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Abstract—The Internet has become a critical component of
modern civilization requiring scientific exploration akin to en-
deavors to understand the land, sea, air, and space environments.
Understanding the baseline statistical distributions of traffic are
essential to the scientific understanding of the Internet. Corre-
lating data from different Internet observatories and outposts
can be a useful tool for gaining insights into these distribu-
tions. This work compares observed sources from the largest
Internet telescope (the CAIDA darknet telescope) with those
from a commercial outpost (the GreyNoise honeyfarm). Neither
of these locations actively emit Internet traffic and provide
distinct observations of unsolicited Internet traffic (primarily
botnets and scanners). Newly developed GraphBLAS hyperspace
matrices and D4M associative array technologies enable the
efficient analysis of these data on significant scales. The CAIDA
sources are well approximated by a Zipf-Mandelbrot distribution.
Over a 6-month period 70% of the brightest (highest frequency)
sources in the CAIDA telescope are consistently detected by
coeval observations in the GreyNoise honeyfarm. This overlap
drops as the sources dim (reduce frequency) and as the time
difference between the observations grows. The probability of
seeing a CAIDA source is proportional to the logarithm of the
brightness. The temporal correlations are well described by a
modified Cauchy distribution. These observations are consistent
with a correlated high frequency beam of sources that drifts on
a time scale of a month.

Index Terms—Internet modeling, packet capture, streaming
graphs, power-law networks, hypersparse matrices

The Internet has become as essential as land, sea, air, and
space for enabling activities as diverse as commerce, educa-
tion, health, and entertainment [1]]. Understanding the Internet
is likewise as important as studying these other domains [2].
Developing scientific insights on how the Internet behaves
requires observations and data [3[]-[|6]. In the cyber domain,
observatories and outposts have been constructed to gather
data on Internet traffic and provide a starting point for scientific
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Fig. 1. Network Traffic Matrix. The traffic matrix of an Internet observatory
or outpost can be divided into quadrants separating internal and external traffic.
The CAIDA Telescope Internet observatory monitors a darkspace, so only
the upper left (external — internal) quadrant will have data. The GreyNoise
honeyfarm outpost deduces more information about sources by responding to
traffic to determine its nature and so exists in both the upper left (external —
internal) quadrant and the lower right (internal — external) quadrant.

exploration of the Internet [7]-[13]. Correlating data from
different Internet observatories and outposts can be a useful
tool for gaining insights into these questions. Specifically,
comparing observations of the Internet from two different
viewpoints at the same time can tell us which measurements
are consistent.

Internet measurement dates to its inception. The need for
better Internet measurement has grown with the importance of
the Internet and the corresponding increase in cyber threats.
Recent Internet measurements shed light on a range of im-
portant questions, such as the connectivity of public clouds
[14]], Geolocating Internet routers [|15]], identifying state-owned
Internet operators [16], the statistical shape of video viewer-
ship [[17], mapping the domains of e-mail service providers
[18], detecting Internet-scale surveillance devices [19], and
botnet detection [20]]. Vantage point plays a key role in these
measurements hightlighting the need for correlating measure-



ments. For example, recent work on distributed denial of
service (DDoS) attacks [21]] indicates that “Surprisingly, IXPs
[Internet eXchange Points] and honeypots observe mostly
disjoint sets of attacks: 96% of IXP-inferred attacks were
invisible to a sizable honeypot platform.”

The largest public Internet observatory is the Center for
Applied Internet Data Analysis (CAIDA) Telescope that op-
erates a variety of sensors including a continuous stream of
packets from an unsolicited darkspace representing approxi-
mately 1/256 of the Internet. CAIDA Telescope data consists
of almost entirely malicious traffic. The scale and continuous
duration of the CAIDA Telescope makes it ideally suited for
correlation studies with smaller outposts like the GreyNoise
honeyfarm that engage more deeply with Internet sources
(see Figure . Using selected contiguous samples of 23°
CAIDA packets and comparing the GreyNoise database over
a 15 month period allows analysis of the spatial and temporal
patterns of Internet traffic and directly addresses the question
of what is similar and what is different as time and location
changes.

