
Mathematics of Digital Hyperspace
Jeremy Kepner1,2,3, Timothy Davis4, Vijay Gadepally1,2, Hayden Jananthan1,5, Lauren Milechin6

1MIT Lincoln Laboratory Supercomputing Center, 2MIT Computer Science & AI Laboratory,
3MIT Mathematics Department, 4Texas A&M, 5Vanderbilt, 6MIT Dept. of Earth, Atmospheric, & Planetary Sciences

Abstract—Social media, e-commerce, streaming video, e-mail,
cloud documents, web pages, traffic flows, and network packets
fill vast digital lakes, rivers, and oceans that we each navi-
gate daily. This digital hyperspace is an amorphous flow of
data supported by continuous streams that stretch standard
concepts of type and dimension. The unstructured data of
digital hyperspace can be elegantly represented, traversed, and
transformed via the mathematics of hypergraphs, hypersparse
matrices, and associative array algebra. This paper explores a
novel mathematical concept, the semilink, that combines pairs of
semirings to provide the essential operations for graph analytics,
database operations, and machine learning. The GraphBLAS
standard currently supports hypergraphs, hypersparse matrices,
the mathematics required for semilinks, and seamlessly performs
graph, network, and matrix operations. With the addition of
key based indices (such as pointers to strings) and semilinks,
GraphBLAS can become a richer associative array algebra and
be a plug-in replacement for spreadsheets, database tables, and
data centric operating systems, enhancing the navigation of
unstructured data found in digital hyperspace.

Index Terms—graphs, hypergraphs, hypersparse, networks,
polystore, databases, algebra

I. INTRODUCTION

Global usage of the Internet is expected to exceed 5 billion
people [1]. The volume, velocity, and variety of Internet data
continues to expand. Social media, e-commerce, streaming
video, e-mail, cloud documents, web pages, traffic flows,
and network packets fill vast digital lakes, rivers, and oceans
that we each navigate daily [2]. Some of the most common
manifestations of these data are in the form of spreadsheets,
database tables, matrices, graphs, and networks. The resulting
digital hyperspace is an amorphous flow of data supported
by continuous streams of these objects that stretch standard
concepts of type and dimension.

Fortunately, the unstructured data of digital hyperspace can
be elegantly represented, traversed, and transformed via the
mathematics of hypergraphs [3]–[5], hypersparse matrices [6]–
[8], and associative array algebra [9]–[12]. These mathematics
have been implemented in a variety of software libraries,
including the GraphBLAS standard [13]–[16] implemented
in the C/Matlab/Octave/Python/Julia languages [17]–[20] and

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8702-
15-D-0001, National Science Foundation CCF-1533644, and United States
Air Force Research Laboratory Cooperative Agreement Number FA8750-19-
2-1000. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the Assistant Secretary of Defense for Research and Engineering,
the National Science Foundation, or the United States Air Force. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

the RedisGraph database [21]; the C-MPI CombBLAS par-
allel library [22]; and the D4M associative array library in
Matlab/Octave/Python/Julia languages [23]–[27] with database
bindings to SciDB, Accumulo, and PostGreSQL [28]–[32].
The GraphBLAS standard has further enabled hardware ac-
celeration of these mathematics via multithreading [33], GPUs
[34], and special purpose accelerators [35]–[39].

Linearity is a key property of these mathematics utilized by
the above implementations to leverage extensive linear systems
theory [12]. From a performance perspective, linearity is often
manifest through the distributive property

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

enabling the reordering of operations critical for effective
parallel computation and distributed database query planning.
From a data perspective, linearity provides the additive identity
and multiplicative annihilator

a⊕ 0 = a a⊗ 0 = 0

eliminating the need to store 0 entries (an essential property
for efficient sparse computations). If fact, in this context, the
above properties can be used to define 0 for the relevant value
set, V , which may, or may not, be the standard arithmetic 0.

Collectively, these mathematical properties are defined by
mathematical semirings that are directly supported by the
aforementioned technologies. The increasing use of semirings
for the manipulation of digital data has led to frequent coupling
of distinct semirings in graph analysis [7], databases [11], and
machine learning computations [40]–[42]. This paper explores
some of mathematical properties of coupled semirings, here
referred to as semilinks, and offers up some potential paths
forward to formalizing and applying this novel mathematics
as natural extensions to existing technologies, such as the
GraphBLAS standard.

The rest of this paper is organized as follows. First,
some mathematical preliminaries regarding hypergraphs, hy-
persparse matrices, and semirings are provided. Associative
arrays are then summarized. Next, some general properties of
semilinks are explored and some specific possible semilinks
are investigated in the context of graph analysis, databases,
and machine learning. Finally, some recommendations and
conclusions are provided.

II. MATHEMATICAL PRELIMINARIES

The navigation of diverse digital data can be enhanced by a
number of mathematical concepts which underpin the broader
algebra of associative arrays which are briefly described in

ar
X

iv
:2

10
3.

15
20

3v
1

 [
cs

.M
S]

 2
8

M
ar

 2
02

1

v ATvAT

à

Alice

Bob

Alice

Carl

Bob

Carl

Fig. 1. Graph Adjacency Array Duality. Breadth-first-search performed on
a graph (left) and an adjacency array (right) illustrates the deep connection
between graphs and arrays.

1

2
3

4

5

6

7
8

9

10
11 12

1

3
2

4
5
6
7
8
9

10
11
12
13

4 5 6 7321 4 5 6 7321

ed
ge

 n
um

be
r

Eout Ein
1

3
2

4
5
6
7
8
9

10
11
12
13

ed
ge

 n
um

be
r

13

in-vertexout-vertex

Fig. 2. Hyper-Multi-Graph Edge Array Duality. Incidence (or edge) arrays
can capture hyper-edges (red) connecting more than two vertices and multi-
edges (blue) between the same vertices.

this section (see [7] for a complete description). Perhaps
the most important is the graph-matrix duality illustrated
in Figure 1 that links the fundamental operation of graphs
(breadth-first-search) with the fundamental operation of arrays
(array multiplication), where an adjacency array

A(k1, k2) 6= 0

implies an edge from vertex k1 to k2. Hypergraphs extend
graphs to provide a natural representation of events that
connect diverse entities. Hypersparse arrays extend arrays
to allow the efficient storage and operation on data that is
growing without bounds. Semirings extend standard arithmetic
enabling operations on diverse data to utilize the power of
linear systems theory.

