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Abstract—Many science and industry IoT applications necessi-
tate data processing across the edge-to-cloud continuum to meet
performance, security, cost, and privacy requirements. However,
diverse abstractions and infrastructures for managing resources
and tasks across the edge-to-cloud scenario are required. We
propose Pilot-Edge as a common abstraction for resource man-
agement across the edge-to-cloud continuum. Pilot-Edge is based
on the pilot abstraction, which decouples resource and work-
load management, and provides a Function-as-a-Service (FaaS)
interface for application-level tasks. The abstraction allows ap-
plications to encapsulate common functions in high-level tasks
that can then be configured and deployed across the continuum.
We characterize Pilot-Edge on geographically distributed infras-
tructures using machine learning workloads (e. g., k-means and
auto-encoders). Our experiments demonstrate how Pilot-Edge
manages distributed resources and allows applications to eval-
uate task placement based on multiple factors (e.g., model com-
plexities, throughput, and latency).

Index Terms—Edge, cloud, 10T, abstractions, machine learning.

I. INTRODUCTION

A growing number of scientific [1], [2] and industrial ap-
plications [3], require the flexible use of resources along the
edge-to-cloud continuum (abbrev. continuum). The coupling
of edge and cloud resources enables applications to address
latency, bandwidth, sovereignty, privacy, and security require-
ments [4]. The integration of experimental instruments, ma-
chines, equipment, and other IoT devices, with multiple layers
of infrastructures, comprising edge, HPC and cloud infrastruc-
tures, is critical to delivering value for these applications.

Machine learning (ML) methods are essential for deriv-
ing insights from the data produced from these applications.
The combination of growing data volumes and high compu-
tational requirements of these ML applications has acceler-
ated the need for more intelligent use of distributed comput-
ing resources in the continuum [5]. However, these workloads
are highly complex, involving distributed data flows of meta-
and raw data, and the orchestration of inference and training
tasks across the continuum. This complexity often results in
highly monolithic applications with tightly coupled application
and infrastructure code, limiting the scalability, reusability, and
maintainability of the application.

The complexity, heterogeneity and geographic distribution
of IoT, edge, and cloud infrastructures [4], [6] make it
challenging to design applications, allocate appropriate re-
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sources, and manage workloads. Particularly, IoT applications
are characterized by heterogeneous tasks, comprising a mix
of real-time tasks for control and steering and long-running
tasks for machine learning training and simulation. Thus,
they need to optimize data and compute placement carefully.
Many point and local solutions exist, which might suffice at
small scales, but do not allow for scalable, end-to-end solu-
tions that permit workload adaptivity and optimization. Com-
plex application-specific architectures that integrate disperse
technological components lead to unpredictable performance.
Thus, it is essential to provide abstractions that abstract com-
plexity and heterogeneity and enable applications to adapt
to the dynamism induced by infrastructures, data, and other
sources [7].

This paper introduces the Pilot-Edge abstraction and frame-
work. Pilot-Edge is motivated by improved edge-to-cloud ap-
plication development, deployment, and management. It pro-
vides a Function as a Service (FaaS) interface which ab-
stracts resources from the application. Pilot-Edge allows appli-
cations to decompose workloads into tasks, and deploy them
across the continuum. Pilot-Edge orchestrates tasks generated
from the function code, handling placement and data move-
ments transparently, considering application-defined prefer-
ences (e.g., data dependencies and preferred placements).
Pilot-Edge relies on the pilot abstraction for distributed re-
source management and unified access to resources across all
layers. We envision Pilot-Edge as providing the hierarchical
but continuous resource management fabric for edge-to-cloud
infrastructures, enabling many increasingly complex applica-
tions comprising heterogeneous multi-task workloads, and re-
quiring diverse resource capabilities.

Pilot-Edge was designed based on an analysis of different
IoT application scenarios (e.g., earth sciences, light source
science [8]). It enables the effective handling of heteroge-
neous and dynamic workloads arising in IoT environments
(e. g., seasonal peak loads, failures and other external events).
Pilot-Edge allows applications to respond to dynamism, e. g.,
external events, load peaks, and resource failures, by updat-
ing their tasks’ payload or acquiring additional resources. We
characterize and demonstrate the capabilities of Pilot-Edge us-
ing extensive end-to-end experiments on geographically dis-
tributed infrastructure, particularly XSEDE (US) [9] and LRZ
(Germany), and ML workloads, e. g., auto-encoders.

