than the coarse and fine-grain schedule. The

tiled version of the hybrid schedule highlighted in dark blue performs best. It achieves 100×

speedup for longer sequence lengths.

The improvement for the tiled version mainly comes from the optimization of R0, R3, and

R4. On Coffee Lake, the tiled version of the program reaches around 127 GFLOPS for small

sequences and over 100 GFLOPS for moderate to large-size sequences. It is about 25% of the

max-plus machine peak. But it is only 54% of the double max-plus performance with the same

input size. Our analysis shows that R3 and R4 are almost free since those get computed along

with the R0. However, the two Θ(M2N3) computations - R1 and R2 severely affect the overall

performance. It is the effect of our schedule choice. Each thread is responsible for producing the

final version of one inner triangle of F -table along with the R1 and R2. Both of these computations

require most of the elements of one inner triangle of F -table and the S(2)-table to compute one row

for the worst case. So, the total amount of data required to process a row reaches about Θ(N2),

which is 16 MB for an inner sequence of length 2048. This issue gets amplified when we attempt

hyper-threading (beyond 8 threads).

Figures 4.12 and 4.13 show the BPMax performance and speedup improvement on Xeon E5-

1650v4. We have used the same tile sizes as the Coffee Lake. We observe similar performance

37

Figure 4.10: BPMax performance comparison on Coffee Lake

Figure 4.11: BPMax speedup comparison on Coffee Lake

Figure 4.12: BPMax performance comparison on Broadwell

Figure 4.13: BPMax speedup comparison on Broadwell

38

characteristics as Coffee Lake for the different schedules. On this platform, the tiled version of

the program reaches around 76 GFLOPS for moderate-size sequences, which is about 45% of the

max-plus machine peak. It is only 60% of the double max-plus version. However, it still achieves

100× speedup.

4.4 Code Generation Metric

Table 4.5 shows the line of code (LOC) generated by ALPHAZ for different optimized pro-

grams. The original version of the BPMax program is hand-written and has 140 lines of code.

With the ALPHAZ optimization process, we observe an increase in LOC for all the different ver-

sions. The table also highlights the complexities (based on LOC) between the double max-plus

computation and the BPMax program.

Table 4.5: AUTO-GENERATED CODE STATISTICS

Implementation LOC a b
BPMax base 140 140 NA

Double max-plus(coarse/fine) 150 None 3

BPMax coarse/fine/ hybrid 1200 None 30

BPMax hybrid with tiled 1400 <5 7

a - Hand written code

b - Macro replacement/Macro comment out

39

Chapter 5

Future Directions

In this work, we have demonstrated the optimization process of a complete RRI program us-

ing polyhedral transformations. We have explored different schedules, memory maps, and tiling

transformation for our optimization work using the polyhedral code generator - ALPHAZ . Our re-

sult shows that the tiling improves the performance of the most dominant part of the computation

by two folds over a simple loop permutation that exploits auto-vectorization. We have achieved

over 100× improvements on CPU for the complete BPMax program with the tiling transforma-

tion applied to the outer reductions, including the most dominant part, and using different types

of parallelizations on the reduction operations. However, the inner reductions are still inefficient,

which limits the overall performance improvement. Also, the double max-plus operation remains

bandwidth-bound even after the tiling transformation. It indicates that an additional tiling level

at the register level is required to make the program compute-bound and improve performance

further.

We envision that a register-tiled kernel and an extra level of tiling on the double max-plus

computation will significantly improve the double max-plus performance. Besides optimizing

the double max-plus operation, tiling of R1 and R2 are required to improve the overall BPMax

performance. In the long term, it can also be beneficial to distribute the computation over a cluster

using MPI (Message Passing Interface) program to take advantage of another level of parallelism.

All these transformations remain a challenge for ALPHAZ today. So, we also envision future work

on ALPHAZ to allow these advanced transformations.

Finally, we expect that similar polyhedral transformations can be easily applied to more com-

plex RRI algorithms - like BPPart and piRNA using ALPHAZ to generate optimized code and

achieve significant speedup for them.