A. Hypergraphs
Adjacency arrays are a powerful tool for analyzing directed-

weighted-graphs, but are unable to represent the diverse data
that is commonly found in streaming events. These streaming
events can be described as hyper-multi-weighted-directed-
graphs and are best represented as incidence (or edge) arrays
(see Figure 2), where

Eout(k, k1) 6= 0 Ein(k, k2) 6= 0

implies that edge k comes out of vertex k1 and goes into vertex
k2.

The adjacency array and the edge array are strongly coupled
via array multiplication (Figure 3)

A = ET
outEin

A
1

3
2

4
5
6
7

4 5 6 7321

ou
t-v

er
te

x

in-vertex

1

3
2

4
5
6
7

edge number

ou
t-v

er
te

x

Eout

4 5 6 7321
in-vertexEin

1

3
2

4
5
6
7
8
9

10
11
12

ed
ge

 n
um

be
r

T

=

4 5 6 7321 8 9 10 11 12

Fig. 3. Edge Array to Adjacency Array. Construction of an adjacency array
of a graph from its incidence arrays via array multiply. The entry A(4, 3) is
obtained by combining the row ET

out(4, k) with the column Ein(k, 3) via

the array product A(4, 3) =
12⊕

k=1
ET

out(4, k)⊗Ein(k, 3)

AhypersparseAsparseAdense

nnz(Adense) ~ N2 nnz(Asparse) ~ N nnz(Ahypersparse) << N

Fig. 4. Dense, Sparse, and Hypersparse Arrays. Sparsity concepts for an
N×N array A.

where the individual values in A are computed via

A(i, j) =
⊕
k

ET
out(i, k)⊗Ein(k, j)

The adjacency array represents a projection of edge data and
is often an initial step in processing diverse digital data.

B. Hypersparse

As the dimensions of digital data expand the concept of
sparsity plays an increasing role. Sensor data, such as images,
are well presented by dense arrays where the number on
non-zero entries nnz() is small. Physical networks, neural
networks, mesh geometries, and other systems where the di-
mension of the problem is known can often be well represented
by sparse arrays where nnz() is on the order of the number
of rows or columns in the array. Data with dimensions that
are continuously increasing can be captured by hypersparse
arrays where nnz() is much smaller than the number of rows
or columns (Figure 4).

C. Semirings

Obtaining the advantages of linear systems on diverse data
involves extending addition ⊕ and multiplication ⊗ beyond
standard real numbers to include sets and strings. If the
set of values is denoted by V , then pairs of operations ⊗
and ⊕ that obey the distributive property on values from
V will generally exhibit the desired properties of a linear
system. Formally, the mathematical object with the desired
mathematical properties is a semiring denoted (V,⊕,⊗, 0, 1),
where 0 is the ⊕ identity and 1 is the ⊗ identity. Some
of the common combinations of addition and multiplication

TABLE I
SELECTED SEMIRINGS

Some semirings that play important roles in many real-world applications. R
are the real numbers. R≥0 are the non-negative real numbers. V is any strict
totally ordered set (i.e., sortable). P() is the power set (set of all subsets). ∅
is the empty set. +∞ is the maximum element of a set. -∞ is the minimal
element of a set.

Set ⊕ ⊗ 0 1
R + × 0 1
R ∪ -∞ max + -∞ 0
R ∪ +∞ min + +∞ 0
R≥0 max × 0 1
R≥0 ∪ +∞ min × +∞ 1
V ∪ ∩ ∅ P(V)
V ∪ -∞ max min -∞ +∞
V ∪ +∞ min max +∞ -∞

operations that have proven valuable are standard arithmetic
addition and multiplication +.×, union and intersection ∪.∩
in relational databases [43]–[45], and various tropical algebras
that are important in finance [46], [47] and neural networks
[40]–[42]: max.+, min.+, max.×, min.×, max.min, and
min.max. Examples of commonly used semirings are shown
in Table I. For a guide to the literature on semirings and their
applications see [48].

III. ASSOCIATIVE ARRAYS

The full mathematics of associative arrays and the ways they
build on the mathematics of the previous section to encompass
spreadsheets, database tables, matrices, graphs, networks, and
higher dimension tensors are fully described in [9]–[12]. Only
the essential mathematical properties of associative arrays
are reviewed here. The essence of associative array algebra
is three operations: element-wise addition ⊕, element-wise
multiplication ⊗, and array multiplication ⊕.⊗. In brief, the
set of associative arrays are defined as a mapping from sets
of keys to values

A : K1 ×K2 → V

where K1 (the set of row keys) and K2 (the set of column
keys) can be any sortable sets, such as the integers, real
numbers, or strings. V is a set of values that forms a semiring
(V,⊕,⊗,0,1) with addition operation ⊕, multiplication op-
eration ⊗, additive identity/multiplicative annihilator 0, and
multiplicative identity 1. The values can take on many forms,
such as numbers, strings, and sets.

Associative array algebra and its specialization in the Graph-
BLAS reference two main semirings. The first is the element-
wise commutative semiring (A,⊕,⊗, 0, 1) built from the two
commutative monoids

M0 = (A,⊕, 0) M1 = (A,⊗, 1)

where 0 is the array of all 0 and 1 is the array of all 1.
Likewise, the array semiring (A,⊕,⊕.⊗, 0, I) built from a
commutative monoid and non-commutative monoid

M0 = (A,⊕, 0) MI = (A,⊕.⊗, I)

TABLE II
ASSOCIATIVE ARRAYS

Summary of associative array operations and properties. k, k1, k2, and v are
vectors of the row keys, column keys, and values of the nonzero elements of
the associative array A. 0 is an array of all 0. 1 is an array of all 1. | |0 is
the element-wise zero-norm that maps all non-zero elements to 1.

