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Abstract—Nonuniform fast Fourier transforms dominate the
computational cost in many applications including image re-
construction and signal processing. We thus present a general-
purpose GPU-based CUDA library for type 1 (nonuniform to
uniform) and type 2 (uniform to nonuniform) transforms in
dimensions 2 and 3, in single or double precision. It achieves
high performance for a given user-requested accuracy, regardless
of the distribution of nonuniform points, via cache-aware point
reordering, and load-balanced blocked spreading in shared mem-
ory. At low accuracies, this gives on-GPU throughputs around
10° nonuniform points per second, and (even including host-
device transfer) is typically 4-10x faster than the latest parallel
CPU code FINUFFT (at 28 threads). It is competitive with
two established GPU codes, being up to 90x faster at high
accuracy and/or type 1 clustered point distributions. Finally we
demonstrate a 5-12 x speedup versus CPU in an X-ray diffraction
3D iterative reconstruction task at 10~ '? accuracy, observing
excellent multi-GPU weak scaling up to one rank per GPU.

Index Terms—Nonuniform FFT, GPU, load balancing.

I. INTRODUCTION

Nonuniform (or nonequispaced) fast Fourier transforms
(NUFFTs) are fast algorithms that generalize the FFT to the
case of off-grid points. They thus have a wealth of applications
in engineering and scientific computing, including image
reconstruction from off-grid Fourier data (e.g. MRI gridding [,
optical coherence tomography [2]], cryo electron microscopy
[3I-[7]], radioastronomy [8]], coherent diffraction X-ray imaging
[9); wave diffraction [10]; partial differential equations [[11]],
[12]]; and long-range interactions in molecular [13]] and particle
dynamics [|14]]. For reviews, see [15]—[18].

In 2D, the type 1 NUFFT [15] (also known as the “adjoint
nonequispaced fast Fourier transform” or “adjoint NFFT” [[17])
evaluates the uniform Ny x N grid of Fourier series coefficients
fE1,k, due to a set of point masses of arbitrary strengths c;
and locations (z;,y;) € [-m,m)% j=1,...,M:

M
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where the 1D integer Fourier frequency grid is defined by
In:={k€eZ:—-N/2<k<N/2}, 2)

and we use the notation Zy, n, := Iy, X Iy, for a 2D grid
of Fourier frequencies.

The type 2 NUFFT (or “NFFT” [17]) is the adjoint of the
type 1. Given a grid of Fourier coefficients fy, , it evaluates
the resulting Fourier series at arbitrary (generally nonuniform)
targets (x;,y;) € [—m,m)2, to give

D

(k1,k2)EIN, Ny

i(k1x;+koy, .
fkl,k2€7( 125 +k2y;5) , J=1,..., M.

Cj =

3)

In contrast to the FFT, type 1 is generally not the inverse of

type 2: inverting a NUFFT usually requires iterative solution

of a linear system [17], [19]. Definitions and (B) generalize
to 1D and 3D in the obvious fashion [15].

Naively the exponential sums in (I) and (3) take O(NM)
effort, where N := Nj; x --- x Ny is the total number
of Fourier modes, and d the dimension. The NUFFT uses
fast algorithms [|15], [20] to approximate these sums to
a user-prescribed tolerance ¢, typically with effort of only
O(Nlog N + Mlog?(1/¢)), ie., quasi-linear in the data
size. Most algorithms internally set up a “fine” grid of size
ni X --- X ng, where each n; = oN;, for a given upsampling
factor o > 1. Then the type 1 transform has three steps:

1) spreading (convolution) of each weighted nonuniform

point by a localized kernel, writing into the fine grid,
ii) performing a d-dimensional FFT of this fine grid, then
iii) selecting the central N output modes from this fine grid,
after pointwise division (deconvolution) by the kernel
Fourier coefficients.
Type 2 simply reverses (transposes) these steps, with 1)
becoming kernel-weighted interpolation from the fine grid
to the nonuniform target points. See Sec. [[I] for details.

The NUFFT is often the rate-limiting step in applications,
especially for iterative reconstruction [/1]], motivating the need
for high throughput. Spreading and interpolation are often the



dominant steps of NUFFTSs, due to scattered memory writes and
reads of kernel-sized blocks. Since it demands high memory
bandwidth, yet is data parallel, it is a task well suited for
acceleration by a general-purpose GPU [21]].

This potential of GPUs to accelerate the NUFFT has of
course been noted, and to some extent exploited, in prior
implementations [22[|—-[25]]. However, the present work shows
that it is possible to increase the efficiency significantly beyond
that of prior codes, in the same hardware, via algorithmic
innovations. With few exceptions [22[], most prior GPU NUFFT
implementations are packaged in a manner specific to a single
science application (e.g. MRI [23]-[25]], OCT [2], MD [13]],
or cryo-EM [5]]), have unknown or limited accuracy, and lack
mathematical documentation and testing, rendering them almost
inaccessible to the general user. This motivates the need for
an efficient, tested, general-purpose GPU code.