The outline of the rest of the paper is as follows. First,
the CAIDA Telescope and GreyNoise honeyfarm data sets are
described. Second, the relevant network quantities and their
distributions are defined in terms of traffic matrices. Third,
the CAIDA-GreyNoise correlations are presented along with
various empirical fits to the data followed by a discussion of
these results. Finally, our conclusions and directions for further
work are presented.

I. DATA SETS

The CAIDA Telescope monitors an Internet darkspace (also
referred to as a black hole, Internet sink, or darknet) that is
a globally routed /8 network that carries almost no legitimate
traffic because there are few allocated addresses in this Internet
prefix. After discarding the small amount of legitimate traffic
from the incoming packets, the remaining data represent a
continuous view of anomalous unsolicited traffic, or Internet
background radiation. Almost every computer on the Internet
will receive some form of this background traffic. This un-
solicited traffic results from a wide range of events, such as
backscatter from randomly spoofed sources used in denial-of-
service attacks, the automated spread of Internet worms and
viruses, scanning of address space by attackers or malware
looking for vulnerable targets, and various misconfigurations
(e.g. mistyping an IP address). In recent years, traffic destined
to darkspace has evolved to include longer-duration, low-
intensity events intended to establish and maintain botnets.
CAIDA personnel maintain and expand the telescope instru-
mentation, collecting, curating, archiving, and analyzing the
data to enable data access for vetted researchers.

The CAIDA Telescope monitors the traffic into and out of a
set of network addresses providing a natural observation point
of network traffic. These data can be viewed as a traffic matrix
where each row is a source and each column is a destination.
The CAIDA Telescope traffic matrix can be partitioned into
four quadrants (see Figure [[). These quadrants represent

TABLE I
GREYNOISE AND CAIDA DATA SETS.

Data collection start time, collection duration, and number of unique sources
from the GreyNoise and CAIDA data sets. GreyNoise data was collected
for each month. The sharp increases in 2020-03 and 2021-04 are a result of
configuration changes. 239 packets of CAIDA data were selected approxi-
mately every 6 weeks on Wednesdays either at noon or midnight. Constant
packet, variable time samples simplify the statistical analysis of the heavy-tail
distributions commonly found in network traffic quantities [22]—[24].

GreyNoise GreyNoise GreyNoise CAIDA CAIDA CAIDA CAIDA
Start Time Duration Sources Start Time Duration Packets Sources
2020-02-01 29 days 2,752,690
2020-03-01 31 days 13,849,634
2020-04-01 30 days 1,060,905
2020-05-01 31 days 1,825,351
2020-06-01 30 days 1,111,458  2020-06-17-12:00:00 1594 sec 230 670,304
2020-07-01 31 days 1,438,698 2020-07-29-00:00:00 1312 sec 230 541,300
2020-08-01 31 days 1,367,008
2020-09-01 30 days 1,245,194  2020-09-16-12:00:00 997 sec 230 723,991
2020-10-01 31 days 1,997,782  2020-10-28-00:00:00 1068 sec 7ED 796,327
2020-11-01 30 days 2,850,037
2020-12-01 31 days 7,605,790 2020-12-16-12:00:00 1204 sec 230 701,059
2021-01-01 31 days 2,879,079
2021-02-01 28 days 2,583,316
2021-03-01 31 days 3,308,466
2021-04-01 30 days 11,507,324

different flows between nodes internal and external to the set of
monitored addresses. Because the CAIDA Telescope network
addresses are a darkspace, only the upper left (external —
internal) quadrant will have data.