Property Notation
Construction A = A(k1,k2,v)
Extraction (k1,k2,v) = A
Permutation P(k1,k2) = A(k1,k2, 1) k1, k2 unique
Identity I(k) = P(k,k)
Transpose A(k2, k1) = AT(k1, k2)
Row keys k1 = row(A) k1 unique
Column keys k2 = col(A) k2 unique
Nonzero count nnz(A)
Same sparsity |A|0 = |B|0
Element-wise C = A⊕B A⊕ 0 = A

addition C(k1, k2) = A(k1, k2)⊕B(k1, k2)
Element-wise C = A⊗B A⊗ 1 = A A⊗ 0 = 0

multiplication C(k1, k2) = A(k1, k2)⊗B(k1, k2)
Array C = AB = A⊕.⊗B AI = A A0 = 0

multiplication C(k1, k2) =
⊕

k A(k1, k)⊗B(k, k2)
Commutativity A⊕B = B⊕A

A⊗B = B⊗A
(AB)T = BTAT

Associativity (A⊕B)⊕C = A⊕ (B⊕C)
(A⊗B)⊗C = A⊗ (B⊗C)
(AB)C = A(BC)

Distributivity A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)
A(B⊕C) = (AB)⊕ (AC)

where I(k, k) = 1 and 0 otherwise. Many of the properties of
associative arrays that will be utilized in the semilink discus-
sion are listed in Table II. Of particular practical importance
are the large row and column key spaces typically used in
associative arrays that practically eliminate the dimensional
conformance rules required in matrix operations. As a result,
associative arrays are typically added and multiplied with little
regard for the true dimensions of their large row and column
key spaces. What is more important to producing non-trivial
results that are not all 0 is some overlap in the non-zero row
and column keys of the constituent associative arrays.

IV. SEMIRINGS TO SEMILINKS

The overlap between three monoids and two semirings
commonly used in associative arrays suggests investigating
them as a potentially new mathematical concept referred to
here as a semilink

(A,⊕,⊗,⊕.⊗, 0, 1, I)

Among the standard (albeit somewhat rare) algebraic struc-
tures admitting three binary operations are residuated lattices
[49], Poisson algebras [50], exponential fields [51], and quasi-
groups [52]. The closest in flavor to our semilink that of a
composition ring, though even when working over a ring or
field the semilink above does not satisfy the identities required
to be a composition ring. In addition to being closed under
any combination of operations ⊕, ⊗, and ⊕.⊗ on associative
arrays, such a combination of monoids/semirings would seem
to have several properties. As part of semirings the pairs of
operations (⊕,⊗) and (⊕,⊕.⊗) retain their properties within

each pair such as the distributive property and the additive
identity is the multiplicative annihilator. Important questions
with regards to a semilink are what properties might exist
among the pair of operations (⊗,⊕.⊗) and their respective
identities 1 and I.

It is readily observable that the identities 1 and I preserve
their properties with respect to their corresponding operations.
For example

1⊗ I = I⊗ 1 = I 1⊕.⊗I = I⊕.⊗1 = 1

I behaves like an identity under ⊗ if the array matches the
sparsity structure of I. If |A|0 = I, then

A⊗ I = I⊗A = A

where | |0 is the element-wise zero-norm that maps all non-
zero elements to 1. More generally, if the sparsity pattern of
A is a permutation |A|0 = P, then

A⊗ P = P⊗A = A

In contrast, 1 with ⊕.⊗ projects an array onto its rows or
columns

C = A⊕.⊗1 =⇒ C(k1, :) =
⊕
k2

A(k1, k2)

C = 1⊕.⊗A =⇒ C(:, k2) =
⊕
k1

A(k1, k2)

Interestingly, under certain conditions, ⊕.⊗ distributes over ⊗.
Specifically, if A has the sparsity pattern of a permutation

|A|0 = |A1|0 = |A2|0 = P

and A = A1 ⊗A2, then

A⊕.⊗(B⊗C) = (A1⊕.⊗B)⊗ (A2⊕.⊗C)

Similarly, a hybrid associativity does hold in the trivial case.
If A = 1 or C = I, then

A⊗ (B⊕.⊗C) = (A⊗B)⊕.⊗C

In a related result, if the non-zero entries of A, B, and C do
not have sufficient overlap, then the result will be 0. Using
the row() and col() functions defined in Table II, if

row(A) ∩ row(B) = ∅ or

col(A) ∩ col(C) = ∅ or

col(B) ∩ row(C) = ∅

then
A⊗ (B⊕.⊗C) = 0

Likewise, if

row(A) ∩ row(B) = ∅ or

col(A) ∩ col(B) = ∅ or

col(A) ∩ row(C) = ∅ or

col(B) ∩ row(C) = ∅

then
(A⊗B)⊕.⊗C = 0

which implies that if

row(A) ∩ row(B) = ∅ or

col(B) ∩ row(C) = ∅

then
A⊗ (B⊕.⊗C) = (A⊗B)⊕.⊗C = 0

V. EXAMPLES

An important motivation for exploring the semilink concept
is their common occurrence in practical applications. In this
section several semilinks are explored in the context of graphs,
databases, and neural networks.

A. Graph Analytics

The general semilink

(A,⊕,⊗,⊕.⊗, 0, 1, I)

covers a number of important operations in graph analysis.
Figure 1 illustrates the duality between the fundamental op-
eration of graphs (breadth-first-search) and the fundamental
operation of arrays (array multiplication) ⊕.⊗. Figure 5 shows
how element-wise addition ⊕ and element-wise multiplication
⊗ correspond to graph union and graph intersection, which are
also important graph operations. In these graph operations,
the essence of the calculation is topological and is determined
by the presence of non-zero values in the result and not the
exact value itself. Thus, the core topological aspects of graph
breadth-first-search, graph union, and graph intersection oper-
ations hold for any semiring on the values of the corresponding
associative array, including all the semirings listed in Table I.