A. Contributions of this work

We present cuFINUFFT, a general-purpose GPU-based
CUDA NUFFT library. It exploits a recently-developed kernel
with optimally small width for a full range of user-chosen
tolerances (10~! to 107'2), yet more efficient to evaluate
than prior ones [18]], [26]. Its throughput is high—and largely
insensitive to the point distribution.

One main contribution is to accelerate spreading in the type
1 NUFFT. Broadly speaking there have been two styles of
parallelization in prior work: “input driven” [27] (or scatter
[5]), which assigns one thread to each nonuniform point, and
“output driven” [5]], [17], [25], [28]] (gather), which assigns each
thread a distinct portion of the fine output grid to spread to.
The input driven scheme, accumulating to GPU global memory,
has been used in many prior GPU codes [14], [22f], [29]; we
will refer to our implementation of this baseline method as GM
(global memory). While load-balanced, the memory access is
arbitrary and can suffer from atomic collisions between writes
(see Sec. [[V-A). Yet, a naive output driven approach, although
collision-free, is poorly load-balanced for highly nonuniform
point distributions [18, Rmk. 12]. To address these issues we
propose two new spreading methods:

e GM-sort (global memory, sorted). This improves upon
GM in that the work order of the nonuniform points is
chosen by spatial sorting into bins (boxes) covering the
fine grid. This regularizes the memory access pattern,
enabling cache reuse.

e SM (shared memory). This sets up spreading “subprob-
lems” executed in faster GPU shared memory. This is
a hybrid scheme (see Fig. [I): each subproblem has a
local copy of the fine grid lying within the kernel half-
width of one bin (output driven), yet is load-balanced by
capping its subset of nonuniform points (input driven).
Local fine grids are added back into global memory using
far fewer global atomic operations than GM methods,
avoiding collisions. The result is 2—10x faster than GM-
sort (depending on d and clustering).

Bin sizes and shapes have been hand-tuned for performance;
this is crucial for SM to ensure optimal use of limited shared
memory.

Turning to the interpolation task in type 2, we propose to use
the adjoint version of GM-sort, where grid writes are replaced
by reads. We will also refer to this algorithm as GM-sort.

For both tasks, while bin-sorting nonuniform points adds
time, it accelerates the execution of spreading/interpolation.
Thus our library uses a “plan, setup, execute, destroy” interface
that allows efficient reuse of the same (sorted) nonuniform
points with new strength vectors (e.g. new ¢; in (I)). This use
case is common, e.g. in iterative methods for NUFFT inversion.

We benchmark in detail the speedup of cuFINUFFT over
existing NUFFT libraries, for a range of accuracies, problem
sizes, and point distributions. For example, including GPU
memory allocation and transfer time, for low accuracy and
quasi-uniform points, cuFINUFFT is on average 8§ faster than
FINUFFT [[18] (28 threads), 5x faster than CUNFFT [22] and
78x faster than gpuNUFFT [24] for type 1 transforms. For
type 2, cuFINUFFT is on average 6x faster than FINUFFT,
5x faster than gpuNUFFT, and performs similarly to CUNFFT
but with 2-5x faster “execute” times.

The library also enables multi-GPU parallelism, essential
for larger problems in HPC environments. In Sec. [V| we show
this in the setting of 3D single particle reconstruction from
coherent X-ray diffraction data, which demands thousands of
3D NUFFTs. For NSERC and OLCF supercomputer nodes,
we demonstrate an order of magnitude speedup over the CPU
version, and excellent weak scaling with respect to the number
of GPU processes, up to one process per GPU.

The code and documentation for the library is available on
GitHulﬂ and installable as a PyPI package in Python through
pip install cufinufft.

B. Limitations

Our library has a few limitations. (1) Both GM-sort and
SM have some GPU memory overhead, due to sorting index
arrays. Yet, for a large 3D transform (V; = 256, i = 1,2, 3,
and M = 1.3 x 10®), this overhead is only around 20%. (2)
The SM method, while providing a large acceleration for
type 1, is currently limited to single precision, due to the
small GPU shared memory per thread block (49 kB). (3) We
fixed the upsampling factor o = 2; reducing this could reduce
memory overhead and run times [18]. (4) Our library does
not yet provide NUFFTs in 1D, nor of type 3 (nonuniform to
nonuniform) [30]].

II. ALGORITHMS

We follow the standard three-step scheme presented in the
previous section. Our Fourier transform convention is

/ b(z)e=*edz, B(x) / (k) dr. (4)

Uhttps://github.com/flatironinstitute/cufinufft
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We fix the upsampling factor o = 2, and use the “exponential
of semicircle” (ES) kernel from FINUFFT [18]], [26]],

6 {eﬂ( T <1
B\Z) =

0, otherwise.

®)

Given a user-requested tolerance ¢, the kernel width w in fine
grid points, and parameter (3 in (3)), are set via

w = [loginp1/e]l+1, B =2.30w. (6)

This typically gives relative £y errors close to € [[18]]. As in
FINUFFT, for FFT efficiency, the fine grid size n; is set to
be the smallest integer of the form 273757, greater than or
equal to max (o Ny, 2w), in each dimension i =1, ..., d.

