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Abstract—Collective operations are common features of par-
allel programming models that are frequently used in High-
Performance (HPC) and machine/ deep learning (ML/ DL)
applications. In strong scaling scenarios, collective operations can
negatively impact the overall application performance: with the
increase in core count, the load per rank decreases, while the
time spent in collective operations increases logarithmically.

In this article, we propose a design for eventually consistent
collectives suitable for ML/ DL computations by reducing com-
munication in Broadcast and Reduce, as well as by exploring the
Stale Synchronous Parallel (SSP) synchronization model for the
Allreduce collective. Moreover, we also enrich the GASPI ecosys-
tem with frequently used classic/ consistent collective operations
– such as Allreduce for large messages and AlltoAll used in an
HPC code. Our implementations show promising preliminary
results with significant improvements, especially for Allreduce
and AlltoAll, compared to the vendor-provided MPI alternatives.

Keywords—Collectives, Allreduce, AlltoAll, Stale Synchronous
Parallel, GASPI.

I. INTRODUCTION

The Global Address Space Programming Interface
(GASPI) [1] programming model has proven to be an
interesting alternative to the Message Passing Interface (MPI)
model, in large part due to its open source implementation,
GPI-21 and support for modern hardware architectures.

In this paper, our focus is on collective operations involving
all the processes, which are frequently used in distributed
computations from HPC to distributed machine and deep
learning (ML/ DL) computations. In particular, we make a pre-
liminary exploration of the idea that collective operations can
be designed and implemented with GASPI such that a globally
consistent view is dropped. The concept comes from the
distributed computing community, where early work on mobile
computing proposed the notion of eventual consistency [2],
and has been adopted by the GRID computing community
where globally distributed databases allow for reads to return
potentially stale data. As the concept of eventually consistent
data is ported to HPC collectives, it brings the potential to be
used in many application domains, such as machine learning
(ML).

1GPI-2’s repository: https://github.com/cc-hpc-itwm/GPI-2

In this particular domain, most ML algorithms can be
classified as iterative and convergent. These algorithms start
with an initial guess of a model and then improve it across
several iterations until converging to a solution. In a typical
distributed implementation of ML algorithms, several workers
compute adjustments in parallel to the same model. Hence,
workers are usually required to work on the same iteration,
which leads to several synchronization points. However, due
to the convergent nature of these algorithms, consistency can
be dropped to a certain extent without jeopardizing the result.
This can be achieved by allowing workers to compute less
accurate adjustments using stale data from different previous
iterations [3], [4]. This reduces the required synchronization,
thus allowing workers to go through iterations faster.

In this paper, we make initial contributions in exploring the
space of eventually consistent collectives by investigating a
Stale Synchronous Parallel (SSP) synchronization model [3],
which allows the workers to compute iterations using bounded
stale data. In the SSP model, the worker can receive updates
while performing computation on stale data and, thus, seam-
lessly overlap communication and computation. We verify
this implementation on an example of Matrix Factorization
trained with Stochastic Gradient Descent. Additionally, we
consider a possibility to drop a certain part of the data that
is below a user-defined threshold in a collective. This allows
the application to proceed with computations upon arrival of
a part of data instead of the full amount.

As a final contribution, we also provide classic/ consistent
asynchronous variants of Allreduce suitable for large mes-
sages, such as those exchanged in ML/ DL computations, as
well as in AlltoAll, which is a time-consuming operation within
the Quantum Espresso [5] application. With this effort, we aim
to extend and enhance the current (limited) set of collectives in
GPI-2 to provide developers/ users with a library of collectives
in order to facilitate their work.

This article is structured as follows: Section II introduces the
asynchronous one-sided communication in GASPI. Section III
reports on our initial work on eventually consistent collectives,
while Section IV presents customized consistent collectives.
Section V reports performance results. Finally, Section VI
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reviews related work, and Section VII draws conclusions.

II. GASPI’S ASYNCHRONOUS COMMUNICATION MODEL

The GASPI standard promotes the use of one-sided com-
munication, where one side, the initiator, has all the relevant
information for performing the data movement. The benefit of
this is decoupling the data movement from the synchronization
between processes. It enables the processes to put or get data
from remote memory, without engaging the corresponding
remote process, or having a synchronization point for every
communication request. However, some form of synchroniza-
tion is still needed in order to allow the remote process to
be notified upon the completion of an operation. In addition,
GASPI provides what are known as weak synchronization
primitives, which update a notification on the remote side. The
notification semantics is complemented with routines that wait
for the update of a single or a set of notifications. Note that
similar weak synchronization primitives might also appear in
the upcoming MPI-4 standard [6]. GASPI allows for a thread-
safe handling of notifications, providing an atomic function
for resetting a local notification. The notification procedures
are one-sided and only involve the local process.