This paper is structured as follows: In section II, we present
Pilot-Edge and provide an extensive evaluation of the frame-
work in section III. Section IV discusses related work.
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II. PILOT-EDGE: ABSTRACTION AND FRAMEWORK

Managing the edge-to-cloud continuum’s complexity and
dynamism requires a sophisticated framework that aids in man-
aging resources and workloads. Pilot-Edge aims to simplify
the development of edge-to-cloud applications by providing a
high-level abstraction for developing, deploying, and manag-
ing computation and data across multiple layers of distributed
infrastructure. After discussing previous work on the pilot ab-
straction in section II-A, we present Pilot-Edge’s architecture
and abstraction in sections II-B and II-C.

A. Previous Work: Pilot-Abstraction

Pilot-Edge is based on the pilot abstraction, an abstraction
for distributed resource management [10]. The pilot abstrac-
tion is based on the observation that using a placeholder job to
allocate a resource container is a re-occurring pattern used by
many applications. The pilot abstraction decouples resource
and workload management and supports manifold workloads,
particularly workloads that require task parallelism on HPC
and clouds. The term pilot refers to a placeholder job in a
queuing system that allocates resources on which the applica-
tion can execute tasks. A pilot generally refers to a dedicated
resource set that an application owns, e. g., a virtual machine,
a job partition (HPC), or a Lambda function [11].

While the pilot abstraction was designed for HPC, we ex-
tended it for data-intensive and streaming applications, which
similarly exploit data parallelism. Pilot-Data added support for
data management in conjunction with pilots. Further, we in-
tegrated frameworks for data processing [12], [13], such as
Spark and Dask [14], and streaming [15], such as Kafka [16].
Pilot-Streaming also allows the event-driven execution of tasks
on-demand, e. g., responding to data arrival events.

While the pilot abstraction is well suited for bridging het-
erogeneous infrastructures across the edge-to-cloud continuum
and administrative domains, the current implementation has
several limitations: (i) the provided abstraction is low-level, re-
quiring applications to manage resources and wrap their work-
load into tasks, and (ii) the implementation is optimized for
data-center-based infrastructure and workloads.

B. Architecture

Pilot-Edge extends Pilot-Streaming [15] and supports vari-
ous resource types via a plugin-based architecture, e. g., HPC
and cloud clusters (such as OpenStack, AWS), smaller IoT
devices (via SSH). Further, Pilot-Edge extensively utilizes
message brokering based on Kafka to manage edge-to-cloud
streaming topologies. Brokering concerns are also encapsu-
lated using a plugin mechanism. Support for further brokering
framework, e. g., MQTT for low-performance and low-power
environments, can easily be added.

Figure 1 illustrates the overall architecture (blue components
extended in this work). A typical application comprises three
stages: (step 1) allocating resources using the pilot abstraction,
(step 2) running a distributed edge-to-cloud application, and
(step 3) monitoring applications.
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Fig. 1: Pilot-Edge Architecture and Interactions: Pilot-Edge com-
prises the Pilot-Edge framework and pilot framework. Applications
acquire edge-to-cloud resources using the pilot framework in step 1.
In step 2 applications configure Pilot-Edge using the resources ac-
quired and submit their workload to the framework. Comprehensive
monitoring services are provided (step 3).
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As edge-to-cloud applications typically rely on highly-
specialized processing pipelines and resources, we currently
require the manual allocation of resources via the pilot abstrac-
tion [10] (step 1 in Fig. 1). The pilot abstraction provides a
common interface to allocate arbitrary resources, e. g., a RasPi,
virtual machines located on the edge and cloud, serverless
cloud functions, HPC machines. Thus, depending on the con-
tinuum layer, a pilot can represent different types of resources.
Further, the pilot abstraction can manage brokering and data
processing frameworks, e.g., Kafka and Dask. In summary,
the pilot abstraction encapsulates much of the complexity of
distributed resources. The created pilots are then used to ini-
tialize the application (step 2 in Fig. 1).