A. Type 1: nonuniform to uniform

We use the same algorithm as FINUFFT to compute fkl, [
an approximation to fx, x, in (I). We will write only the 2D
case, the generalization to 3D being clear.

a) Step 1 (spreading): For each index (l1,l2) in the fine
grid 0 <13 < ny, 0 <y < ng, compute
M
bll,lg = ZCjwpcr(llhl — Ty, lth — yj), (7)

j=1
where h; := 2w /n; is the fine grid spacing, and ¥P**(x,y) is
the periodized tensor product of rescaled ES kernels
P(z,y) = ¢p(w/a1)dp(y/az), ai=wr/ni, i=1,2,
PP (x,y) = Z Y(x — 2mrmy,y — 2mms). (8)

(m1,m2)€Z?

Note that each nonuniform point (z;,y;) only affects a nearby
square of w? fine grid points.
b) Step 2: Use a plain 2D FFT to evaluate

ne—1n;—1

7 E : § : —2mi(lik lok
bkl,kz — bl1,12€ mi(lik1/n1+l2 2/712)’
lo=0 1;=0

(klka) e In17n2~ (9)

c) Step 3 (correction): Truncate the Fourier coefficients
to the central N1 x N» frequencies, and scale them to give the

final outputs
(kl,kg) EINl,N2~ (10)

Here, correction (deconvolution) factors py, ., are precomputed
from samples of the kernel Fourier transform, via

Per ks = hihath(k1, k) ™ = (2/w)*(p(ankr)dp(azka)) .

B. Type 2: uniform to nonuniform

fkhk?Z = pk17k2bk1,k2>

To compute ¢;, an approximation to ¢; in @]) as in FINUFFT,
the above steps for type 1 are reversed. The correction factors
Dk, ,k, and the periodized kernel 1P*" remain as above.

a) Step 1 (correction): Pre-correct then zero-pad the
coefficients fr, x, to the fine grid, i.e., for all indices (l1,ls),

T {pkl,kgfkl,k27 (k1,k2) € In, N,
l1,l2 —

(11)
0, (klv kQ) € Inl,'n2\IN17N2

b) Step 2: Use a plain inverse 2D FFT to evaluate

>

(k1,k2)€Lnq ny

27ri(l1k1/n1+lgk2/n2)

bl1,l2 = bk17k2e ?

Li=0,....,n;—1, i=1,2. (12

c) Step 3 (interpolation): Compute a weighted sum of
the w? grid values near each target nonuniform point (z;,y;),

’I’Llfl lefl
&= 33 by P (hhy—ay laha—y;), § =1, M.
11=0 I2=0
III. GPU IMPLEMENTATION

This section shows how the above three-step algorithms are
implemented on the GPU using the CUDA API. For the FFT in
both types, we use NVIDIA’s cuFFT library. For the correction
steps, since the task is embarrassingly parallel, we simply
launch one thread for each of the N7 x Ny Fourier modes. The
factors py, ., are precomputed once in the planning stage. The
major work lies in the spreading (type 1) and interpolation
(type 2), to which we now turn.

A. Spreading

Recall that we use GM to denote a baseline input driven
spreading implementation in global memory (as used in
CUNFFT [22]). This launches one thread per nonuniform
point, i.e. M in total, in their user-supplied order. The thread
given nonuniform point j spreads it to the fine grid b array:

V(ly,l2) .

This task comprises (a) reading z;, y;, ¢; from GPU global
memory, (b) 2w evaluations of the kernel function 1), and
(c) w? atomic adds to the b array residing in GPU global
memory. One downside of this approach is that nonuniform
points assigned to threads within a thread block and hence
within a warp can reside far from each other on the grid, which
results in uncoalesced memory loads. (Note that assigning one
thread block per nonuniform point may alleviate this issue
[14]].) Another downside is that global atomic operations for
clustered points can essentially serialize the method.

GM-sort is a scheme to address the issue of uncoalesced
access. We partition the n; X ng fine grid into rectangular “bins”
R;,v=1,..., npins, €ach of integer sizes m; X my if possible,
otherwise smaller. (A typical choice is m; = mgy = 32.) Thus
Npins = [75-] % [2]. Bins are ordered in a Cartesian grid
with the x axis fast and y slow, which echoes on a larger scale
the ordering of the fine grid itself. We will say that nonuniform
point j is “inside” bin R; if the point’s rounded integer fine
grid coordinates

h=\(z;+m)/h], l=[(y;+m)/ha],

lie in R;. Suppose that there are M; nonuniform points inside
bin R; for i = 1,...,npins. We set up a permutation ¢ (a
bijection from {1,..., M} to itself), such that the nonuniform
points with indices ¢(1),¢(2),...,t(M;) are precisely those
lying in bin R, then those with indices ¢(M; + 1),¢(M; +

biyty < biy gy + 0P (lhha — x5, lohe — y5),
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Fig. 1: SM spreading scheme. The shaded gray squares (each w x w fine grid points) show the support of the spreading kernel,
centered on each nonuniform point (black dots). Colors indicate the different nonempty bins. Step 0: Divide the n; x no fine
grid into bins of size m; X mo. Step 1: Assign subproblems by bin-sorting non-uniform points, and, if needed, further splitting
so that there are at most Mg, points per subproblem. Step 2: Spread the points inside each subproblem into a padded bin copy
in faster shared memory (size p; X p2). Step 3: Atomic add each padded bin result back into global memory.