A communication strategy for parallel applications can be
as important as a numerical scheme. Usually, one tries to fit
a communication strategy into a given numerical scheme by
taking into account the algorithmic structure and, possibly,
a spectrum of target platforms. Ultimately, one wants to hide
communication (performed in the background) by overlapping
computation and communication. This is the underlying prin-
ciple behind GASPI – write as early as possible and check for
the arrival of the data, i.e., the notification, as late as possible
(right before the data is to be used).

Fig. 1: Generic communication scheme in GASPI on the example of
gaspi_write.

Figure 1 outlines the communication pattern in GASPI with
the help of an example of gaspi_write, while Table I
provides a more detailed description of the communication
between producer and consumer (receiver). In this scenario,
the consumer indicates the target buffer validity before the
write begins. Then, the producer commences with the write of
the data and issues a notification; these two can be combined
into one by gaspi_write_notify. On the receiver side,
GASPI guarantees that data is locally available whenever the

corresponding notification becomes locally visible (‘transfer
visible’). This mechanism enables fine-grained (request based)
asynchronous dataflow implementations as depicted in Fig-
ure 1. Finally, once the data arrives, the consumer acknowl-
edges completion of the data transfer; hence, the producer can
reuse the buffer.

On the producer side, the gaspi_write_notify –
which performs the actual communication – is only allowed
to be invoked if the first gaspi_wait_some – which waits
for the initial notification from the consumer that indicates
the target buffer validity – returns successfully. Therefore, the
two calls can be combined together into a single operation,
which would be invoked as soon as the source buffer is filled.
Similarly, the gaspi_wait_some and the acknowledgment
of completion on the consumer side can be combined into
one operation which would be invoked before we want to
work on the receive buffer. This reduces communication to
two operations on both producer and consumer sides.

III. EVENTUALLY CONSISTENT COLLECTIVES

We envision to design eventually consistent collectives by
allowing the collective (the fastest processes) to not wait for
the exchange of the most recent updates. Our motivation comes
from the nature of many ML/ DL algorithms that can be
classified as iterative and convergent. These algorithms start
with an initial guess of a model and then improve it across sev-
eral iterations until converging to a solution. Their convergent
nature allows these algorithms to work with data that can be
a bounded number of iterations out of date (referred to as the
allowed slack). This tolerance to staleness is explored in the
Stale Synchronous Parallel (SSP) [3] synchronization model.
By allowing processes to compute iterations using bounded
stale data, they can be receiving updates while performing
useful computation on stale data, and thus, seamlessly overlap
communication with computation. We incorporate this concept
into a variant of the Allreduce collective, see Section III-A.

Another possibility is to mimic eventually consistent collec-
tives as follows. We can specify a termination criterion before
the execution of collective, and then, in the call to collective,
we can specify the predefined threshold as an input parameter.
Hence, based on this threshold, every process or its parent can
locally decide whether to stay silent or to engage, as well as
how much to contribute. Consequently, the result (with respect
to the threshold) can be obtained through the output status
variable or at the receiver buffer after execution. This requires
adding one or two additional parameters to collectives, namely
threshold and status. We demonstrate this idea through exam-
ples of the Broadcast and Reduce collectives, leveraging on
GASPI’s API (see Section III-B).

A. Allreduce with SSP
In this section we propose an Allreduce collective follow-

ing the SSP model [3]. We refer to this new collective as
allreduce_SSP. It is presented in Algorithm 1.

We used a standard hypercube allreduce as a starting
point and adapted it to the SSP model. Like most allreduce
algorithms, the hypercube allreduce executes in several steps
(for loop in Algorithm 1), where, in each step, communicating



TABLE I: Communication scheme in GASPI on example of gaspi_write_notify with the producer-consumer roles.

