
ar
X

iv
:2

21
2.

08
20

0v
1 

 [
cs

.D
C

] 
 1

5 
D

ec
 2

02
2

Essentials of Parallel Graph Analytics

Muhammad Osama

University of California, Davis

mosama@ucdavis.edu

Serban D. Porumbescu

University of California, Davis

sdporumbescu@ucdavis.edu

John D. Owens

University of California, Davis

jowens@ucdavis.edu

Abstract—We identify the graph data structure, frontiers,
operators, an iterative loop structure, and convergence conditions
as essential components of graph analytics systems based on
the native-graph approach. Using these essential components,
we propose an abstraction that captures all the significant
programming models within graph analytics, such as bulk-
synchronous, asynchronous, shared-memory, message-passing,
and push vs. pull traversals. Finally, we demonstrate the power
of our abstraction with an elegant modern C++ implementation
of single-source shortest path and its required components.

Index Terms—parallel, graph analytics, graph traversal, algo-
rithms

I. INTRODUCTION

Graph analytics are used to study graphs and relationships

between objects. Unfortunately, efficient analysis is increas-

ingly difficult given increases in graph scale and workload

diversity. Research in parallel graph analytics has tried to keep

up by introducing new programming models, abstractions, and

algorithms. Here, we explore one approach called “native-

graph” graph analytics and make the following contribu-

tions:

1) We propose a framework, centered around an abstrac-

tion, that supports many design choices in each of the

four pillars of graph analytics in the McCune et al. [1]

survey paper Thinking Like a Vertex (TLAV).

2) An example, using modern C++ concepts, highlighting

design choices and exercising our proposed abstraction.

Our abstraction focuses on the graph as a “native” data

structure, the active working set, and the ability to express

iterative loops with convergence conditions to organize and

schedule the computation and completion of a graph algo-

rithm.

II. OVERVIEW

The native-graph approach for graph analytics focuses on

operating directly on the graph’s vertices or edges, or their

relationships within the graph data structure, as opposed to

linear-algebra-based graph analytics, which exploits the du-

ality between graphs and sparse matrices to perform graph

algorithms as sparse linear algebra operations. We focus on the

native-graph approach and on implementing graph analytics

with the different design choices described in TLAV [1] while

using a general abstraction that targets many of these design

choices. TLAV describes the four pillars of graph analytics as

deeply connected, interesting design decisions to be made in a

graph framework implementation targeting specific hardware

architectures. The pillars and relevant models we target are:

1) Timing: Synchronous and asynchronous.

2) Communication: Shared-memory and message-passing.

3) Execution Model: Vertex programs and push vs. pull.

4) Partitioning: Heuristics.

We refer readers to the TLAV paper for an extensive

discussion [1] of these design choices. Many graph libraries

carve a slice of the TLAV design space to implement graph

algorithms; for example, Gunrock’s [2] and Pregel’s [3] bulk-

synchronous programming model on a shared-memory sys-

tem, or PowerGraph’s [4] asynchronous and message-passing

system. These libraries focus on a small subset of possible

design decisions and are limited by abstractions that are tightly

coupled to those design decisions. Although these systems

make useful design decisions, we desire greater flexibility.

We show that with an abstraction focused around a native

graph data structure, essential components of graph analytics

can target many of the models within TLAV in a single

graph framework. A general abstraction that is able to capture

more than a single slice of these four pillars allows for more

versatility when expressing graph algorithms and targeting

different hardware architectures, and also leaves room for

scalability in the future. This paper is our vision of such an

abstraction and how it is implemented.

III. ABSTRACTION FOR EACH OF THE FOUR PILLARS

Our goal is to build a graph framework able to support

many (or more) of the design choices within TLAV. We first

describe the essential components:

1) A graph data structure that expresses the underlying

graph representation;

2) Frontiers, active sets of vertices or edges in each

iteration of a graph algorithm;

3) Operators, programs operating on the graph data struc-

ture or the frontiers. Operators are often defined as

traversals or transformations on the frontiers/graphs; and

4) Loop structure/convergence condition(s) to organize

and schedule the computation and completion of a graph

algorithm.

Before we show how our abstraction, built on the essential

components above, targets the different programming models,

we emphasize that these models are heavily interdependent,

and describing how our abstraction targets them indepen-

dently of each other will provide an incomplete understanding.

Therefore, the following sections may cross-reference the

models that are not strictly within the same “pillar”. We

http://arxiv.org/abs/2212.08200v1


also summarize the models we capture and ignore within our

abstraction and framework in Table I.