2),...,t(M;y + M>) are precisely those in bin Rs, etc. This
is done in practice by first recording the bin index of each
point, reading out this list in bin ordering, then inverting this
permutation to give ¢. Nonuniform points are then assigned
to threads in the permuted index order ¢(1),...,¢(M). This
means that the threads within a warp now access parts of the
b fine grid array that, most of the time, are approximately
adjacent. The GPU therefore has a better chance of coalescing
these accesses into fewer global memory transactions.

SM is a hybrid scheme which exploits GPU shared memory
to further address the issue of slow global atomic operations.
It partitions the fine grid into bins R; as above, then has three
remaining steps, as follows (see Fig. [I)).

Step 1: Assign subproblems using bin-sorting and blocking of
nonuniform points. The nonuniform point index list 1,..., M
is broken into the union of disjoint subsets 57,55, ..., each
of which we call a “subproblem”. This is done as follows.
For bin R, if the number of points M, is larger than My, a
parameter controlling the maximum subproblem size, then it
is further broken into subsets (subproblems) of size at most
M. These one or more subproblems are all associated to the
bin ?;, in which their points lie. The same is repeated for the
remainder of the bins R;. Thread blocks are then launched,
one per subproblem. Note that the cap on subproblem size is a
(blocked) form of input driven load-balancing: if many points
lie in a bin, their spreading tasks are well parallelized.

Step 2: Spread nonuniform points inside each subproblem to
shared memory. By the above partition, within a subproblem
(a thread block), the nonuniform points can only affect the fine
grid array b within a padded bin of dimensions p; X ps, where

pi = (m; + 2[w/2]),

i=1,2. (13)

For the kth subproblem S, we accumulate its spreading result
on a shared memory copy "¢ of its padded bin, local to its
thread block,

bshared
51,52

- bshared +

51,52
Z ;P ((s1 4+ Ar)hy — x5, (s2 + Ag)ha — yj5),
JESk

s;i=0,...,p;—1, i=1,2, (14)
where (s1, s2) are local indices within the padded bin copy,
and (A, Ay) its offset within the fine grid (see Fig. [I).

Step 3: Atomic add the results back to global memory.
Once the spreading subproblem result is accumulated in the
shared memory padded bin, we atomically add it back to the
corresponding region of global memory array b,
shared

bll(Sl),lz(S2) N bl1(81)712(52)+b51,52’ V(Sl,Sg) (15)

where [;(s;) = (s; + A;)modn;, ¢ = 1,2, maps each
coordinate in the padded bin back to the fine grid, with periodic
wrapping (see Fig. [I). This completes the spreading process.
When there are many nonuniform points per bin, this incurs
many fewer global atomic writes than GM-sort.

We generalize both the implementations GM-sort and SM to
3D by using cuboid bins of maximum dimension mq X mg Xms.

Remark 1: In both methods GM-sort and SM, the perfor-
mance is sensitive to the bin sizes. By hand-tuning (in powers
of two), we have found 32 x 32 in 2D and 16 x 16 x 2 in 3D
to be optimal. This takes account of the area (or volume) ratio
of bin to padded bin, the ordering of fine grid data, and the
maximum size of GPU shared memory per thread block (49
kB), and are based on speed tests on an NVIDIA Tesla V100.



We similarly set Mgy, = 1024, although we believe that its
optimal value is problem-dependent.

Remark 2: We implemented SM in both dimensions and
precisions, apart from 3D double precision where it is no longer
advantageous. Here the shared memory constraint 16(m; +
w)(mg + w)(mg + w) < 49000, for widths w > 8 needed
when ¢ < 107, forces the bin volume to be tiny compared to
the padded bin volume, dramatically increasing the number of
global operations. We test only GM-sort in this case.

B. Interpolation

For interpolation, we use the same idea as GM-sort for
spreading, with read and write memory operations reversed.
Threads are assigned to nonuniform points in the permuted
order t(1),...,¢(M) coming from bin-sorting. Thus the jth
thread performs the task

ni—1lno—1

Gy =D > by (It — 3y, lahe — yu) -

11=0 l2=0

We refer to the method by the same name, GM-sort, and use
GM to refer to the unsorted version. The reason to bin-sort
the nonuniform points is to coalesce the reads from the fine
grid. Since there is no conflict between threads reading the
same location in memory, this is fast; the benefit of applying
an idea like SM to interpolation would be limited.

IV. PERFORMANCE TESTS

In this section, we report the performance of our GPU
library, cuFINUFFT. We first show how the proposed spreading
methods GM-sort and SM perform against GM. Then, we
compare the performance of the interpolation step with (GM-
sort) and without (GM) bin-sorting the nonuniform points.
Finally, we show how the whole pipeline performance (spread-
ing/interpolation, FFT, correction) of cuFINUFFT compares
with the fastest known multithreaded CPU library FINUFFT
[18]], and two established GPU libraries CUNFFT [22] and
gpuNUFFT [3].