description/ usage producer consumer description/ usage
setup phase allocate resource allocate resources setup phase

exchange meta info exchange meta info
check before communication gaspi_notify start as soon as the

gaspi_wait_some receive buffer can be overwritten
start as soon as the gaspi_write_notify check before we want to work on
source buffer is filled gaspi_wait_some the receive buffer or wait until its filled
check whether or wait until the gaspi_notify send as soon as the data arrived
source buffer can be overwritten gaspi_wait_some (acknowledgment)
shut down phase release resources release resources shut down phase

processes send and then wait to receive a fresh contribution,
(so that these two contributions can be reduced), before
continuing to the next step. The distinguishing characteristic of
the SSP model is that, instead of waiting for fresh contributions
from all processes, each process only waits until local data
contains contributions from all processes made at most slack
iterations ago (lines 7-11 in Algorithm 1). For example, if
the process is in iteration 5 and allows slack to be 1,
the collective can return after using contributions from other
processes that were computed in the current iteration, 5, but
also from the previous iteration, 4. Note that, to be able
to determine the age (or iteration number) of the result of
reducing contributions from different iterations, the algorithm
relies on a logical clock. This clock value initially corresponds
to the iteration in which the contribution was computed. Then,
when two contributions are reduced together, the result of
that reduction is associated with the minimum clock of both
contributions. For instance, if a contribution with clock 2 is
reduced with another from clock 3, the reduction result would
be associated with clock 2.

Intuitively, to adapt a hypercube allreduce algorithm to
support SSP, in allreduce_SSP processes remember the
last contributions received at each step, and, provided that
these contributions are not too stale, use them instead of
waiting for fresh contributions. To accomplish that, we begin
by identifying the contributions received at each step by
a given process and reserve dedicated memory to receive
the contributions from each of the steps; then, given we
are using one-sided communication, processes send updated
contributions by writing them in the dedicated memory of
the process requiring those contributions, thus overwriting
their previously sent contributions; finally, whenever a process
wants to reuse the last contributions received for a given step, it
will simply read from the dedicated local memory for that step.
In Algorithm 1 we refer to this memory as rcv_data_vec,
a vector with memory dedicated for each step.

Figure 2 shows the communication pattern for the hypercube
algorithm using 8 processes. The grid on the left of the figure is
composed of several squares, each representing a process. The
y-axis of the grid corresponds to the rank of the process, and
the x-axis to the step of the algorithm. At each step, processes
connected by an edge in the figure exchange contributions
and reduce the received contribution with the contribution
they have sent, resulting in a partial reduction, which is to be
communicated in the next step. We refer to this reduction as
partial as it does not contain all contributions. After following

this procedure for enough steps (dlog(P )e, where P is the
number of processors), we obtain the final reduction result.

From this communication pattern, we see that process 0
receives the contribution from process 1 at step 0, a partial
reduction from process 2 at step 1, and finally a partial
reduction from process 4 at step 2. To implement this, we
leverage the predictability of data transfer at each step to create
a dedicated memory to receive the data that each process
expects to receive, read from this memory, and repeat this
process for the several steps in sequence. Before reading the
data, we only need to wait for fresh updates if the latest
contribution received is too stale. Otherwise, we use the latest
contribution received.

Algorithm 1: allreduce ssp

// Hypercube with d dimensions
Input : new contribution, slack
Output: reduction result

1 clock ←− clock + 1
2 min clock accepted = clock − slack

3 part red←− new contribution

4 for 0 ≤ k < d do
5 comm proc←− get comm process(k)

// Send partial reduction
6 send(part red, clock, comm proc)
7 rcv data←− rcv data vec[k]

// Wait if rcv data is too stale
8 if rcv data.clock < min clock accepted then
9 wait for update(k)

10 rcv data←− rcv data vec[k]
11 end

// Reduce sent with received data
12 part red←− reduce(part red, rcv data)
13 end
14 reduction result←− part red

To help in the explanation of the allreduce_ssp algo-
rithm, we walk through an example of its execution, which
corresponds to the diagram in the middle of Figure 2.

In this example, we are zooming at process 0, currently
with clock 3 in a scenario where slack is set to 1. The fact
that slack is equal to 1 means that the process can use data
from the current clock, in this case, clock 3, but it can also



Fig. 2: On the left hand side of the figure we see the communication pattern on a hypercube using 8 processes, and in the middle part, we
have an example of the adaptation of the hypercube to use SSP.

use data from the previous clock, clock 2. In the first step, the
process sees that it already received data from the producer
and uses it to move on to the second step. At the second step,
the process now finds received data that is stale at clock 2,
but still fresh enough to be used in order to move on to the
next step. Once it reaches the last step, it finds that the current
received data is too stale too be used. In this case, and only
in this case, the process waits until receiving a new update for
the current step.