40

Bibliography

[1] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic

polyhedral parallelizer and locality optimizer. In Proceedings of the 2008 ACM SIGPLAN

conference on Programming language design and implementation - PLDI '08. ACM Press,

2008.

[2] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. Pluto: A practical and fully automatic

polyhedral program optimization system. 2015.

[3] Chun Chen, Jacqueline Chame, and Mary Hall. Chill: A framework for composing high-level

loop transformations. Technical report, 2008.

[4] Hamidreza Chitsaz, Raheleh Salari, S. Cenk Sahinalp, and Rolf Backofen. A partition func-

tion algorithm for interacting nucleic acid strands. Bioinformatics, 25(12):i365–i373, may

2009.

[5] Ye Ding and Charles E Lawrence. A bayesian statistical algorithm for RNA secondary struc-

ture prediction. Computers & Chemistry, 23(3-4):387–400, jun 1999.

[6] F. Dupont de Dincehcin. Systèmes structurés d’équations récurrentes : mise en œuvre dans

le langage Alpha et applications. PhD thesis, Université de Rennes, janvier 1997.

[7] F. Dupont de Dinechin, P. Quinton, and T. Risset. Structuration of the alpha language. In

W.K Giloi, S. Jahnichen, and B.D. Shriver, editors, Massively Parallel Programming Models,

pages 18–24. IEEE Conmputer Society Press, 1995.

[8] Ali Ebrahimpour-Boroojeny, Sanjay Rajopadhye, and Hamidreza Chitsaz. Bppart and bp-

max: Rna-rna interaction partition function and structure prediction for the base pair counting

model. apr 2019.

[9] Ali Ebrahimpour-Boroojeny, Sanjay Rajopadhye, and Hamidreza Chitsaz. Bppart: Rna-rna

interaction partition function in the absence of entropy. WABI, 2021.

41

[10] de Dinechin F. and S. Robert. Hierarchical static analysis of structured systems of affine

recurrence equations. In J. Fortes, C. Mongenet, K. Parhi, and V. Taylor, editors, International

Conference on Application Specific Systems Architectures and Processors (ASAP 96), pages

381–390. IEEE, August 1996.

[11] P. Feautrier. Dataflow analysis of array and scalar references. International Journal of Par-

allel Programming, 20(1):23–53, Feb 1991.

[12] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part I. one-

dimensional time. International Journal of Parallel Programming, 21(5):313–347, 1992.

[13] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part II. multidimen-

sional time. International Journal of Parallel Programming, 21(6):389–420, 1992.

[14] Brandon Gildemaster, Prerana Ghalsasi, and Sanjay Rajopadhye. A tropical semiring multi-

ple matrix-product library on GPUs: (not just) a step towards RNA-RNA interaction compu-

tations. In 2020 IEEE International Parallel and Distributed Processing Symposium Work-

shops (IPDPSW). IEEE, may 2020.

[15] AC. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, and T. Risset. Hardware design method-

ology with the Alpha language. In Forum on Design Languages, Sept 2001.

[16] Fenix W. D. Huang, Jing Qin, Christian M. Reidys, and Peter F. Stadler. Partition func-

tion and base pairing probabilities for RNA–RNA interaction prediction. Bioinformatics,

25(20):2646–2654, aug 2009.

[17] Intel®. Intel microarchitectures. https://en.wikichip.org/wiki/intel/microarchitectures/.

[18] Intel®. Intel® intrinsics guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

[19] H. Le Verge. Reduction operators in alpha. In D. Etiemble and J-C. Syre, editors, Parallel

Algorithms and Architectures, Europe, LNCS, pages 397–411. Springer Verlag, June 1992.

See also, Le Verge Thesis (in French).

42

[20] H. Le Verge. Un environnement de transformations de programmmes pour la synthèse

d’architectures régulières. PhD thesis, L’Université de Rennes I, Oct 1992.