After submitting the application, Pilot-Edge translates and
packages the user-defined functions into tasks to be executed
on the edge, cloud, or HPC pilots (step 2). Further, it provides
a central coordination and parameter service to share state,
e.g., for data or machine learning models, across the contin-
uum. Pilot-Edge automatically handles task placements, i.e.,
the binding of a task to a pilot (step 2.1).

The tasks are executed using a managed Dask [14] cluster
on the specified location (step 2.2). The input data is passed
as a parameter to each function; the output is captured with a
return parameter. Further information on the resource topology
and shared state are via a context object. A unique job
identifier ensures that progress and errors can be consistently
tracked across all components. The framework also manages
the data movements using a pilot-managed Kafka broker and
an automatically created Kafka topic. Further, it provides a
Redis-based parameter server for sharing model weights across
the continuum.



C. Pilot-Edge API

Pilot-Edge exposes a Function-as-a-Service (FaaS) API,
that abstracts details about individual resources, allowing the
application to focus on application logic and not infrastructure.
While the framework is suited to support arbitrary IoT edge
applications, we mainly focus on data and machine learning
applications.

Listing 1: Pilot-Edge FaaS API

def produce_edge(context)

def process_edge(context: dict = None, data=None)

def process_cloud(context: dict = None, data=None)

Listing 1 illustrates the API of the Pilot-Edge-abstraction.
The API is application-centric and lets developers focus on
expressing important application tasks, e. g., sensing and in-
ference, and on selected trade-offs, such as task localities. The
API comprises three functions: (i) for managing sensing and
data generation on the edge, (ii) for edge processing, and (iii)
for cloud processing. While each task must be defined as a
Python function, it is also possible to access native capabil-
ities, e. g., by integrating native code for accessing low-level
sensors on the edge. The API allows the re-use of functions
across the continuum while retaining flexibility and customiz-
ability.

Listing 2: Pilot-Edge API: Instantiation of an Application

pilot.EdgeToCloudPipeline (
pilot_cloud_processing=pilot_job_cloud_processing ,
pilot_cloud_broker=pilot_job_cloud_broker ,
pilot_edge=pilot_job_edge ,
produce_function_handler=produce_block_edge ,
process_edge_function_handler=process_block_edge ,
process_cloud_function_handler=process_block_cloud ,
function_context=context ,

j:;un()

Listing 2 shows how an edge-to-cloud application is instan-
tiated. In addition, to passing the function references to the
data generation and processing functions, a references to the
edge and cloud pilot is required. The framework then handles
the dataflow between the instantiations of the defined functions
in these pilots using Kafka.

D. Discussion

Pilot-Edge provides a blueprint for applications and sup-
ports common patterns, e.g., integrating sensing tasks, i.e.,
tasks that capture environmental changes using sensors, and
other types of processing, e.g., pre-processing and machine
learning inference. For example, commonly, the API’s data
source function (produce_edge in Listing 1) is used ei-
ther to deploy data collection code, e. g., code for reading out
a sensor or a data generator. The edge and cloud functions
are used for processing. For example, the edge function fre-
quently serves for data pre-aggregation, outlier detection, and
data compression to ensure that the amount of data movement
is minimal. The cloud functions are often used for more com-
plex analytics, training, and modeling tasks.
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Fig. 2: Throughput and Latencies by Message Size and Parti-
tions: The system’s total throughput increases with the number of
edge devices and partitions; every edge device is assigned a dedi-
cated partition. In the four partition scenario, the processing system
becomes the bottleneck determining the overall throughput.

By nature, edge-to-cloud applications are subject to differ-
ent dynamism and variability induced by data sources, infras-
tructures, and applications. If supported by the resource, the
allocated resources can be adapted, i. e., expanded and scaled-
down, dynamically at runtime, e. g., if a bottleneck arises due
to increased data rates or in response to an application event
(e.g., the discovery of a significant data pattern). The pro-
cessing functions can be programmatically replaced at runtime
(without the need to allocate a new pilot), allowing, e. g., the
exchanging low vs. high fidelity models.