B. Broadcast and Reduce

To develop an eventually consistent Broadcast, we can rely
on P-1 gaspi_write_notify calls, where P is the number
of processes, from the root or implement a classic binomial
spanning tree (BST, see Figure 3) [7], specifying a certain
pre-defined percentage of data to be communicated as the
threshold parameter in gaspi_bcast. The BST is a common

Fig. 3: Broadcast using the binomial spanning tree with eight nodes;
communication stages are marked on edges with colored nodes.

algorithm, which uses a binomial tree structure in order to
reduce the network contention. The BST implementation of
gaspi_bcast is rather straightforward since the data is
written from root/ parent to its children. The algorithm begins
with determining a parent and children for each process: rank
0 is the root of the tree; the children of the process with rank
p0 are those with rank p0+2i, where log(p0) ≤ i ≤ dlog(P )e.
Then, we apply the scheme in Figure 1 (a fraction of data is
communicated), but only acknowledge the data transfer from

the outer nodes to their parents. The collective is considered
complete when the outer nodes receive data.

In case of Reduce, which is the inverse of Broadcast, each
child process waits for a notification from its parent indicating
that the data can be sent (see Figure 1). This is crucial to avoid
barriers and to relax the synchronization in case of multiple
children writing to the parent’s receive buffer simultaneously.
The data is written to the segment on the parent’s side and
reduced, and the child is also acknowledged on the completed
data write. The collective continues until the root is reached
and its children have contributed with their parts.

With Broadcast, we can mostly rely on sending less data due
to the fact that all processes, but one, should receive the full
amount or a fraction of data. With Reduce, we can have two
strategies: one is the same as for Broadcast; the other is to still
send the full amount of data but depending on the pre-defined
threshold eliminate some processes. When we look on the
binomial tree, Figure 3, which is not balanced, we can see that
it works in stages doubling the number of involved processes
on each stage. Thus, we exclude some processes depending
on their id and/ or the stage id, ensuring involvement of at
least the threshold amount of processes. Alternatively, we can
follow the deepest path on the left hand side of the tree. A
disadvantage of this approach can be the existence of a varying
significance of the data, which in some scenarios can be on
the eliminated nodes. This can be enhanced by adding weights
to the data, but we omit this in our initial study.

IV. CONSISTENT COLLECTIVES

We also propose to construct consistent collectives – such as
Allreduce and AlltoAll – by relying on GASPI’s API, instead
of low level APIs like ibverbs. Furthermore, we outline a
strategy to make Allreduce eventually consistent as well.

A. Allreduce

Since Allreduce is primarily used for large messages (from
several kilobytes to hundreds of megabytes) in ML/ DL
applications, our algorithm of choice is the segment pipelined
ring algorithm, as it is suitable for large message sizes and



promotes communication with only two neighbors. This al-
gorithm aims to saturate bandwidth and, hence, reach high
performance.

Fig. 4: Segmented pipelined ring Allreduce: Scatter-Reduce stage
where each node has a complete partial result.

Fig. 5: Segmented pipelined ring Allreduce: Allgather stage where
the partial results are broadcasted to the other nodes.

The segmented pipelined ring algorithm consists of two
stages: Scatter-Reduce and Allgather. On each of these stages,
a process operates with 1/P of data, sending to the next
clockwise node in the ring and receiving from the previous
one in the ring. The Scatter-Reduce stage works as follows:
in the kth step, node i will send the i−kth chunk and receive
the i− k− 1th chunk, reducing it into its existing data of that
chunk. Hence, each of the P nodes performs a reduction of
1/P of the dataset (see Figure 4) and sends the result further.
At the end of this stage, each node holds a complete result of
1/P of the data; we color this result on the plot.

In the Allgather stage, the fully accumulated partial results
are distributed across all nodes, following again the pipelined
ring communication with P-1 steps, as depicted in Figure 5.
At the kth step, node i will send chunk i− k+1 and receive
chunk i− k. After the Allgather, all nodes have access to the
complete reduced dataset.

A benefit of the segmented pipelined ring algorithm is
that at every stage of Allreduce each process (often) deals
with its close neighbors: receiving the partial data from one
and sending the partial data to another. Depending on the
message size, we can also require a subspliting of messages:

1/P of the data can be divided into smaller messages to better
utilize the network. As we rely upon GASPI API and not, for
example, on ibverbs (which are used within GPI-2), we leave
the splitting of messages to GPI-2 since it already handles
this very efficiently. Hence, the GASPI implementation of
Allreduce manages to use the entire memory and network
bandwidth of the system. For the reduction, we used a global
sum. Thus, we can hide the complete reduction effort in the
communication costs. As long as the reduction effort is less
time-consuming than the corresponding communication, this
will also hold true for more complex reductions like user-
defined reductions on user-defined data structures.