During 2020 over 20,000,000,000,000 unique packets were
collected by the CAIDA Telescope. This data set represents
the largest ever assembled public corpus of Internet traffic,
and is perhaps the largest public collection of streaming
network events of any type. Analysis of such a large network
data set is computationally challenging [25]-[27]. Using the
combined resources of the Supercomputing Centers at UC San
Diego, Lawrence Berkeley National Laboratory, and MIT, the
spatial temporal structure of anonymized source-destination
pairs from the CAIDA Telescope data has been analyzed
leveraging prior work on massively parallel GraphBLAS and
D4M hierarchical hypersparse matrices [28]—[35] to reveal a
wide range of scaling relations [36]. For this study 5 contigu-
ous subsets of 23° CAIDA Telescope packets were selected
and formed into GraphBLAS hypersparse traffic matrices at
approximately 6-week intervals (see Table [[). Prior work has
shown that constant packet, variable time samples simplify the
statistical analysis of the heavy-tail distributions commonly
found in network traffic quantities [22]—[24]]. Within each of
these 230 packet windows there are 500,000 to 800,000 unique
sources.

The GreyNoise honeyfarm consists of hundreds of servers
that passively collect packets from hundreds of thousands of
IPs seen scanning the internet every day. GreyNoise servers
converse with these sources and analyze and enrich these
observations to identify behavior, methods and intent. The
commercial goal of GreyNoise is to analyze and label data
on IPs that saturate security tools with noise. This perspective



helps analysts ignore irrelevant or harmless activity, creat-
ing more time to uncover and investigate true threats. The
GreyNoise honeyfarm outpost deduces more information about
sources by responding to traffic to determine its nature and so
exists in both the upper left (external — internal) quadrant
and the lower right (internal — external) quadrant of the
corresponding traffic matrix (see Figure [I). For this study,
GreyNoise provided data over a 15-month period which has
been divided into 1-month windows (see Table [[). Within each
of these 1-month windows there are 1,000,000 to 14,000,000
uniques sources.

Internet data must be handled with care, and CAIDA has
pioneered standard trusted data sharing best practices that
include [_2]

o Data is made available in curated repositories

o Using standard anonymization methods where needed:

hashing, sampling, and/or simulation

o Registration with a repository and demonstration of le-

gitimate research need

o Recipients legally agree to neither repost a corpus nor

deanonymize data

o Recipients can publish analysis and data examples nec-

essary to review research

« Recipients agree to cite the repository and provide pub-

lications back to the repository

« Repositories can curate enriched products developed by

researchers

Within the above trusted sharing framework there are three
main ways that subsets of anonymized data from multiple
sources can be correlated [37]]

1) If the subset is small and the risk is low, then
anonymized data can be sent back to the sources for
deanonymization.

2) If the subset is small, a third common anonymization
scheme can be used and the data can be sent back to
the sources for them to reanonymize in the common
scheme.

3) For larger sets, an anonymization transformation table
provided by the sources allows direct mapping from
anonymized data to the common scheme.

For this work, the first approach was used.

II. NETWORK QUANTITIES

Streams of interactions between entities are found in many
domains. For Internet traffic these interactions are referred to
as packets [38]. Figure [2 illustrates essential quantities found
in all streaming dynamic networks. These quantities are all
computable from anonymized traffic matrices created from
the source and destinations found in packet headers. These
sources and destinations are referred as Internet Protocol (IP)
addresses.

The network quantities depicted in Figure [2] are computable
from anonymized origin-destination matrices that are widely
used to represent network traffic [41]-[44]]. It is common
to filter the packets down to a valid set for any particular
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Fig. 2. Streaming network traffic quantities. Internet traffic streams of
Ny valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets. All of these quantities can be
readily computed from anonymized hypersparse traffic matrices (see Table [[I).

TABLE II
NETWORK QUANTITIES FROM TRAFFIC MATRICES

Formulas for computing network quantities from the traffic matrix A; at time
t in both summation and matrix notation. 1 is a column vector of all 1’s, T
is the transpose operation, and | |o is the zero-norm that sets each nonzero
value of its argument to 1 [39]. These formulas are unaffected by matrix
permutations and will work on anonymized data and are readily computed
using GraphBLAS hypersparse matrices or D4M associative arrays [30], [40].