III. EXPERIMENTS

This section conducts a performance characterization of
different machine learning workloads using Pilot-Edge. For
our experiments, we use the Leibniz Supercomputing Cen-
ter (LRZ) und XSEDE Jetstream clouds and different VM
types: 4 core/18 GB (medium), 10 cores/44 GB (large) (LRZ)
and 6 cores/16 GB (medium) (Jetstream). Synthetic data is gen-
erated using the Mini-App data generator [11].

1) Baseline Performance: We investigate the throughput
and latency with the edge data source, broker, and process-
ing components deployed on the LRZ cloud. The edge devices
are simulated with a Dask task, allocating one core and about
4 GB of memory, comparable to a current Raspberry Pi. We
use one partition per edge device for simplicity and keep the
ratio of partitions constant between Kafka and Dask. We use
message sizes of 25 to 10,000 points with 32 features each.
Every point has a serialized size of 8 Bytes, i. e., message sizes
are 7KB to 2.6 MB. We send 512 messages per run and repeat
each experiment at least three times.

Figure 2 illustrates the baseline throughput and latencies.
The framework captures and links comprehensive metrics
across all involved components, particularly the edge data gen-
erator, broker, and cloud processing services (for clarity, data
for edge is not displayed). This data allows the easy identi-
fication of bottlenecks. For example, for four partitions, it is
apparent that the Kafka broker can process more data than the
consuming processing tasks in the cloud.



2) Machine Learning Models and Geographic Distribution:
We continue to evaluate three machine learning models for
outlier detection. We primarily use the cloud-centric deploy-
ment pattern (see Figure 1 in [8]), i.e., we deploy the data
generator on the edge and the processing tasks, which include
pre-processing, training and inference, on the cloud. We evalu-
ate three machine learning models: the auto-encoder, isolation
forests, and k-means (25 clusters as previously). In all cases,
the model is updated based on the incoming data; model up-
dates are managed via the parameter service. We use the large
VM on LRZ for all processing tasks (10 core/44 GB).

Isolation forests [17] are an ensemble technique where each
task partitions the dataset randomly into trees. An outlier is
defined by the number of steps required to isolate a data point;
the fewer steps required, the more likely a point is an outlier.
We use the PyOD [18] implementation and a default of 100
ensemble tasks. Auto-encoders [19] are unsupervised models
that rely on a deep neural network to learn a data represen-
tation. For outlier detection, the reconstruction error is used
to determine whether a data point is anomalous. We use the
Keras-based auto-encoder implementation of PyOD with four
hidden layers with a size of [64, 32, 32, 64], and thus, a total
number of 11,552 parameters.

Figure 3 illustrates that as the computational complexity
increases, the performance degrades significantly compared
to the baseline case. Isolation forests achieve a significantly
worse performance than k-means for both latency and through-
put. Auto-encoders required careful tuning of the system; we
had to adjust the memory and garbage collection. Due to their
high resource demands, they are not suitable for streaming
and require additional resources, e. g., GPUs. Alternatively, an
edge or hybrid deployment would be an option.

Further, we investigate the geographic distribution and place
the data source on Jetstream/XSEDE (US) and processing
stages (i.e., pre-processing, training, and inference) on the
LRZ cloud (Europe). The latency between both locations var-
ied between 140 and 160 msec; bandwidth fluctuated between
60 to 100 MBits/sec (iPerf measurement). We use four parti-
tions for this experiment. As expected, the overall throughput
for the baseline and k-means scenarios is limited by inter-
continental data transfer. Both scenarios would benefit from a
hybrid edge-to-cloud deployment, e. g., by adding a data com-
pression step before the data transfer. The results also show
that the network is not the bottleneck for the compute-intensive
models, i.e., auto-encoder and isolation forests.