Currently, we work on extending Allreduce towards even-
tually consistent collectives by coupling it with a compression
technique. Hence, we foresee to reduce the amount of data
transferred as well as to crop some data.

B. AlltoAll

In a crucial part of the Quantum Espresso [5] application,
the communication time is dominated by the MPI_AlltoAll
collective used within a customized implementation of the Fast
Fourier Transformation (FFT). In particular, MPI_AlltoAll
consumes roughly 20-40% of FFT’s total runtime.

To address this, we propose a preliminary design for
an algorithmic variant of the AlltoAll collective leverag-
ing the GASPI API. The underlying idea of this solu-
tion is to let each node write its data to the memory
of all other nodes using gaspi_write_notify with a
unique notification. Then, each node waits on the notifi-
cation (gaspi_notify_waitsome) that some data has
been written to its memory and resets this notification
(gaspi_notify_reset). After each node has written to all
nodes and has received the data and notifications from them,
the AlltoAll is complete.

V. EXPERIMENTAL RESULTS

We conducted our performance measurements on a set of
different clusters:

• SkyLake partition at Fraunhofer with a dual Intel Xeon
Gold 6132 CPU @2.6 GHz and 192 GB of memory.
Nodes are connected with the 54 Gbit/s FDR Infiniband.

• Marenostrum4 cluster at BSC. Each node contains two
24-cores Intel Xeon Platinum 8160 CPUs @2.10 GHz
and 96 GB of memory. Nodes are interconnected with
the 100 Gbit/s Intel OmniPath HFI Silicon.

• Galileo cluster at Cineca. Each one contains two 18-cores
Intel Xeon E5-2697 v4 (Broadwell) CPUs @2.30 GHz
and 128 GB of memory. Nodes are interconnected
through the 100 Gbit/s Intel OmniPath with OPA v10.6.

We assign one GASPI process per node (unless otherwise
mentioned) in order to stress the communication.

a) Eventually consistent Allreduce: To experiment with
our allreduce_SSP implementation, we use a simple Ma-
trix Factorization algorithm using Stochastic Gradient Descent
(SGD), similar to [8]. The goal of this experiment is to
understand the effect of setting different values of slack on
the execution time of the algorithm and its convergence. To



train the model, we use the MovieLens 25M Dataset, iterate
for a total of 500 iterations for the slack = 0 execution, and
then for the other executions with different values of slack use
a number of iterations necessary to achieve the same error.

Figure 6 shows the performance results of the
allreduce_SSP evaluation using 32 GASPI processes
spread across 32 nodes on MareNostrum4. The plotted points
were sampled once per iteration and correspond to the average
(per iteration) of all 32 workers.

The plot on the right shows the behavior of the iteration
speed with respect to different values of slack. This highlights
that, after a given execution time (i.e., when fixing the value
on the x axis), more iterations are performed as we increase
slack. This happens because of the fact that the SSP condition
for advancing from one iteration to the next is more relaxed
than in the traditional execution (slack = 0), allowing workers
to lag up to slack iterations behind.

When benefiting from slack, faster processes are satisfied,
on average, with potentially increasingly staler data in order
to avoid waiting for new contributions. Because of this, at
a certain point in their execution, processes will try to use
contributions that are staler than their allowed slack. To
illustrate this, we focus on the behavior of the execution
using slack = 32 and slack = 64. Up to around the 100th
second on the plot on the right hand side, both executions
are rather similar. However, after this point we see that the
slack = 64 execution maintains its iteration per second, while
the execution with slack = 32 decreases its iterations per
second. At this point, processes using slack = 32 are trying
to use contributions that are staler than 32 clocks, while the
execution using slack = 64 can continue to use staler data.
Hence, this is reflected by the decrease in iteration per second
in the slack = 32 execution.

The fact that iterations run faster may not imply that the
convergence time improves since the algorithm will take more
iterations to converge. However, the plot on the left in Figure 6
shows that there is an overall gain in the execution time.
In particular, it shows that, for algorithms with a convergent
nature such as Matrix Factorization using SGD, the Allreduce
implementation following the SSP approach can increase the
overall convergence speed by reaching the desired error faster.
Compared to slack = 0, slack = 2 required 3 more iterations
to reach the same error while being 6% faster, slack = 32
required 6 more iterations and was 12.3% faster, slack = 64
required 16 more iterations and was 19% faster.