B. Database Operations

Many database table operations can be mapped onto well-
defined mathematical operations with known mathematical
properties (see Figure 6). For example, relational (or SQL)
databases [53]–[55] are described by relational algebra [43]–
[45] that corresponds to the union-intersection semiring ∪.∩
[56]. Triple-store databases (NoSQL) [57]–[61] and analytic
databases (NewSQL) [31], [62]–[66] follow similar mathemat-
ics [11]. The table operations of these databases are further
encompassed by associative array algebra, which brings the
beneficial properties of array mathematics and sparse linear
systems theory, such as closure, commutativity, associativity,
and distributivity [12]. These mathematical properties provide
strong correctness and linearity guarantees that are indepen-
dent of scale and particularly helpful when trying to reason
about massively parallel systems.

The full mathematics of associative arrays and the ways
they encompass relational algebra are described in the afore-
mentioned references [11], [12], [56]. In brief, an associative
array A is defined as a mapping from sets of keys to values.
The row keys are equivalent to the sequence ID in a relational
database table. The column keys are equivalent to the column

C
1

3
2

4
5
6
7

4 5 6 7321A
1

3
2

4
5
6
7

4 5 6 7321

4

21

7

B
1

3
2

4
5
6
7

4 5 6 7321

2

57
Å

Å

4

21

57
=

=

C
1

3
2

4
5
6
7

4 5 6 7321A
1

3
2

4
5
6
7

4 5 6 7321

4

21

7

B
1

3
2

4
5
6
7

4 5 6 7321

2

57
Ä

Ä

2

7
=

=

Fig. 5. Graph Union and Intersection. (top) Element-wise addition ⊕
of associative arrays corresponds to graph union. (bottom) Element-wise
multiplication ⊗ of associative arrays corresponds to graph intersection.

names or record fields in a database table. Intersection ∩ dis-
tributing over union ∪ is essential to database query planning
and parallel query execution over partioned/sharded database
tables [67]–[73].

Perhaps the most canonical function in a relational database
is the SQL select statement that returns the columns k of rows
in a table A that satisfy a specific condition, such as the value
in column k(i) is v

select k(1), ...,k(n) from A where k(i) = v

In terms of the associative array notation listed in Table II, the
above select can be concisely written as

A(row(A(k(i), :) = v),k)

For many databases, the relevant semilink is

(A,∪,∩,∪.∩, ∅, 1, I)

where each entry in 1 is P(V) and I(k, k) = P(V) and
∅ otherwise. The associative array version of the select
statement can be written in terms of this semilink as

|((A ∪.∩ I(k(i)) ∩ v) ∪.∩ 1|0 ∩A

The term A ∪.∩ I(k(i)) selects column k(i) from A. The
next operation ∩ v selects the entries corresponding to v. A
mask of all the columns in these rows is constructed by ∪.∩ 1,
whose values are converted to P(V) with the zero norm | |0.
Applying the mask with ∩ A selects the corresponding rows.

C. Deep Neural Networks

Machine learning has been the foundation of artificial
intelligence since its inception [74]–[81]. Standard machine
learning applications include speech recognition [76], com-
puter vision [77], and even board games [78], [82].

Drawing inspiration from biological neurons to implement
machine learning was the topic of the first paper presented
at the first machine learning conference in 1955 [74], [75]
(see Figure 7). It was recognized very early on in the field
that direct computational training of neural networks was
computationally unfeasible with the computers that were avail-
able at that time [80]. The many-fold improvement in neural
network computation and theory has made it possible to create
neural networks capable of better-than-human performance in
a variety of domains [83]–[86]. The production of validated
data sets [87]–[89] and the power of graphic processing units
(GPUs) [90]–[93] have allowed the effective training of deep
neural networks (DNNs) with 100,000s of input features, N ,
and 100s of layers, L, that are capable of choosing from among
100,000s categories, M (see Figure 8).

The primary mathematical operation performed by a DNN
network is the inference, or forward propagation, step. Infer-
ence is executed repeatedly during training to determine both
the weight matrix W` and the bias vectors b` of the DNN.
The inference computation shown in Figure 8 is given by

y`+1 = h(y`W` + b`)

where h() is a nonlinear function applied to each element
of the vector. The Sparse DNN Challenge uses the standard
graph community convention whereby W(i, j) 6= 0 implies a
connection between neuron i and neuron j. In this convention
y` are row vectors and left array multiplication is used to
progress through the network. A commonly used function is
the rectified linear unit (ReLU) given by

h(y) = max(y, 0)

which sets values less than 0 to 0 and leaves other values
unchanged. When training a DNN, or performing inference
on many different inputs, it is usually necessary to compute
multiple y` vectors at once in a batch that can be denoted as
the array Y`. In array form, the inference step becomes

Y`+1 = h(Y`W` +B`)

where B` is a replication of b` along columns given by

B` = b`|Y`1|0

and 1 is a column array of 1’s, and | |0 is the zero norm.
If h() were a linear function, then the above equation could

be solved exactly and the computation could be greatly simpli-
fied. However, current evidence suggests that the non-linearity
of h() is required for a DNN to be effective. Interestingly, the
inference computation can be rewritten as a linear function
over two different semirings

yk+1 = ykWk ⊗ bk ⊕ 0

v ATvAT

à

1.1.1.1

0.0.0.0

2.2.2.2

SQL
Set Operations

NoSQL
Graph Operations

NewSQL
Matrix Mathematics

src link dest
001 1.1.1.1 http 0.0.0.0

002 0.0.0.0 udp 1.1.1.1

003 1.1.1.1 ssh 2.2.2.2

Operation: finding 1.1.1.1’s nearest neighbors

SELECT 'dest' FROM T
WHERE 'src=1.1.1.1'

0.0.0.0

1.1.1.1

2.2.2.2

http

ssh

Fig. 6. Associative arrays combine the properties of databases, graphs, and matrices and provide common mathematics that span SQL, NoSQL, and NewSQL
databases, and are ideal for analyzing networks. The diagram shows the graph operation of finding the neighbors of 1.1.1.1 in each representation.