[21] Junjie Li, Sanjay Ranka, and Sartaj Sahni. Multicore and GPU algorithms for nussinov RNA

folding. In 2013 IEEE 3rd International Conference on Computational Advances in Bio and

medical Sciences (ICCABS). IEEE, jun 2013.

[22] Christophe Mauras. Alpha : un langage equationnel pour la conception et la programmation

d’architectures paralleles synchrones. PhD thesis, Rennes 1, 1989.

[23] Stefanie A. Mortimer, Mary Anne Kidwell, and Jennifer A. Doudna. Insights into RNA

structure and function from genome-wide studies. Nature Reviews Genetics, 15(7):469–479,

may 2014.

[24] Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman. Algorithms for

loop matchings. SIAM Journal on Applied Mathematics, 35(1):68–82, jul 1978.

[25] Marek Palkowski and Wlodzimierz Bielecki. Tiling nussinov’s RNA folding loop nest with

a space-time approach. BMC Bioinformatics, 20(1), apr 2019.

[26] D. D. Pervouchine. Iris: intermolecular rna interaction search. Genome informatics. Interna-

tional Conference on Genome Informatics, 15 2:92–101, 2004.

[27] P. Quinton. Automatic synthesis of systolic arrays from recurrent uniform equations. In 11th

Annual International Symposium on Computer Architecture, Ann Arbor, pages 208–214, June

1984.

[28] P. Quinton. The systematic design of systolic arrays. In F. Fogelman Soulie, Y. Robert, and

M. Tchuente, editors, Automata Networks in Computer Science, chapter 9, pages 229–260.

Princeton University Press, 1987. Preliminary versions appear as IRISA Tech Reports 193

and 216, 1983, and in the proceedings of the IEEE Symposium on Computer Architecture,

1984.

43

[29] P. Quinton and V. Van Dongen. The mapping of linear recurrence equations on regular arrays.

Journal of VLSI Signal Processing, 1(2):95–113, 1989.

[30] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and

Saman Amarasinghe. Halide. In Proceedings of the 34th ACM SIGPLAN conference on

Programming language design and implementation - PLDI '13. ACM Press, 2013.

[31] S. V. Rajopadhye. Synthesis, Optimization and Verification of Systolic Architectures. PhD

thesis, University of Utah, Salt Lake City, Utah 84112, December 1986.

[32] S. V. Rajopadhye. Synthesizing systolic arrays with control signals from recurrence equa-

tions. Distributed Computing, 3:88–105, May 1989.

[33] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthesizing systolic ar-

rays from recurrence equations with linear dependencies. In Proceedings, Sixth Conference

on Foundations of Software Technology and Theoretical Computer Science, pages 488–503.

Springer Verlag, LNCS 241, December 1986.

[34] Guillaume Rizk, Dominique Lavenier, and Sanjay Rajopadhye. GPU accelerated RNA fold-

ing algorithm. In GPU Computing Gems Emerald Edition, pages 199–210. Elsevier, 2011.

[35] M Shel Swenson, Joshua Anderson, Andrew Ash, Prashant Gaurav, Zsuzsanna Sükösd,

David A Bader, Stephen C Harvey, and Christine E Heitsch. GTfold: Enabling parallel

RNA secondary structure prediction on multi-core desktops. BMC Research Notes, 5(1):341,

2012.

[36] Swetha Varadarajan. Polyhedral optimizations of RNA-RNA interaction computations. Mas-

ter’s thesis, Colorado State University, 2016.

[37] Swetha Varadarajan. A case study on RNA-RNA interaction application implementation

using AlphaZ. In Proceedings of the 4th ACM International Workshop on Real World Domain

Specific Languages. ACM, feb 2019.

44

[38] T. Yuki, G. Gupta, DG. Kim, T. Pathan, and S. Rajopadhye. AlphaZ: A system for design

space exploration in the polyhedral model. In Proceedings of the 25th International Workshop

on Languages and Compilers for Parallel Computing, September 2012.

[39] Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA sequences using

thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148, 1981.

45