In Figure 7, on the left plot, we see the collective execution
time for the allreduce_SSP solution. From the plot, we
can see that this solution performs significantly worse than
the collective offered by MPI (default pick of Allreduce) and
the gaspi_allreduce_ring implementation. Note that
both gaspi_allreduce_ring and MPI use the Allreduce
algorithms more suited for large vectors. In fact, even in the
configuration for the slack value with the lowest execution
time, this solution is still around 58% slower than our baseline
collectives. This is due to the fact that the Hypercube algorithm
shuffles the entire vector, which is better suited for small
vectors, and we use vectors of a considerable size.

Regardless of the absolute performance, we see that the
allreduce_SSP collective benefits from higher values of
slack by being able to reduce, and even completely eliminate,
the time waiting for fresh updates as shown in the right plot
of Figure 7. As mentioned earlier, we did not expect this
solution to have stellar performance. Instead, we designed it
as a first attempt at adapting an existing step based Allreduce
algorithm to use SSP and determine if SSP would reduce their
execution time, which we confirmed.

b) Eventually consistent Broadcast: Broadcast is often
used in HPC and ML/ DL code to distribute the initial data for
computations. Hence, its impact on the overall application per-
formance can be very small. In cases when Broadcast is also
used within applications, especially on every iteration, careful
balancing between the most relevant data and its amount can
lead to significant savings in terms of the execution time.
Figure 8 shows the performance results of Broadcast using
different thresholds for data, i.e., different amounts of data
that is shipped. We conduct 100 executions for each message
size and calculate the average time among all executions. We
also compute the 95 % confidence interval that is displayed as
error lines on the plots. The GASPI BST variant of Broadcast
is 3.25x-3.58x faster when dealing with only a quarter of
the data. Moreover, we compare these performance results
against the ones with MPI_Bcast from Intel MPI version
2018 update 1: mpi-bin is the MPI_Bcast implementation
with a binomial tree; mpi-def is the default (automatically
selected) broadcast implementation. These two MPI variants
are clearly better compared to the gaspi_bcast on small
data sets (up to few thousands of elements), possibly using a
different binomial implementation. However, the overhead of
our implementation decreases on a larger node count and for
large arrays, where we can see promising performance benefits
of gaspi_bcast. As such, we are considering to revise the
BST implementation as well as to implement an alternative
variant.

c) Eventually consistent Reduce: We conduct similar
tests for Reduce and report the respective results in Figure 9.
For each message size, we also run the benchmark 100 times
and compute both the average and the 95 % confidence inter-
val. For different message sizes, the difference between the
usage of 25 % and 100 % of the data in gaspi_reduce in-
creases rapidly with the message size and for 8 Mb it is roughly
5x. We compare the performance results of gaspi_reduce
against the ones with MPI_Reduce from Intel MPI version
2018 update 1 using their default (automatically selected)
and binomial variants. For small arrays, MPI outperforms all
our variants of Reduce. However, for larger arrays, starting
from 10,000 elements, the situation changes: the automatically
selected variant (from the pool of 14) of MPI_Reduce is
still (1.96x) faster, while gaspi_reduce is roughly by 38 %
faster than the MPI binomial variant.

We also provide performance results of another
gaspi_reduce implementation when the full amount
of data is sent but only a certain (according to the pre-
defined threshold) percentage of processes is engaged in
communication, see Figure 10. Hence, the leaves that are



Fig. 6: Experimental results of allreduce_SSP impact on convergence speed of the ML algorithm (the Matrix Factorization algorithm
using Stochastic Gradient Descent) on 32 nodes of the MareNostrum4 cluster.

Fig. 7: Experimental results of allreduce_SSP collective execution speed and time spent waiting for fresh updates on 32 nodes of the
MareNostrum4 cluster.

far from the root are excluded. This implementation has
slower performance compared to the previous implementation
of gaspi_reduce, working only on a fraction of data,
however it is still better then the MPI binomial variant. The
lines for 75 % and 100 % show identical performance due to
the fact that after 50 % it is difficult to get much improvement
since 50 % of all processes are added on the last stage of the
algorithm as depicted in Figure 3.