86 1955 WESTERN JOINT COMPUTER CONFERENCE

Generalization of Pattern Recognition in a
Self-Organizing System*

W. A. CLARKf AND B. G. FARLEYf

Summary—A self-organizing system reported upon earlier is
briefly described. Two further experiments to determine its proper-
ties have been carried out. The first demonstrates that self-organiza-
tion still takes place even if the input patterns are subjected to con-
siderable random variation. The second experiment indicates that,
after organization with the usual fixed patterns, the system classifies
other input patterns statistically according to a simple preponderance
criterion. Significance of this result as a generalization in pattern
recognition is discussed. Some remarks are made on methods of
simulation of such systems and their relation to computer design.

D E S C R I P T I O N O F S E L F - O R G A N I Z I N G S Y S T E M

IN A P R E V I O U S paper 1 the au thors described a sys-
t em which organized itself from an initially r andom
condit ion to a s t a t e in which discr iminat ion of two

different i npu t p a t t e r n s 2 was accomplished. T h e be-
hav ior of t he sys tem was s imulated b y means of a
digi tal compu te r—th e M e m o r y T e s t C o m p u t e r of
Lincoln Labora to ry .

Briefly, the self-organizing system was composed of
two pa r t s . T h e first p a r t received i npu t p a t t e r n s and
t ransformed t h e m into ou tpu t s , and the second p a r t
ac ted upon pa rame te r s of t he first so as to modify the
i n p u t - o u t p u t t ransformat ion according to cer tain fixed
cri teria. These p a r t s were te rmed the t ransformat ion
and the modifier, respectively.

T h e t ransformat ion is a r andomly in terconnected
ne twork of nonlinear e lements , each e lement having a
definite threshold for incoming excitat ion, below which
no act ion occurs, and above which the e lement "fires."
W h e n an e lement fires, i ts threshold immedia te ly rises
effectively to infinity (it canno t be fired), and then , after
a shor t fixed delay, falls exponent ial ly back toward i ts
quiescent value. Fu r the rmore , a t some shor t t ime after
firing, an e lement t r ansmi t s exci tat ion to all o ther eler
m e n t s to which i t is connected. T h e effectiveness of the
exci ta t ion t h u s t r an smi t t e d to a succeeding e lement is
de te rmined b y a p rope r ty of the par t icu lar connection
known as i ts "weight ." In general, there will be several
incoming connect ions a t a n y element , each hav ing i ts
individual weight as shown in Fig. 1. A t t he ins tan t of
t ransmission (which is the t ime of impulse arr ival a t the
succeeding e lement) , the appropr ia te weight is added to
a n y exci ta t ion a l ready present a t the succeeding cell.

* The research reported in this document was supported jointly
by the Army, the Navy, and the Air Force under contract with the
Massachusetts Institute of Technology.

f Lincoln Laboratory, Massachusetts Institute of Technology,
Lexington, Mass. 1 B. G. Farley and W. A. Clark, "Simulation of self-organizing
systems by digital computer," Trans. IRE, vol. PGIT-4, pp. 76-84;
September, 1954.

2 In this paper, the word "pattern" is synonymous with "con-
figuration."

Thereaf ter the excitat ion decays exponent ia l ly to zero.
If a t a n y t ime this exci tat ion exceeds t he threshold of
the succeeding element, the e lement performs its firing
cycle and t r ansmi t s i ts own exci tat ions .

Fig. 1—Typical network elements i and j showing
connection weights w.

A ne twork such as the one described is suggestive of
ne tworks of the nerve cells, or neurons , of physiology,
b u t since t h e detai ls of neuron in terac t ion are a s ye t un-
certain, i t canno t even be said t h a t the ne tworks are
identical wi thou t some simplifications which are present .

In the work ment ioned, the ne twork was ac t iva ted
and a n o u t p u t obta ined in the following way . T h e net
was divided arb i t rar i ly into two groups, designated as
i npu t and o u t p u t groups. T h e o u t p u t g roup was further
subdivided in two, and an o u t p u t was defined a t a n y
i n s t an t b y the difference in the n u m b e r of e lements fired
in t he two subgroups dur ing the ins tan t . Th i s a r range-
m e n t migh t be te rmed a push-pull o u t p u t .

T h e i npu t g roup was also subdivided in to two sub-
groups, and two fixed inpu t p a t t e r n s were provided,
usual ly designated as px and p2. I n p u t pi consisted in
add ing a large excitat ion into all the i npu t e lements of
one subgroup s imul taneously and repet i t ively a t a con-
s t a n t period, b u t doing nothing to t he o the r subgroup.
I n p u t p2 was jus t the reverse. In th is w a y o u t p u t ac-
t iv i ty character is t ic of the inpu t p a t t e r n was obta ined.

I t was now desired to provide a modifier ac t ing upon
pa rame te r s of the ne t so as to gradual ly reorganize it to
ob ta in o u t p u t ac t iv i ty of a previously specified charac-
terist ic, namely , t h a t pa t t e rn s pi and pi would a lways
dr ive the o u t p u t in previously specified direct ions. In
our exper iments , pi was made to dr ive t he o u t p u t in a
negat ive direction, t h a t is to say, pi causes more firing
to t a k e place on the average in t he first o u t p u t subgroup
t h a n in the second. In the case of p%, t he s i tuat ion was
exact ly reversed.

T h i s desired organizat ion of the net was accomplished
b y means of va ry ing the weights ment ioned above in the
following way . Examina t ion is m a d e of the change in
o u t p u t a t every ins tan t . If a change in a favorable direc-
t ion occurs (e.g. negat ive change in case pi is t he inpu t

Fig. 7. Typical network elements i and j showing connection weights w
(reproduced from [75])

Input
Features

Output
Categories

Edges
Object Parts

Objects

y0 W0
b0

W1
b1

W2
b2

W3
b3

y2 y3

y4

y1
Hidden Layers

Fig. 8. Four layer (L = 4) deep neural network architecture for categorizing
images. The input features y0 of an image are passed through a series of
network layers W`=0,1,2,3, with bias terms b`=0,1,2,3, that produce scores
for categories yL=4. (Figure adapted from [94])

or in array form

Yk+1 = YkWk ⊗Bk ⊕ 0

where the ⊕ = max and ⊗ = +. Thus, ykWk and YkWk

are computed over the standard arithmetic +.× semiring

S1 = (R,+,×, 0, 1)

while the ⊕ and ⊗ operation are performed over the max.+
semiring

S2 = ({-∞∪ R},max,+, -∞, 0)

Thus, the ReLU DNN can be written as a linear system that
oscillates over two semirings S1 and S2. S1 is the most widely
used of semirings and performs standard correlation between
vectors. S2 is also a commonly used semiring for selecting
optimal paths in graphs. Thus, the inference step of a ReLU
DNN can be viewed as combining correlations of inputs to
choose optimal paths through the neural network. This DNN
semiring pair is is more complex than what is described in by
the semilink concept and may require extending the semilink
concept to encompass DNNs.