IV. RELATED WORK

Apache Edgent [20] is an edge platform designed to inte-
grate IoT devices and brokering systems, e. g., Kafka. Edgent
is narrowly focused on the edge device and broker communi-
cation and does not consider resource management across the
continuum holistically. Similarly, SpanEdge [21] is a stream
processing system based on Apache Storm [22] that allows ap-
plications to run certain parts of a topology, a Storm process-
ing pipeline, close to the data source. SpanEdge dependence
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Fig. 3: Throughput and Latency by Model Type, Message Size,
and Geographical Distribution: The model complexity significantly
impacts all metrics. K-means outperforms isolation forests and auto-
encoders, which shows the worst performance and is not well suited
for environments with limited resources.

on Storm limits its applicability in the heterogeneous contin-
uum. The programming model lacks many aspects required
for machine-learning-based applications, e. g., the integration
with modern Python frameworks like Tensorflow and Dask.

Further, various Kubernetes-based frameworks emerged,
e. g., MicroK8s and KubeEdge [23]. KubeEdge extends con-
tainerized application orchestration and device management
to the edge. While Kubernetes is cloud-agnostic and provides
some interoperability, it is also highly complex and designed
for a stable cloud environment. Data-related concerns, such as
data movements, are not transparently handled and need to be
implemented on the application-level.

Different public cloud providers offer edge extensions for
their serverless FaaS runtime. For example, Lambda Edge [24]
enables the execution of Lambda function in Greengrass
IoT runtimes. A similar offering exists on Azure with IoT
Edge [25]. While FaaS is easy to use and benefits from the au-
tomatic resource management and scaling of clouds, these ben-
efits do not apply necessarily to edge devices, subject to sig-
nificant resource constraints. Further, several research frame-
works that explore the usage of FaaS along the edge-to-cloud
continuum emerged, e.g., CSPOT [26] and funcX [27].

While these related frameworks offer similar abstractions,
Pilot-Edge differs in different aspects: (i) Pilot-Edge supports
highly heterogeneous workloads and infrastructures, bring-
ing together distributed resources and capabilities from dif-
ferent providers. (ii) By decoupling resource management and
application-level scheduling, applications can better respond
to dynamic changes in the environment. (iii) Pilot-Edge pro-
vides more flexible mechanisms to handle data and models
across the continuum, e. g., by integrating brokering services
for data streaming and coordination services for sharing ma-
chine learning models.



V. CONCLUSION AND FUTURE WORK

We presented Pilot-Edge, an abstraction for supporting data
and ML applications in the edge-to-cloud continuum address-
ing the following challenges: (i) Heterogeneity: The edge-to-
cloud continuum is highly diverse, comprising many differ-
ent types of hardware and software components that need to
be unified and integrated, (ii) Dynamism in distributed, geo-
graphically disperse environments often constrains application
leading to unacceptable and unpredictable performance. The
ability to respond at runtime, e. g., by auto-scaling resources,
is crucial, and (iii) Performance in distributed, heterogeneous
environments can be highly unpredictable depending on shared
resources, system loads, and data.

Pilot-Edge was designed based on an analysis of different
applications and provides an easy-to-use FaaS API that sim-
plifies application development, allowing developers to focus
on application logic and application-level resource manage-
ment. It supports common deployment modalities, e. g., more
cloud-centric or edge-centric scenarios. Tasks can easily be
moved to different parts of the continuum at runtime. Particu-
larly, it supports common data collection, model training, and
deployment patterns of ML-driven IoT applications.

Our experiments investigated various trade-offs, e.g., the
impact of model complexity on the overall throughput. For
example, k-means can achieve five times the throughput of iso-
lation forests for large message sizes (10,000 points). Further,
auto-encoders proved unsuitable for the investigated resource
configurations due to their high computational demands. These
insights provide valuable input for system design and deploy-
ment, allowing an optimal resource layout.

In the future, we will continue to extend Pilot-Edge and
simplify the usage. For example, we will generalize the ab-
straction to arbitrary architectures and topologies of resources
— currently, it is limited to two layers: edge and cloud. We
envision Pilot-Edge as the basis for a distributed workload
management system that can select, acquire and dynamically
scale resources across the continuum at runtime based on the
application’s objectives. To further enhance our understanding
of the continuum, we will explore novel edge-to-cloud scenar-
ios, e. g., federated learning, and investigate further scheduling
and approaches, e. g., energy consumption.
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