All GPU timings are for a NVIDIA Tesla V100 (released
in 2017), with memory bandwidth 900 GB/s. We compile all
codes with GCC v7.4.0 and NVCC v10.0.130. Unless specified,
single precision and My, = 1024 are used in all the tests.

Tasks. We present results for the following two nonuniform
point distributions, which are extreme cases:

¢ “rand”: nonuniform points are independent and identically
distributed uniform random variables across the entire
periodic domain box [—m, )4, d = 2, 3.

o “cluster”: points are iid random in the small box [0, 8h1] x
-++ % [0, 8hy], recalling that h; are the fine grid spacings.

We restrict to square/cube problems, i.e. N = No(= N3),
being the most common application problem. We define
problem density p to be the ratio of number of nonuniform
points to number of upsampled grid points, i.e.,

. M _ M
p = =3 _odHiﬂW'

[Tizy n

(16)
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Fig. 2: Spreading method comparisons. Execution time per
nonuniform point (smaller is better) is shown, for various
fine grid sizes, and distributions “rand” and “cluster”, in 2D
and 3D. For GM-sort (cyan) and SM (dark blue), the “total”
time (solid lines) includes the precomputation (bin-sorting or
subproblem setup), whereas the “spread” time (dotted lines)
excludes this precomputation. The baseline GM (red) needs
no precomputation. Annotations are the speedups over GM.

We report tests with p of order 1, since a) this is common in
applications, and b) in the uncommon case p < 1 one ends up
essentially comparing plain FFT speeds. In fact we have tested
p =0.1 and p = 10, as well as less extreme nonuniform point
distributions; the conclusions are rather similar.

A. Spreading performance

For high-accuracy single precision (¢ = 107°, i.e. w = 6),
Fig. 2] compares our spreading methods GM-sort and SM
against the baseline method GM, in 2D (top), 3D (bottom),
and for “rand” (left) and “cluster” (right) distributions. Solid
lines show total times (in nanoseconds per nonuniform point)
including preprocessing (sorting) of new nonuniform points.
Dotted lines show execution excluding this, so are relevant for
repeated transforms with same set of nonuniform points.

We can see from the “rand” results that for large grids
(n1 = ng > 2% 1in 2D, or n; = ny = n3 > 27 in 3D) bin-
sorting brings a large gain. In the extreme case (the largest
n; tested), GM-sort is 3.9x faster than GM in 2D, and 7.6 %
faster in 3D. On the other hand, for small grids, because the
memory accesses are already localized, we do not see any
benefit of bin-sorting.

From the “cluster” results, since nonuniform points all reside
in a small region, bin-sorting brings no benefit. However, we
see the clear advantage of doing local spreading on shared
memory, in that SM is up to 12.8x faster than GM in 2D,
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and up to 3.2x faster in 3D. The speedup in 3D is limited
because the padding of the bins, especially in the z direction,
grows the volume of global atomic adds needed in Step 3.

Comparing the dark blue curves in the left and right
plots, we see a distribution-robust performance for SM, in
that similar throughput is achieved for “rand” and “cluster”
distributions. In comparison, GM-sort is on average 3.9x
slower in 2D comparing “cluster” and “rand” distributions. The
2D execution throughput (excluding precomputation) exceeds
10? points/sec for large grids, and is close even when including
precomputation.

B. Interpolation performance

For the same accuracy, Fig. [3| compares interpolation method
GM-sort against GM in 2D and 3D, for the “rand” distribution.
(We exclude the “cluster” results, since, as with spreading, bin-
sorting nonuniform points has no effect.) We see that again
GM-sort improves the performance for large grids (n; =
ny > 21 in 2D, or ny = ng = n3 > 2% in 3D). It is 4.5%
faster than GM in 2D, and 12.7x faster in 3D, for the largest
n; tested. A difference with spreading is that, because there
are no global write conflicts, the execution time of GM-sort
(excluding precomputation) never becomes slower than GM.

C. Benchmark comparisons against existing libraries

We now compare cuFINUFFT against the CPU library
FINUFFT (which has already benchmarked favorably against
other CPU libraries [18]]), and GPU libraries CUNFFT [22] and
gpuNUFFT [5]. For FINUFFT, we used a high-end compute
node equipped with 512 GB RAM and two Intel Xeon E5-
2680 v4 processors (released in 2016). Each processor has 14
physical cores at 2.40 GHz. We ran multithreaded FINUFFT
with 28 threads (1 thread per physical core).

o cuFINUFFT version 1.0. We used host compiler flags
—fPIC -03 —-funroll-loops -march=native.

o« FINUFFT version 2.0.2. Compiler flags were
-03 —funroll-loops -march=native
—-fcx-limited-range. We fixed upsampling

factor o = 2 to match that used in cuFINUFFT.

e CUNFFT version 2.0. We compiled with fast
Gaussian gridding (-DCOM_FG_PSI=ON). Default
dimensions of thread blocks (THREAD_DIM_ X=16,
THREAD_DIM_Y=16) are used.

o gpuNUFFT version 2.1.0. We use its MATLAB interface.
We used default host compiler flags (-std=c++11
—-fPIC). We set MAXIMUM_ALIASING_ERROR to 106
to get more accurate results. We use the same sector width
8 and THREAD_BLOCK_SIZE=256 as the demo codes.