Aggregate Summation Matrix

Property Notation Notation
- — -

Valid packets Ny > i > 4 Ay(i,7) 1'A:1

Unique links i 2, [AL(G,9)|o 1T[A¢fo1

Link packets from i to j A3, 5) Ay

Max link packets (dmax) max;; A¢(i,5) max(Ay)
Unique sources Dol Zj Ai(i,j)lo 1T[AL1]o
Packets from source i > Ad(i,F) Al

Max source packets (dmax) max; y_; A¢(i,j) max(Al)
Source fan-out from % Zj |[A¢(%,7)]o |Atlol
Max source fan-out (dmax) max; _; [Ad(i, f)lo max(|A¢lol)
Unique destinations 225 122 Ae(d, 5)lo [1TA¢o1
Destination packets to j > A, 5)  1T|Ado
Max destination packets (dmax) max; >, A¢(4,5) max(1T|A¢o)
Destination fan-in to j S 1A o 1T A

Max destination fan-in (dmax) max; >, |A¢(i, )]0 max(1T Ay)

analysis. Such filters may limit particular sources, destinations,
protocols, and time windows. To reduce statistical fluctuations,
the streaming data should be partitioned so that for any chosen
time window all data sets have the same number of valid
packets [33]. At a given time ¢, Ny consecutive valid packets
are aggregated from the traffic into a sparse matrix A;, where
A, (i,7) is the number of valid packets between the source i
and destination j. The sum of all the entries in A; is equal to
Ny

ZAt(Zvj) = NV
,J

All the network quantities depicted in Figure [2| can be readily
computed from A, using the formulas listed in Table [[Il Be-
cause matrix operations are generally invariant to permutation
(reordering of the rows and columns), these quantities can
readily be computed from anonymized data using GraphBLAS
hypersparse matrices or D4M associative arrays [30]], [40].
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Fig. 3. CAIDA Source Packet Degree Distribution. Differential cumulative
probability (normalized histogram) for the number (degree) of source packets
from each source using logarithmic bins d; = 2° for Ny = 230 packet
CAIDA samples collected over several months and at different times of
day. The observed power-law distribution can be approximated by the two
parameter Zipf-Mandelbrot distribution p(d) o< 1/(d 4 6,m )*zm.

Processing the large volumes of data from observatories
like the CAIDA Telescope requires additional computational
innovations. The advent of GraphBLAS hypersparse hierar-
chical traffic matrices has enabled the processing of hundreds
of billions of packets in minutes [34], [40], [45], [46]. The
CAIDA Telescope archives its trillions of collected packets
at the supercomputing center at Lawrence Berkeley National
Laboratory (LBNL) where the packets are aggregated into
CryptoPAN [47] anonymized GraphBLAS traffic matrices of
Ny = 217 valid contiguous packets. The Ny = 230 traffic
matrices used in this study are constructed by hierarchically
summing 2'3 of these traffic smaller matrices.

Because of the large volume of CAIDA Telescope data,
traffic matrices were constructed using 232x232 hypersparse
GraphBLAS matrices using uint32 indices and floating point
values, so 3 packets from IPv4 source 1.1.1.1 to IPv4 desti-
nation 2.2.2.2 in time-window ¢ would be represented as

A;(16843009, 33686018) = 3.0

The GreyNoise data was smaller and contains additional
metadata represented as strings, so the GreyNoise data was
represented using D4M associative arrays, which for the
aforementioned example would be

A ('1.1.1.1472222) ="3

After the unique sources and packet counts are computed
from the CAIDA Telescope GraphBLAS matrices, the reduced
results are converted to D4M associative arrays to facilitate
correlation with the GrayNoise D4M associative arrays.
Each network quantity computed from A; will produce
a distribution of values whose magnitude is often called
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Fig. 4. Peak Correlation. Correlation of CAIDA source IPs with GreyNoise
source IPs during the same month as a function of CAIDA source packets

d. CAIDA sources with d > N‘l/ 2 packets in the packet window are very
likely to appear in the GreyNoise data of the same month. CAIDA sources

with d < N‘l/2 appear with a probability log,(d)/ logQ(N‘l/Q).