A. Synchrony and Asynchrony

In the execution domain, a timing model is often the

building block for a graph framework. The choice of a bulk-

synchronous programming model implies that the computation

is performed in bulk supersteps, and a global synchronization

barrier is used to synchronize the completion of each super-

step. In contrast, asynchronous programming models have no

explicitly defined barriers, and work is performed whenever

the required resources are available [1]. In the TLAV survey

paper, asynchronous execution models are defined to be more

“complex” than bulk-synchronous execution models but allow

for better workload balance.

The abstraction that targets the timing model in our

framework is structuring operators with support for

execution policies. We center our execution domain around

operations on graphs or frontiers (an active vertex or edge

set) [2], and how these operators are structured within an

iterative loop. Since operators are loosely defined compute and

memory transformations, our abstraction additionally allows

them to be expressed with different execution policies as a

parameter to control synchronization behavior and parallelism.

Much like the C++ standard library’s execution policies [5],

these policies are unique types to allow for overloading of

traversal and transformation operators to support parallelism

and synchronization behaviors. Parallelism is supported by

the work of an operator permitted to execute either in the

invoking thread or in threads implicitly created by the oper-

ator’s implementation. Synchronization behavior is supported

by avoiding or introducing barriers on the invoking threads,

based on the need of the timing model and the graph algorithm

being implemented. These overloadings, now disambiguated

with a unique type (execution policies), allow for the operator’s

functionality to be identical, even as its underlying execution

changes.

B. Communication

The two conventional communication models are shared-

memory and message-passing. In a shared-memory model,

all data is directly available to all processes, whereas in

a message-passing model, data is made available through

messages passed between processes [1]. Expressing both

models under the same framework can potentially allow for

performance benefits in hierarchical distributed systems. The

abstraction that enables support for multiple communica-

tion models is the use of frontiers with multiple under-

lying representations, which individually support shared-

memory and message-passing models. When represented as

an asynchronous queue [6], a frontier can communicate its

elements using messages. When represented as a sparse vector

or a dense bitmap [2] stored in shared memory, its elements

are directly available to all processes. With thoughtful design,

regardless of the underlying representation, the top-level in-

terface to query the frontier (or presence of an active vertex

or edge) remains the same.

The communication model also goes hand-in-hand with

the timing defined in the previous section. In a shared-

memory communication model, performing bulk-synchronous

operations on the frontiers with global synchronizations is

a common, effective practice. However, depending on the

size and workload imbalance of a frontier, an asynchronous

execution model with message-passing to communicate the

active working set can be more efficient.

C. Vertex Programs and Push vs. Pull Traversals

The abstractions for supporting vertex or edge pro-

grams and traversal directions are exposed using three

components: (1) the previously described operators, now with

C++ lambda expressions [5] applied on the tuple {source and

destination vertices, and their corresponding edge}, for every

traversal or transformation (Section IV-C); (2) the frontier

type, expressed as either a set of active vertices or a set of

active edges, which allows for both edge and vertex-centric

programs [2]; and (3) the graph data structure stored as the

original representation and the transposed representation, the

former for push traversals and the latter for pull traversals, at

the cost of memory space.

D. Partitioning Schemes

In our framework, partitioning space is largely left un-

explored and is work in progress. However, since parts of

our graph abstraction allow for multiple underlying repre-

sentations, partitioned graphs could also simply be expressed

as another such representation. Inheriting a partitioned graph

within our framework would imply that when the top-level

graph data structure is queried, the APIs will need to support

the use of the corresponding partitioned sub-graph to return

the result of a query.

IV. IMPLEMENTATION

In this section, we show a vision of how to implement

a graph framework using modern C++ that captures a wide

range of models described in the TLAV survey paper. Due

to space constraints, we will only show the implementation

of one algorithm (single-source shortest path), implemented

with a bulk-synchronous timing model and shared-memory

communication scheme in mind. Although we show a very

limited scope of TLAV’s four pillars, we highlight where the

abstraction extends to support asynchrony, message-passing,

and push- and pull-based graph processing.

A. Graph representations

The duality of graphs and sparse matrices can be exploited

even in the native-graph approach for graph analytics. The

underlying graph data structure can be expressed using com-

mon sparse matrix formats such as compressed-sparse row

(CSR), compressed-sparse column (CSC), or an adjacency list.