VI. CONCLUSIONS AND FUTURE WORK

The unstructured data of digital hyperspace can be elegantly
represented, traversed, and transformed via the mathematics
of hypergraphs, hypersparse matrices, and associative array
algebra. Within this context this paper has explored a new
mathematical concept, the semilink, that combines pairs of
semirings to provide the essential operations for graph ana-
lytics, database operations, and machine learning. The formal
mathematical specification of GraphBLAS includes monoid,
semiring, and closure under element-wise addition, element-
wise multiplication, and array multiplication and naturally
supports linked semirings.

The specification was written from an associative array
algebra perspective with intentionally minimal constraints on
the internal implementation of the opaque GrB Matrix data
structure. This has allowed the GraphBLAS (in its SuiteSparse
implementation) to support a myriad of different data struc-
tures: sparse, hypersparse, bitmap, and full. It uses each of
them when appropriate, and switches between them automati-
cally, with little or no involvement from the user application. In
the future, this will enable distributed-memory and GPU accel-
erations as well. This flexibility has enabled the GraphBLAS
standard to support hypergraphs, hypersparse matrices, and the
mathematics required for semilinks, and seamlessly performs
graph, network, and matrix operations. With the addition of
key based indices (such as pointers to strings) and semilinks,

GraphBLAS can become a richer associative array algebra
and be a plug-in replacement for spreadsheets, database tables,
and data centric operating systems [95], [96], enhancing the
navigation of unstructured data found in digital hyperspace.

From an applied mathematical perspective, the more com-
plex pairing of operations in the DNN context is worth addi-
tional exploring. Likewise, in the context of abstract algebra,
[97] considers semirings in which the multiplicative identity
can be local, so that in any small part of the structure there
is a multiplicative identity as far as that part of the structure
is concerned. It would be worth exploring this concept in the
context of infinite key spaces where identity matrices are a
challenge.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals
for their contributions and support: Bob Bond, Alan Edelman,
Jeff Gottschalk, Charles Leiserson, Mimi McClure, Steve
Rejto, Daniela Rus, Allan Vanterpool, Marc Zissman, and the
MIT SuperCloud team: Bill Arcand, Bill Bergeron, David
Bestor, Chansup Byun, Michael Houle, Matthew Hubbell,
Michael Jones, Anna Klein, Peter Michaleas, Julie Mullen,
Andrew Prout, Antonio Rosa, Albert Reuther, Charles Yee.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Trends, 2018–2023.”
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] P. Sawadogo and J. Darmont, “On data lake architectures and metadata
management,” Journal of Intelligent Information Systems, pp. 1–24,
2020.

[3] G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. Newman, “Random
hypergraphs and their applications,” Physical Review E, vol. 79, no. 6,
p. 066118, 2009.

[4] J. N. Mordeson and P. S. Nair, Fuzzy graphs and fuzzy hypergraphs,
vol. 46. Physica, 2012.

[5] J. Shun, “Practical parallel hypergraph algorithms,” in Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 232–249, 2020.

[6] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing, pp. 1–11, IEEE, 2008.

[7] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[8] J. Kepner, T. Davis, C. Byun, W. Arcand, D. Bestor, W. Bergeron,
V. Gadepally, M. Hubbell, M. Houle, M. Jones, A. Klein, P. Michaleas,
L. Milechin, J. Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, and
A. Reuther, “75,000,000,000 streaming inserts/second using hierarchical
hypersparse graphblas matrices,” IPDPSW GrAPL, 2020.

[9] J. V. Kepner, “Multidimensional associative array database,” Jan. 14
2014. US Patent 8,631,031.

[10] J. Kepner and V. Gadepally, “Adjacency matrices, incidence matrices,
database schemas, and associative arrays,” IPDPS Graph Algorithms
Building Blocks, 2014.

[11] J. Kepner, V. Gadepally, D. Hutchison, H. Jananthan, T. Mattson,
S. Samsi, and A. Reuther, “Associative array model of sql, nosql, and
newsql databases,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–9, 2016.

[12] J. Kepner and H. Jananthan, Mathematics of Big Data: Spreadsheets,
databases, matrices, and graphs. MIT Press, 2018.

[13] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson, “Mathe-
matical foundations of the GraphBLAS,” in High Performance Extreme
Computing Conference (HPEC), IEEE, 2016.

[14] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the graphblas api for c,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 643–652,
IEEE, 2017.

[15] M. Kumar, J. E. Moreira, and P. Pattnaik, “Graphblas: handling perfor-
mance concerns in large graph analytics,” in Proceedings of the 15th
ACM International Conference on Computing Frontiers, pp. 260–267,
2018.

[16] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira,
and C. Yang, “Lagraph: A community effort to collect graph algorithms
built on top of the graphblas,” in 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 276–284,
IEEE, 2019.

[17] T. A. Davis, “Graph algorithms via suitesparse: Graphblas: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC), pp. 1–6, IEEE, 2018.

[18] J. Chamberlin, M. Zalewski, S. McMillan, and A. Lumsdaine, “Pygb:
Graphblas dsl in python with dynamic compilation into efficient c++,”
in 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 310–319, IEEE, 2018.

[19] J. E. Moreira, M. Kumar, and W. P. Horn, “Implementing the graphblas
c api,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 298–309, IEEE, 2018.

[20] T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph algorithms
in the language of sparse linear algebra,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 45, no. 4, pp. 1–25, 2019.