the degree d. The corresponding histogram of the network
quantity is denoted by n:(d). The largest observed value in
the distribution is denoted d,,,x. The normalization factor of
the distribution is given by

> ne(d)
d
with corresponding probability
pi(d) = ni(d)/ Z n¢(d)
d

and cumulative probability

P,(d) = Z pe(d)
i=1,d
Because of the relatively large values of d observed, the mea-
sured probability at large d often exhibits large fluctuations.
However, the cumulative probability lacks sufficient detail to
see variations around specific values of d, so it is typical to
pool the differential cumulative probability with logarithmic
bins in d
Dy(d;) = Py(d;) — Py(di—1)

where d; = 2° [48]]. All computed probability distributions use
the same binary logarithmic binning to allow for consistent
statistical comparison across data sets [48]], [49].

Figure [3|shows the distribution of external — internal source
packets for 5 CAIDA samples with Ny, = 230, The resulting
distribution has the power-law shape frequently observed in
network data [S0]-[56]. The power-law distribution in Figure |§|
can be approximated by the two parameter Zipf-Mandelbrot
distribution that is widely seen in network data [22]], [24]

p(d) o< 1/(d + Gpm) >
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III. CORRELATION RESULTS

An important objective of correlating observations from
different locations is to determine how the observations are
similar and different. A first step is to ask what fraction of
the CAIDA Telescope sources are also seen in the GreyNoise
observations during the same month. Figure {4 plots the frac-
tion of CAIDA sources seen in the GrayNoise data as a
function of the number of CAIDA source packets d binned
logarithmically. Figure ] shows that bright CAIDA sources
with d > N‘I/ > = 215 are nearly always also seen by the
GreyNoise observations during the same month. Likewise, for
fainter sources with d < N‘l// 2 packets the probability of
the CAIDA source being seen in the GreyNoise data can be
empirically approximated as

p(d | CAIDA & GreyNoise) ~ logQ(d)/logQ(le/m)

Another important comparison is how the correlations
change as the time between CAIDA and GreyNoise measure-
ments increases. Figure [5] shows the correlation of CAIDA
sources with 24 < d < 25 packets with GreyNoise data
over a 15 month span. The correlation between the CAIDA
and GreyNoise sources drops quickly and then levels off to
a background level. The data have been fit to Gaussian (Nor-
mal), Cauchy [57], [58], and modified Cauchy distributions.
Specifically, the following function that we will refer to as the
modified Cauchy distribution

B

modified
) X ————
f Q B+t —to|*

Cauchy

where t( is the CAIDA measurement time, ¢ is the GreyNoise
measurement time, with exponent o > 0, and scale factor

B > 0. Setting o =
Cauchy distribution

2 and 8 = % results in the standard

72

V2 + [t = tof?
Figure [5] is well approximated by the modified Cauchy distri-
bution.

Figure[6|shows the CAIDA GreyNoise temporal correlations
for all the CAIDA samples for selected source packet ranges.
All the curves are fit to the modified Cauchy distribution by
generating all distributions over a range of possible « and 3
values, normalizing to the peak in the data, and then selecting
the o and /3 that minimize the | |'/? norm. The best-fit scaling
exponent « for all source packet ranges is shown in Figure
The quantity 1 — 3/(8+1) = 1/( + 1) provides the relative
one month drop from the peak and is shown in Figure [8]

fCauchy (t) X

IV. DISCUSSION

Understanding the baseline statistical distributions of traffic
are essential to the scientific understanding of the Internet.
These data lend themselves to a number of observations about
the statistical distributions of Internet traffic, the stability of
these distributions over time, the correlation of measurements
from different locations, and mathematical models of these
approximations. Each of these observations provides a basis
for predictions for future measurements and for theoretical
modeling of the underlying generative processes.