We present three different timings for NUFFT executions:

o “total”: Execution time (per nonuniform point) for inputs
and output on the GPU.

o “total+mem”: Execution time (per nonuniform point),
including the time for GPU memory allocation plus
transferring data from host to GPU and back.

e “exec”: Execution time (per nonuniform point) for a
transform, after its nonuniform points have already been
preprocessed. This is a subset of the “total” time. It is the
relevant time for the case of multiple fixed-size transforms
with a fixed set of nonuniform points, but new strength
or coefficient vectors.

There is a constant start-up cost (about 0.1-0.2 second) for
calling the cuFFT library, so to exclude it we add a dummy call
of cuFFTPlanld before calling cuFINUFFT or CUNFFT.
For gpuNUFFT, in “total+mem”, we exclude the time for
building the nonuniform FFT operator and creating the cuFFT
plan. Note also that gpuNUFFT sorts the nonuniform points
into sectors on the CPU and copies the arrays to the GPU when
it builds the operator, so, to be generous, we do not include
this in “total+mem” either. Finally, “total” is not shown for
gpuNUFFT and CUNFFT, because gpuNUFFT takes CPU
arrays as inputs and outputs, and CUNFFT allocates GPU
memory in the initialization stage (cunfft_init) in a way
that did not allow us to separate its timing.

We now discuss the results (Figures [ to [7] and Table [[). A
wide range of relative {5 errors, €, are explored by varying the
requested tolerance, or kernel parameters (usually the width
w), for each library. Error is measured against a ground truth
of FINUFFT with tolerance ¢ = 10~!* for double precision
runs, and € = 6 x 108 for single precision runs.

a) Single precision comparisons: Figs. @] and [5] compare
performance of both type 1 (top) and type 2 (bottom) in
2D (left), 3D (right), for all libraries in single precision.
We can see from the top plots that for type 1, cuFINUFFT
outperforms all other libraries. For type 1, the best performance
is achieved using the SM method (dark blue). The “exec” time
of cuFINUFFT (SM) in 2D is around 10x faster than “exec”
time of FINUFFT, independent of the accuracy; and in 3D, it
is 3—12x faster from high to low accuracy.

For type 2 (bottom plots), except for 2D low accuracy
(e > 102) where CUNFFT is comparable to cuFINUFFT,
cuFINUFFT is again the fastest. Its “exec” time is 4-7x and
6-8x faster than the “exec” time of FINUFFT in 2D and 3D
respectively.

In Fig. @ we fix a tolerance ¢ = 1072 (achievable by
all libraries), and examine the effect of nonuniform point



€ N1 = Na = N3 M Method  “Exec” time (sec) RAM (MB)  Speedup vs FINUFFT  Spread fraction (%)

102 32 2.62 x 10>  GM-sort 0.0009 381 5.9x 94.7
SM 0.0005 381 11.8x% 90.3

256 1.34 x 108 GM-sort 0.33 6139 8.6x 95.7

SM 0.18 6141 16.1x 91.9

10-° 32 2.62 x 10>  GM-sort 0.0041 381 1.7x 98.8
SM 0.0028 381 2.6x 98.5

256 1.34 x 108  GM-sort 1.7 6139 2x 99.2

SM 0.87 6141 3.9x 98.4

TABLE I: cuFINUFFT 3D type 1 NUFFT GPU memory usage, and “exec” time, for distribution “rand” and for two relative
tolerances ¢ = 1072, 1072, Speedup is computed relative to the “exec” time from FINUFFT. Spread fraction is the percentage
of “exec” time spent on spreading. RAM is measured using nvidia-smi. For the baseline spreading method GM, RAM use

is 381 MB for N; = 32 and 5113 MB for N; = 256).
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Fig. 4: Single precision NUFFT comparisons in 2D (left) and
3D (right), for type 1 (upper) and 2 (lower). “total+mem”
(“total” for FINUFFT) time per nonuniform point vs accuracy
is shown, for the named libraries, for the distribution “rand”.

distribution and number of Fourier modes (fixing density p = 1)
on library performance. From the top plots, for type 1, we
observe distribution-robust performance in cuFINUFFT (SM),
FINUFFT and gpuNUFFT. The others, cuFINUFFT (GM-sort)
and CUNFFT, slow down when the points are clustered: for an
intermediate problem size (V; = 2°), cuFINUFFT (GM-sort)
“exec” is slowed by a factor of 3 when switching from “rand”
to “cluster” to “rand”. Dramatically, CUNFFT is slowed by a
factor of 200: it is very slow for clustered type 1 transforms.