Sparse-matrix formats make for great graph representations

due to the sparsity inherent in many large graphs and their



TLAV Pillars Models Captured Abstraction Mechanism
Models Ignored
(not captured)

Timing
Bulk-Synchronous,
Asynchronous

Operators,
Loop structure

Execution policies

Communication
Shared-Memory,
Message Passing

Graph and Frontier
Representations

Queue-based (messages) or
bitmap, sparse frontiers

Active Messages

Execution Model
Vertex Programs,
Push vs. Pull

Operators, Frontiers and
Graph Representations

Vertex/edge-centric frontiers and
compressed sparse row/column
graph representations

Partitioning Heuristics (Mostly Unexplored)
Graph and Frontier
Representations

Random partitioning, METIS [7]
Streaming, Vertex Cuts,
Dynamic Repartitioning

TABLE I: Summary of what models are captured within the four pillars of TLAV [1] by our abstraction, and the corresponding

element within the abstraction that implements the captured models.

ability to store such graphs in a compressed space. Listing 1

shows one example of a graph internally represented as a CSR

matrix, but queried with a graph-focused API.

++Push vs. Pull Traversal

Our abstraction encompasses the ability to inherit and retain multiple
underlying data structures for a single graph at the same time. We
can leverage multiple representations profitably; for instance, storing
both CSR and CSC graph representations enables traversal models
that support both push and pull.

Listing 1 An example of requesting data from a sparse-matrix representa-
tion (CSR) with a native-graph API.

// Compressed-Sparse Row (CSR) matrix.

struct csr_t {

int rows, cols;

std::vector<int> row_offsets, column_indices;

std::vector<float> values;

};

// In our framework, we rely on variadic inheritance

// to support multiple underlying data structures.

struct graph_t : public csr_t {

// Get edge weight for a given edge.

float get_edge_weight(int const& e) {

return values[e];

}

};

B. Frontier representations

Like graphs, frontiers can be represented with many differ-

ent underlying representations. A sparse frontier can be simply

represented as a vector of active vertex or edge indices. A

dense frontier can be represented as a boolean array, where

each element is true only if the corresponding vertex or edge

is active. Depending on the scheduling and communication

model, these frontier representations can be partitioned or

be streamed to the compute units for processing. For a

bulk-synchronous programming model with shared memory

communication, the frontier can simply be stored in the shared

memory (like the graph), and each element within the frontier

can be processed in parallel. After each processing step, the

synchronization step can be performed based on the operator’s

execution policy. In Listing 2, we show one example of how

a sparse frontier can be implemented with a std::vector

as its underlying data structure.

++Asynchrony and Message-Passing

Based on Chen et al, we experiment with an asynchronous queue
as an underlying structure to represent the frontier to allow for
asynchrony and message-passing [6].

Listing 2 Sparse frontier of active vertices represented as a simple vector
from the C++ standard library.

struct frontier_t {

// Underlying representation of a frontier.

std::vector<int> active_vertices;

// Get the number of active vertices.

int size() {

return active_vertices.size();

}

// Get the active vertex at a given index.

int get_active_vertex(int const& i) {

return active_vertices[i];

}

// Add a vertex to the frontier.

void add_vertex(int const& v) {

active_vertices.push_back(v);

}

};

C. Parallel Operators

A high-performance graph analytics implementation relies

on efficient parallel operators that transform, expand, or con-

tract the frontiers or graphs. This is where the bulk of opti-

mizations can be introduced, such as utilizing data parallelism

and load balancing. In Listing 3 we show an example of how

a parallel operator performing a traversal (frontier expansion)

can be expressed using modern C++, implemented on a BSP

model with data stored in the shared memory space.

++Timing Model and Parallelism

We extend our operators to support execution policies
that overload the operator implementations to allow for
parallel synchronous (execution::par) and asynchronous
(execution::par_nosync) models.



Listing 3 Synchronous parallel neighbor-expand, an operator derived from
a traditional textbook graph algorithm [8] implemented using modern C++.
Note, due to the limitations in C++20’s execution policies, the following
version simply uses a parallel synchronous std::for_each; however, that
can be replaced with parallel threads with no explicit barriers.