d) Classic/ Consistent Allreduce: We carry out the ex-
periments of the segmented pipelined ring Allreduce with
GASPI (called gaspi_allreduce_ring) on the SkyLake
nodes of the Fraunhofer ITWM’s cluster. We compare its
performance results against the ones of MPI_Allreduce
from Intel MPI version 2018 update 1 with the standard
settings, which ensures that the optimal settings are being
selected. We allocated one process per node and assigned
the same amount of work (vector size) per node in order
to stress communication of the collective. Figure 11 reports
the timings (the average time and the 95 % confidence level
among 100 executions) for arrays of doubles of sizes 10,000
and 1,000,000. Note that our implementation aims to target
large vector sizes, whereas the Intel MPI library is equipped
with a dozen of implementations, which in fact are all in use
here, targeting various message sizes and topologies. Hence,
the results of MPI_Allreduce are significantly better than

gaspi_allreduce_ring for vectors of size 10,000. How-
ever, gaspi_allreduce_ring performs better for larger
vectors, e.g., with 1,000,000 elements, showing performance
benefits of 1.78x and 2.26x when compared against the Shu-
milin’s ring (mpi7 on the plot) and the ring (mpi8) variants
of MPI_Allreduce, respectively. The Shumilin’s ring is the
best performing variant of MPI among the existing 12. The
ring MPI variant supposedly implements the same segmented
pipelined ring algorithm. It is worth mentioning that, compared
to the implementations of the segmented pipelined Allreduce
with MPI, we eliminate global synchronizations at the end of
both Scatter-Reduce and Allgather phases and instead use the
GASPI weak lightweight synchronization via notifications; for
example, to indicate that the process is ready to receive data
or to acknowledge arrival of data as depicted in Figure 1.

In addition, we conduct tests by focusing on a range of
message sizes, for instance from 1,024 elements and up to
eight millions with the step of 2. Figure 12 demonstrates
the results of this evaluation: 1) until we reach a message
size of 1,048 Kb, the MPI implementation of Allreduce is
faster; 2) starting from a message size of 2,097,Kb our
implementation outperforms all MPI variants and reaches its
peak of 2.07x and 2.13x for ring and Shumilin’s ring variants,
respectively, for a message size of 67,108 Kb (or 8,388,608
elements). We believe that this trend will continue and the
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Fig. 8: Performance results of Broadcast on SkyLake nodes: for vectors of 10,000 double precision elements on the left and of 1,000,000
elements on the right. mpi-def stands for the default variant of Broadcast, while mpi-bin corresponds to the binomial variant.
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Fig. 9: Performance results of Reduce on SkyLake nodes: for vectors of 10,000 double precision elements on the left and of 1,000,000
elements on the right. mpi-def stands for the default variant of Reduce, while mpi-bin corresponds to the binomial reduction.
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Fig. 10: Performance results of Reduce operating on the full amount
of data for 1,000,000 doubles on SkyLake nodes; xx % lines corre-
sponds to at least xx % of processes involved.

gap will become larger on more nodes since the MPI allreduce
curves show faster growth. This is particularly thanks to the

GASPI’s asynchronous one-side communication with weak
synchronization.

e) Classic/ Consistent AlltoAll: We conducted our per-
formance experiments and compared the GASPI implementa-
tion of AlltoAll against that of MPI_AlltoAll of Intel MPI
v.18.0 on Cineca’s Galileo cluster.

Figure 13 reports the performance results (obtained as an
average over 100 runs) for various message sizes. Since we
aim to have a hybrid programming model implementation,
we set four GASPI/ MPI processes per node. We run our
experiments using 4, 8, and 16 nodes: this is marked on each
line as gaspix or mpix, where x = 4, 8, or 16. Note that we
used Intel MPI v.18.0 with the standard settings, which ensures
that the optimal settings are being selected. The performance
of both implementations is similar up to a message size of
about 1,024 bytes. The situation begins to change from a
message size of 2,048 bytes, where our implementation of
GASPI AlltoAll begins to outperform the vendor-provided
MPI version, reaching a peak performance for a message size
of 32,768 bytes; the performance gain is 2.85x, 5.14x, and
5.07x on 4, 8, and 16 nodes, respectively.
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various message sizes.

It is important to note that the message size needed by
the FFT miniapp when using MPI_AlltoAll is in the
range of 6Kb-24Kb, i.e., in the range where the GASPI
version outperforms the vendor-provided MPI implementation.
Since MPI_AlltoAll consumes about 20-40% of FFT’s
total runtime, we expect a significant reduction of the total
execution time in the Quantum Espresso application (whose
implementation is currently in progress). A GASPI equivalent
of MPI_AlltoAllV, also used under certain conditions in
the minapp, is currently being built using the same scheme as
for the gaspi_alltoall collective.