For type 2 (lower plots in Fig. [6), the sensitivity to
clustering is much weaker: all libraries tackle “cluster” at about
the same speed they tackle “rand”, apart from cuFINUFFT
which becomes 3—4x faster. While cuFINUFFT has similar
“total+mem” time as CUNFFT, its “exec” time is 2-5x faster
than that of CUNFFT. In 3D our detailed findings are quite

Fig. 5: Single precision comparisons in 2D and 3D. “exec”
time per nonuniform point vs accuracy is shown for the tested
libraries, except for gpuNUFFT. For explanation see caption

of Fig. ]

similar, and we do not show them.

Lastly, in Table [I| we detail the type 1 performance and RAM
usage of cuFINUFFT in 3D, for two tolerances. We see again
that higher speedup with respect to FINUFFT is achieved for
low accuracy and large problem sizes. The spreading method
SM achieves better performance, but at a cost of slightly more
GPU RAM usage for large problems. Lastly, spreading is still
the performance bottleneck for 3D type 1: it occupies over
90% of “exec” time for all accuracies and problem sizes.

b) Double precision comparisons: Fig. [/| compares the
performance for both types in 2D and 3D, for all libraries
(except gpuNUFFT, whose ¢ appears always to exceed 1073).
We see from the top left plot that for 2D type 1, caFINUFFT
outperforms the others by 1-2 orders of magnitude. The best
performance is achieved by SM (blue) for high accuracy (e <
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Fig. 6: Detailed 2D Type 1 (top) and 2 (bottom) NUFFT
comparisons (single precision). Execution time per nonuniform
point vs number of Fourier modes are shown for the named
libraries, comparing “rand” (left) and “cluster” (right). Annota-
tions give the speedup of “exec” of cuFINUFFT (SM) for type
1, cuFINUFFT (GM-sort) for type 2, vs “exec” of FINUFFT.

10~°) and by GM-sort (cyan) for low accuracy. The “exec”
speedup of cuFINUFFT (taking the faster of SM and GM-
sort), vs FINUFFT, ranges from 4—11x. From the top right
plot, for 3D type 1, cuFINUFFT is only faster than FINUFFT
for relative error ¢ > 107 !0, merely matching its speed at
the highest accuracies. From the bottom plots, for type 2,
cuFINUFFT is always the fastest, and by a large factor at
high accuracies. The “exec” time of cuFINUFFT is on average
6x faster than that FINUFFT in both dimensions. In 2D, and
low-accuracy 3D, we see that host-to-device transfer dominates:
a several-fold speedup is available by maintaining data on the
GPU.

V. MULTI-GPU APPLICATIONS

Finally, we illustrate the multi-GPU performance of cuFIN-
UFFT in 3D coherent X-ray image reconstruction. Single
particle imaging is a technique whereby the 3D electron density
of a molecule may be recovered at sub-nanometer resolution
from a large (< 10°) set of 2D far-field diffraction images, each
taken in a single shot of a free-electron laser with a random
unknown molecular orientation [9]]. Each 2D image measures
the squared magnitude Fourier transform of the density on an
(Ewald sphere) slice passing through the origin; see Fig.
The multitiered iterative phasing (M-TIP) algorithm is used for
reconstruction [9]. Broadly speaking, one starts with a Fourier

Fig. 7: Double precision comparisons. All three timings “exec”,
“total”, and “total+mem” are shown. For more explanation see
caption of Fig. H

Fig. 8: M-TIP merging step: 3D Fourier transform data,
collected on multiple Ewald sphere slices with arbitrary
orientations, is merged onto a single uniform grid. Image credit:
Jeffrey Donatelli (Lawrence Berkeley National Laboratory).

transform estimate on a 3D Cartesian grid, and estimated
orientations, then iterates the following four steps:

i) “Slicing”: a 3D type 2 NUFFT is used to evaluate the
Fourier transform on a large set of Ewald sphere slices.

ii) Orientation matching: adjust each slice orientation using

its 2D image data.

“Merging”: solve for 3D Fourier transform data matching

the 2D images on known slices, as in Fig. 8} this needs

two 3D type 1 NUFFTs.

Phasing: find the most likely phase of the 3D Fourier

transform to give a real-space density of known support.

iif)

iv)

The code acceleration strategy, a part of the Exascale
Computing Project, has been to offload the intensive steps
i)—iii) to GPUs.



A. Work management and the cuFINUFFT Python interface

We use MPI to manage parallel processes, via the mpidpy
package. Each MPI rank (i.e. process) is assigned some data
to handle and a GPU. Since slicing and merging are linear
operations, we can scatter (mpi4py.scatter) before the
slicing step, and reduce (mpi4py .reduce) after the merging
step. In modern HPC environments each compute node is
furnished with several GPUs—e.g. NERSC’s Cori GPU system
has 8 NVIDIA V100 per node, while OLCF’s Summit system
has 6 V100 per node. Thus, depending on the ratio of GPUs
to CPU cores, we can have several MPI ranks share the same
GPU. For M-TIP, load balancing is simple because each rank
does (roughly) the same amount of work, thus we assign GPUs
in a round-robin fashion. We use PyCUDA to transfer data
between device and host. This allows cuFINUFFT to access
numpy .ndarray objects as double [], hence requiring
no specialized API calls to convert data between Python and
cuFINUFFT. In order to ensure that the PyCUDA API sends
the data to the correct device, we manually define the device
context. Here is an example of taking a type 1 3D NUFFT
with nonuniform coordinates X, Y, Z, and strengths nuvect
(note: mpidpy provides rank):