[21] P. Cailliau, T. Davis, V. Gadepally, J. Kepner, R. Lipman, J. Lovitz, and
K. Ouaknine, “Redisgraph graphblas enabled graph database,” in 2019
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 285–286, IEEE, 2019.

[22] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” The International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[23] J. Kepner, W. Arcand, W. Bergeron, C. Byun, M. Hubbell, B. Landon,
A. McCabe, P. Michaleas, A. Prout, T. Rosa, et al., “Massive database
analysis on the cloud with d4m,” HPEC, Sep, pp. 21–22, 2011.

[24] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed
dimensional data model (D4M) database and computation system,”
in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, pp. 5349–5352, IEEE, 2012.

[25] A. Chen, A. Edelman, J. Kepner, V. Gadepally, and D. Hutchison, “Julia
implementation of the dynamic distributed dimensional data model,” in
2016 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–7, IEEE, 2016.

[26] L. Milechin, V. Gadepally, S. Samsi, J. Kepner, A. Chen, and D. Hutchi-
son, “D4m 3.0: Extended database and language capabilities,” in
2017 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–6, IEEE, 2017.

[27] L. Milechin, V. Gadepally, and J. Kepner, “Database operations in
d4m.jl,” in 2018 IEEE High Performance extreme Computing Confer-
ence (HPEC), pp. 1–5, IEEE, 2018.

[28] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther,
A. Rosa, and C. Yee, “D4M 2.0 schema: A general purpose high
performance schema for the Accumulo database,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2013.

[29] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, et al., “Achieving
100,000,000 database inserts per second using Accumulo and D4M,”
in High Performance Extreme Computing Conference (HPEC), IEEE,
2014.

[30] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, et al., “D4M: bringing
associative arrays to database engines,” in High Performance Extreme
Computing Conference (HPEC), IEEE, 2015.

[31] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo
implementation of server-side sparse matrix multiply in the Accu-
mulo database,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2015.

[32] S. Samsi, L. Brattain, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
V. Gadepally, M. Hubbell, M. Jones, A. Klein, et al., “Benchmarking

scidb data import on hpc systems,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–5, IEEE, 2016.

[33] M. Aznaveh, J. Chen, T. A. Davis, B. Hegyi, S. P. Kolodziej, T. G.
Mattson, and G. Szarnyas, “Parallel graphblas with openmp,” in 2020
Proceedings of the SIAM Workshop on Combinatorial Scientific Com-
puting, pp. 138–148, SIAM, 2020.

[34] X. Wang, Z. Lin, C. Yang, and J. D. Owens, “Accelerating dnn inference
with graphblas and the gpu,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–6, IEEE, 2019.

[35] W. S. Song, J. Kepner, H. T. Nguyen, J. I. Kramer, V. Gleyzer, J. R.
Mann, A. H. Horst, L. L. Retherford, R. A. Bond, N. T. Bliss, et al.,
“3-d graph processor,” in Workshop on High Performance Embedded
Workshop (HPEC), MIT Lincoln Laboratory, 2010.

[36] W. S. Song, “Processor for large graph algorithm computations and
matrix operations,” June 10 2014. US Patent 8,751,556.

[37] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner, “Novel graph pro-
cessor architecture, prototype system, and results,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2016.

[38] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting
the graphcore ipu architecture via microbenchmarking,” arXiv preprint
arXiv:1912.03413, 2019.

[39] M. James, M. Tom, P. Groeneveld, and V. Kibardin, “Ispd 2020 physical
mapping of neural networks on a wafer-scale deep learning accelerator,”
in Proceedings of the 2020 International Symposium on Physical Design,
pp. 145–149, 2020.

[40] J. Kepner, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, and H. Tufo,
“Enabling massive deep neural networks with the graphblas,” in High
Performance Extreme Computing Conference (HPEC), IEEE, 2017.

[41] M. Kumar, W. Horn, J. Kepner, J. Moreira, and P. Pattnaik, “Ibm power9
and cognitive computing,” IBM Journal of Research and Development,
2018.

[42] T. A. Davis, M. Aznaveh, and S. Kolodziej, “Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via
suitesparse: Graphblas,” in 2019 IEEE High Performance extreme Com-
puting Conference (HPEC), pp. 1–6, IEEE, 2019.

[43] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[44] D. Maier, The theory of relational databases, vol. 11. Computer science
press Rockville, 1983.

[45] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases, vol. 8.
Addison-Wesley Reading, 1995.

[46] P. Klemperer, “The product-mix auction: A new auction design for
differentiated goods,” Journal of the European Economic Association,
vol. 8, no. 2-3, pp. 526–536, 2010.

[47] E. Baldwin and P. Klemperer, “Understanding preferences:’demand
types’, and the existence of equilibrium with indivisibilities,” SSRN,
2016.

[48] K. Glazek, A guide to the literature on semirings and their applications
in mathematics and information sciences: with complete bibliography.
Springer Science & Business Media, 2002.

[49] K. Blount and C. Tsinakis, “The structure of residuated lattices,”
International Journal of Algebra and Computation, vol. 13, no. 04,
pp. 437–461, 2003.

[50] M. Aguiar, “Pre-poisson algebras,” Letters in Mathematical Physics,
vol. 54, no. 4, pp. 263–277, 2000.

[51] S. Kuhlmann, Ordered exponential fields, vol. 12. American Mathemat-
ical Soc., 2000.

[52] J. D. Smith, An introduction to quasigroups and their representations.
CRC Press, 2006.

[53] M. Stonebraker, G. Held, E. Wong, and P. Kreps, “The design and
implementation of INGRES,” ACM Transactions on Database Systems
(TODS), vol. 1, no. 3, pp. 189–222, 1976.

[54] C. J. Date and H. Darwen, A guide to the SQL Standard: a user’s guide
to the standard relational language SQL. Addison-Wesley, 1989.

[55] R. Elmasri and S. Navathe, Fundamentals of database systems. Addison-
Wesley Publishing Company, 2010.

[56] H. Jananthan, Z. Zhou, V. Gadepally, D. Hutchison, S. Kim, and
J. Kepner, “Polystore mathematics of relational algebra,” in Big Data
Workshop on Methods to Manage Heterogeneous Big Data and Polystore
Databases, IEEE, 2017.