VI. RELATED WORK

Depending on message sizes and network architecture,
Allreduce implementations span a wide range of algorithms,
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Fig. 13: Performance results of gaspi_alltoall compared
against MPI on the Galileo cluster at CINECA; GPI-2 installation
is from the next branch on GitHub, which is v1.4.0, and MPI
implementation comes from the Intel MPI v18.0 library.

from ring-based algorithms, binomial spanning-tree imple-
mentations [7], tree algorithms [9], or Butterfly like algo-
rithms [10]. In [11] the authors designed an n-way dis-
semination algorithm for the GASPI API; this algorithm is
suitable for small message sizes. The dissemination algorithm
has been presented by Hensgen et al. in 1988 [12]. Due
to its speed it is used in different programming APIs and
libraries like the MPICH implementation of MPI for barrier
implementations. In [11], the n-way dissemination algorithm
was used in a way that neither leverages partial reductions of a
2-way dissemination (and their associated out-of-band delivery
to late dissemination stages), nor notified communication in
shared windows.



The GASPI programming model [1] primarily targets multi-
threaded or task-based applications, hence GASPI+X. How-
ever, in order to support migration of legacy applications
(with a flat MPI communication model) towards GASPI, we
have extended the concept of shared MPI windows [13], [14]
towards a notified communication model [15], [16] in which
the processes sharing a common window become able to
see all one-sided and notified communication targeted at this
window. We enabled communication from and to a shared
memory region to all processes, which share the window.
While MPI-3 readily supports this model with MPI 2-sided
and 1-sided communication, we aimed to support the notified
and one-sided communication in GASPI. Since GASPI does
not require a dedicated receiving process, we can avoid the
detrimental effects of late receivers. Nevertheless, all processes
are still able to test for completion of incoming messages
without additional synchronization effort.

In [15], [16] we also designed Allreduce based on pipelined
rings and notified communication in shared windows. This
implementation delivered up to the 3x performance boost
compared to the best Intel MPI implementations v5.1.2 on
the Salomon IT4I cluster (Infiniband FDR). We extended
this idea to Allgather(V) and Allreduce with an adaptation
of the dissemination algorithm [17], achieving up to 2x-4x
performance improvements compared to the best performing
MPI implementations on the Salomon IT4I cluster and the
Beskow Cray XC40 cluster at PDC, KTH.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we presented our ideas for adapting some
classic algorithm for collective operations – like Binomial
Spanning Tree and segmented pipelined ring – to implement
Broadcast, Reduce, and Allreduce with GASPI. While with
Broadcast and Reduce we aimed to be generic but vary
the amount of data used or processes involved (mimicking
eventual consistency), with Allreduce we targeted (very) large
message sizes. The Allreduce implementation leads to 2x
faster execution compared against a dozen of the vendor-
specific implementations. We also implemented AlltoAll fol-
lowing a rather simple but well-performing pattern, resulting
in 2.8x-5.1x performance improvements compared to MPI’s
AlltoAll default variant.

Furthermore, we designed and implemented in GASPI a
novel Allreduce following the Stale Synchronous Parallel
model (allreduce_ssp). allreduce_ssp reduces the
waiting time and synchronizations by using stale contributions.
This approach is suitable for ML/ DL computations. Our
implementation, which is based on Hypercube, was not able
to outperform the MPI standard, however we observed the
desired effect of using slack in terms of faster convergence for
Matrix Factorization. In order to improve allreduce_ssp,
we consider to adapt more efficient Allreduce algorithms,
e.g. the presented pipeline ring algorithm, and to explore
the idea of the Parameter Server architecture, which is the
setting where we usually find the SSP model. All our devel-
opments are available under the EPEEC GitHub repository:
https://github.com/epeec.

Our ultimate goal is to provide a library of collectives
within the GASPI ecosystem for both the HPC and ML/
DL communities by leveraging the GASPI API and focusing
on the design of collectives for various data sizes and/ or
application needs as in case of the allreduce_ssp vari-
ant. Furthermore, we are also working on the compression
library and foresee to design and develop another version of
eventually consistent collectives by coupling this compression
library with the consistent collectives.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union’s Horizon2020 research and inno-
vation programme under the EPEEC project, grant agreement
No 801051, and from FCT under UIDB/50021/2020.

REFERENCES

[1] C. Simmendinger, M. Rahn, and D. Grünewald, “The GASPI API: A
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