from cufinufft import cufinufft

from pycuda.gpuarray import GPUArray, to_gpu

# Initialize GPU using round-robin assignment
GPUS_PER_NODE = 8 # Cori GPU
device_id = rank % GPUS_PER_NODE

pycuda.driver.init ()
device = pycuda.driver.Device (device_id)
ctx = device.make_context ()

ugrid_gpu = GPUArray (shape) # Memory for result

plan = cufinufft(l, shape, eps=eps,
gpu_device_id=device_id)
plan.set_pts(to_gpu(X), to_gpu(Y), to_gpu(Z))

plan.execute (to_gpu (nuvect), ugrid_gpu)

The cuFINUFFT Python interface allows the user to assign
a cufinufft plan to a specific device by setting the
gpu_device_id option. See the documentation on GitHub
for details. The M-TIP code requires a tolerance of ¢ = 10712,

B. cuFINUFFT Performance on Cori GPU and Summit

To perform a single-node weak scaling study we used,
per rank, the NUFFT problem sizes in Table which
correspond to 10% images. The table shows the average wall-
clock time spent performing NUFFTs during slicing (type 2
NUFFT) and merging (type 1 NUFFT) steps for one M-TIP
iteration. Comparing the GPU wall-clock times (including data
movement) to the equivalent problem running on 40 CPU
threads on a single Intel Skylake Cori GPU node (using the
FINUFFT code), we find that cuFINUFFT on a single GPU is
roughly similar to the CPU times, while for the larger problem
distributed over the whole node (multi-GPU) it is 5-12x faster
than on the CPU.
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Fig. 9: Single-node multi-GPU weak scaling on NERSC Cori
GPU (left) and OLCF Summit (right). We achieve close to
ideal weak scaling (flat lines) up to a number of ranks matching
the number of GPUs on the node (vertical dotted line).

Fig. 9] shows the weak scaling performance on single nodes
of NERSC’s Cori GPU and OLCF’s Summit. Each rank is
given the single-rank problem size from Table |lI} Solid lines
show the total time including host-device transfer. Crosses
show setup time (plan, input and nonuniform point sorting),
while squares show NUFFT execution time. In all cases (except
type 2 on Summit), we see ideal weak scaling up to one rank
per GPU. We found that enabling multi-process service (MPS)
made no measurable difference. We see rapid deterioration of
weak scaling once each GPU is used by more than one rank,
suggesting that cuFINUFFT uses each GPU to capacity.

VI. CONCLUSIONS

We presented a general-purpose GPU-based library for
nonuniform fast Fourier transforms: cuFINUFFT. It supports
both transforms of type 1 (nonuniform to uniform) and type
2 (uniform to nonuniform), in 2D and 3D, with adjustable
accuracies. By using an efficient kernel function, sorting the
nonuniform points into bins, and leveraging shared memory
to reduce write collisions, cuFINUFFT obtains a significant
speedup compared to established CPU- and GPU-based li-
braries. On average, we observe a speedup of one order of
magnitude over the FINUFFT parallel CPU library. We also
observe up to an order of magnitude speedup compared to the
CUNFFT GPU library, and more in the case of clustered type
1 transforms. We also see excellent multi-GPU weak scaling
in an iterative 3D X-ray reconstruction application.

There are several directions for future work. One is extending
the library to include 1D and type 3 transforms, but also to use
smaller upsampling factors o, which can significantly reduce
memory size. It is also worth exploring supporting other GPUs
via a library that provides a unified hardware API, such as
OCCA or Kokkos.



Task Uniform grid (per rank) ~ Nonuniform points (per rank)  Density  Parallelism CPU time [s] GPU time [s] GPU time [s]
N1 = N3 = N3 M p (Intel Skylake) (Cori GPU) (Summit)
Slicing 41 1.02 x 108 1.86 single-rank 0.11 0.075 (1.5x) 0.076 (1.5%)
(type 2) whole-node 0.95 0.078 (12x) 0.11 (8.6x)
Merging 81 1.64 x 107 3.85 single-rank 1.62 1.89 (0.9%) 1.76  (0.9%)
(type 1) whole-node 9.97 1.94 (5.1%) 1.76  (5.7x)

TABLE II: Problem sizes and average NUFFT wallclock times for a representative M-TIP iteration: NERSC’s Cori GPU (Intel
Skylake with 8 NVIDIA V100’s) and OLCF’s Summit (IBM Power9 with 6 NVIDIA V100’s). The problem sizes are fixed per
MPI rank. The CPU code is FINUFFT vl1.1.2, with 40 threads on the Intel Skylake. The speedup ratio of single- or multi-GPU
cuFINUFFT over the CPU code is shown in parentheses. Rows labeled “whole-node” use problems scaled up by the number of
GPUs per node—S8 for Cori GPU and 6 for Summit—using this same number of ranks (i.e., one rank per GPU).
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