#include <algorithm>

#include <execution>

#include <mutex>

// Neighbor-expand implemented in C++20.

template<typename expand_cond_t, typename policy_t,

std::enable_if_t<

!std::is_same_v<policy_t,

decltype(execution::par_nosync)>, int> = 0>

frontier_t neighbors_expand(

policy_t execution_policy,

graph_t& g, frontier_t& f,

expand_cond_t condition) {

std::mutex m;

frontier_t output;

auto expand = [=] (int const& v) {

// For all edges of vertex v.

for (auto e : g.get_edges(v)) {

auto n = g.get_dest_vertex(e);

auto w = g.get_edge_weight(e);

// If expand condition is

// true, add the neighbor into

// the output frontier.

if (condition(v, n, e, w)) {

std::lock_guard<std::mutex>

guard(m);

output.add_vertex(n);

}

}

};

// For all active vertices in the

// frontier, process in parallel.

std::for_each(execution_policy,

f.active_vertices.begin(),

f.active_vertices.end(),

expand);

// Synchronized here and return output.

return output;

}

// An alternative asynchronous version (par_nosync

// is true) could launch parallel C++ threads and

// avoid the synchronization entirely.

template<typename expand_cond_t, typename policy_t,

std::enable_if_t<

std::is_same_v<policy_t,

decltype(execution::par_nosync)>, int> = 0>

frontier_t neighbors_expand(/*...*/) {/*...*/}

D. Example: Parallel Native-Graph SSSP

To illustrate the abstraction, we show a simple example

of a parallel SSSP algorithm implemented using the native-

graph API, building on the previously described essential

components. In Listing 4, we organize the algorithm in a BSP

iterative while-loop with a convergence condition to schedule

the completion. The key insights of the provided example are

the use of (1) C++ lambda expressions to define a vertex

program, (2) the neighbor_expand operator to perform

the push-based traversal, and (3) std::execution::par

to define the parallel execution policy.

V. A LOOK AHEAD

As future work, we wish to explore many of TLAV’s design

decisions under a single framework targetting a wide-range of

Listing 4 Parallel Single-Source Shortest Paths (SSSP) implemented in
C++ using key components of native-graph graph analytics. Complete code:
https://github.com/gunrock/essentials-cpp

std::vector<float> sssp(

graph_t& g, int const& source) {

// Initialize data.

std::vector<float> dist(g.get_num_vertices(),

std::numeric_limits<float>::max());

dist[source] = 0;

frontier_t f;

f.add_vertex(source);

while(f.size() != 0) { // Main-loop.

// Expand the frontier.

f = neighbors_expand(

std::execution::par, g, f,

// User-defined condition for SSSP.

[=](int const& src, // source

int const& dst, // dest

int const& edge, // edge

float const& weight) { // weight

float new_d = dist[src] + weight;

// atomic::min atomically updates

// the distances vector at dst with

// the minimum of new_d or its

// current value, then returns the

// old value. (eq: mutex updates)

float curr_d =

atomic::min(&dist[dst], new_d);

return new_d < curr_d;

});

}

return dist;

}

graph algorithms. Given the proposed abstraction, we make

available “essentials”, a graph library that targets GPUs:

https://github.com/gunrock/essentials.

REFERENCES

[1] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, pp. 25:1–25:39, Oct.
2015.

[2] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang,
M. Osama, C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens,
“Gunrock: GPU graph analytics,” ACM Transactions on Parallel

Computing, vol. 4, no. 1, pp. 3:1–3:49, Aug. 2017. [Online]. Available:
http://escholarship.org/uc/item/9gj6r1dj

[3] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data, ser. SIGMOD ’10, Jun. 2010, pp.
135–146.

[4] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: Distributed graph-parallel computation on natural graphs,” in
Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation, ser. OSDI ’12. USENIX Association, Oct.
2012, pp. 17–30.

[5] “ISO international standard ISO/IEC 14882:2017(E) - programming lan-
guage C++,” International Organization for Standardization (ISO), Tech.
Rep., 2017, https://isocpp.org/std/the-standard.

[6] Y. Chen, B. Brock, S. Porumbescu, A. Buluç, K. Yelick, and J. D. Owens,
“Atos: A task-parallel GPU dynamic scheduling framework for dynamic
irregular computations,” CoRR, vol. abs/2112.00132, no. 2112.00132,
Dec. 2021.

[7] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp.
359–392, Dec. 1998.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, Second Edition. The MIT Press, Sep. 2001.

https://github.com/gunrock/essentials-cpp
https://github.com/gunrock/essentials
http://escholarship.org/uc/item/9gj6r1dj
https://isocpp.org/std/the-standard

	I Introduction
	II Overview
	III Abstraction for Each of the Four Pillars
	III-A Synchrony and Asynchrony
	III-B Communication
	III-C Vertex Programs and Push vs. Pull Traversals
	III-D Partitioning Schemes

	IV Implementation
	IV-A Graph representations
	IV-B Frontier representations
	IV-C Parallel Operators
	IV-D Example: Parallel Native-Graph SSSP

	V A Look Ahead
	References