Figure |3| shows that the source packet distributions of
the CAIDA samples collected at different times have similar
statistical distributions with small variations. Furthermore, the
packet distribution is well approximated by a Zipf-Mandelbrot
distribution. The temporal consistency of the observations with
a stable Zipf-Mandelbrot model agrees with prior observations
of the CAIDA Telescope [36], the CAIDA Chicago A & B
Internet traffic collection [22], [24], the MAWI Internet traffic
collection [22], [24], and other network gateways [[13]]. These
observations have led to the development of new generative
models of network traffic that extend prior preferential attach-
ment models with parameters to describe adversarial traffic
[59]I.

Figure [4] shows that the temporal statistical consistency can
extend to the correlation of sources seen at separate locations.
It also suggests that sources above a certain brightness are
very likely to be seen, in contrast to prior observations [21]].
In this case sources brighter than d > N‘l/ 2 packets or whose
fraction of the total packets is greater than N, /2 Below
this threshold the probability of being seen in both CAIDA
and GreyNoise during the same month is approximated by
log,(d)/ logQ(N‘l,/ %). This purely empirical logarithmic dis-
tribution and the role of the empirical value N‘l/ % should
be tested with additional comparative observations. Perhaps
N‘l/ ? is connected to the fact that the number of unique
sources seen at the CAIDA Telescope and other locations is
approximately proportional to N‘l,/ % 113]l, [36]. Likewise the
logarithmic distribution could be an interesting target for new
theoretical models.
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Figures [3] and [6] show the temporal correlation between
the GreyNoise and CAIDA sources of various brightness
showing that the temporal statistical consistency extends over
significant time. The correlation as a function of time is well
approximated by the modified Cauchy distribution. While it is
certainly expected that brighter sources seen at one location
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on the Internet are more likely to be seen in another location
at the same time, the simple empirical relation connecting the
CAIDA and GreyNoise observations is intriguing. A common
geometric interpretation of the Cauchy distribution is the
probability of a randomly blinking rotating beam positioned
above the point £ at a distance v from a wall hitting a point



t on a wall. Such a geometric analogy may represent possible
direction for theoretical exploration.

Figure [/] shows the best fit a-exponent from the modified
Cauchy distribution as a function of CAIDA source packets.
These observations suggest that 1 is a typical value of «.
The 3 scale factor is shown in Figure [8| via the expression
1/(8+1) which measures the relative 1-month drop off of the
modified Cauchy distributions. The typical 1-month drop off is
above 20% and increases to 50% for d ~ 103 source packets.
These observations suggest the modified Cauchy distributions
for source packets around d ~ 103 are typically

1
1+ |t —tof
For other values of source packet a typical modified Cauchy
distribution would be

faodified (1 d 2 10%) o

fiodified (4 d ~ 10%) o

4
4+t — to
These empirical observations offer potential starting points for
further theoretical observations.

V. CONCLUSIONS AND FUTURE WORK

Scientific exploration of the Internet now requires endeavors
akin to those used to understand the land, sea, air, and space
environments. Understanding what is the normal statistical
behavior of Internet traffic is a critical first step. Comparing
observations from different locations on the Internet is an
effective means for determining which network quantities vary
or change. Using data from the largest Internet telescope
(the CAIDA darknet telescope) and a commercial outpost
(the GreyNoise honeyfarm) this work explores the correlation
of the sources seen using GraphBLAS hyperspace matrices
and D4M associative arrays. The CAIDA sources are well
approximated by a Zipf-Mandelbrot distribution. Over a 6-
month period 70% of the brightest (highest frequency) sources
in the CAIDA telescope are consistently detected by coeval
observations in the GreyNoise honeyfarm. This overlap drops
as the sources dim (reduce frequency) and as the time dif-
ference between the observations grows. The probability of
seeing a CAIDA source is proportional to the logarithm of
the brightness. The temporal correlations are well described
by a modified Cauchy distribution. These observations are
consistent with a correlated high frequency beam of sources
that drifts on time scales of months. Each of these observations
provides a basis for predictions for future measurements
and for theoretical modeling of the underlying generative
processes.
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