[57] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[58] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[59] L. George, HBase: The Definitive Guide: Random Access to Your Planet-
Size Data. ” O’Reilly Media, Inc.”, 2011.

[60] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L. Edwards,
V. Gadepally, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa,
C. Yee, and A. Reuther, “Lustre, hadoop, accumulo,” in 2015 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–5,
Sep. 2015.

[61] A. Cordova, B. Rinaldi, and M. Wall, Accumulo: Application Develop-
ment, Table Design, and Best Practices. ” O’Reilly Media, Inc.”, 2015.

[62] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al., “C-Store:
a column-oriented DBMS,” in Proceedings of the 31st international
conference on Very large data bases, pp. 553–564, VLDB Endowment,
2005.

[63] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
Jones, S. Madden, M. Stonebraker, Y. Zhang, et al., “H-store: a high-
performance, distributed main memory transaction processing system,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499,
2008.

[64] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov,
E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, J. Becla,
D. DeWitt, B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker,
and S. Zdonik, “A demonstration of SciDB: a science-oriented DBMS,”
Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1534–1537,
2009.

[65] M. Stonebraker and A. Weisberg, “The VoltDB main memory DBMS,”
IEEE Data Engineering Bulletin, vol. 36, no. 2, pp. 21–27, 2013.

[66] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and
J. Kepner, “Graphulo: Linear algebra graph kernels for nosql databases,”
in Parallel and Distributed Processing Symposium Workshop (IPDPSW),
2015 IEEE International, pp. 822–830, IEEE, 2015.

[67] G. M. Booth, “Distributed information systems,” in Proceedings of the
June 7-10, 1976, national computer conference and exposition, pp. 789–
794, ACM, 1976.

[68] D. E. Shaw, “A relational database machine architecture,” in ACM SIGIR
Forum, vol. 15 #2, pp. 84–95, ACM, 1980.

[69] M. Stonebraker, “The case for shared nothing,” IEEE Database Eng.
Bull., vol. 9, no. 1, pp. 4–9, 1986.

[70] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
google cluster architecture,” IEEE micro, vol. 23, no. 2, pp. 22–28, 2003.

[71] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 48–57, 2010.

[72] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, pp. 61–72, ACM, 2012.

[73] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[74] W. H. Ware, “Introduction to session on learning machines,” in Pro-
ceedings of the March 1-3, 1955, western joint computer conference,
pp. 85–85, ACM, 1955.

[75] W. A. Clark and B. G. Farley, “Generalization of pattern recognition
in a self-organizing system,” in Proceedings of the March 1-3, 1955,
western joint computer conference, pp. 86–91, ACM, 1955.

[76] O. G. Selfridge, “Pattern recognition and modern computers,” in Pro-
ceedings of the March 1-3, 1955, western joint computer conference,
pp. 91–93, ACM, 1955.

[77] G. Dinneen, “Programming pattern recognition,” in Proceedings of the
March 1-3, 1955, western joint computer conference, pp. 94–100, ACM,
1955.

[78] A. Newell, “The chess machine: an example of dealing with a complex
task by adaptation,” in Proceedings of the March 1-3, 1955, western
joint computer conference, pp. 101–108, ACM, 1955.

[79] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A
proposal for the dartmouth summer research project on artificial intelli-
gence, august 31, 1955,” AI magazine, vol. 27, no. 4, p. 12, 2006.

[80] M. Minsky and O. G. Selfridge, “Learning in random nets,” in Informa-
tion theory : papers read at a symposium on information theory held at

the Royal Institution, London, August 29th to September 2nd, pp. 335–
347, Butterworths, London, 1960.

[81] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the
IRE, vol. 49, no. 1, pp. 8–30, 1961.

[82] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of research and development, vol. 3, no. 3,
pp. 210–229, 1959.

[83] R. Lippmann, “An introduction to computing with neural nets,” IEEE
Assp magazine, vol. 4, no. 2, pp. 4–22, 1987.

[84] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” Digital signal processing,
vol. 10, no. 1-3, pp. 19–41, 2000.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[86] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[87] J. P. Campbell, “Testing with the yoho cd-rom voice verification corpus,”
in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995
International Conference on, vol. 1, pp. 341–344, IEEE, 1995.

[88] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[89] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–
255, IEEE, 2009.

[90] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[91] M. P. McGraw-Herdeg, D. P. Enright, and B. S. Michel, “Benchmarking
the nvidia 8800gtx with the cuda development platform,” HPEC 2007
Proceedings, 2007.

[92] A. Kerr, D. Campbell, and M. Richards, “Gpu performance assessment
with the hpec challenge,” in HPEC Workshop 2008, 2008.

[93] E. A. Epstein, M. I. Schor, B. Iyer, A. Lally, E. W. Brown, and J. Cwik-
lik, “Making watson fast,” IBM Journal of Research and Development,
vol. 56, no. 3.4, pp. 15–1, 2012.

[94] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th annual international conference
on machine learning, pp. 609–616, ACM, 2009.

[95] J. Kepner, R. Brightwell, A. Edelman, V. Gadepally, H. Jananthan,
M. Jones, S. Madden, P. Michaleas, H. Okhravi, K. Pedretti, et al.,
“Tabularosa: Tabular operating system architecture for massively parallel
heterogeneous compute engines,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC), IEEE, 2018.

[96] M. Cafarella, D. DeWitt, V. Gadepally, J. Kepner, C. Kozyrakis,
T. Kraska, M. Stonebraker, and M. Zaharia, “Dbos: A proposal for a
data-centric operating system,” arXiv preprint arXiv:2007.11112, 2020.

[97] D. Wilding, Linear algebra over semirings. The University of Manch-
ester (United Kingdom), 2015.

	I Introduction
	II Mathematical Preliminaries
	II-A Hypergraphs
	II-B Hypersparse
	II-C Semirings

	III Associative Arrays
	IV Semirings to Semilinks
	V Examples
	V-A Graph Analytics
	V-B Database Operations
	V-C Deep Neural Networks

	VI Conclusions and Future Work
	References

