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Abstract—Due to the short decohorence time of qubits
available in the NISQ-era, it is essential to pack (min-
imize the size and or the depth of) a logical quantum
circuit as efficiently as possible given a sparsely coupled
physical architecture. In this work we introduce a locality-
aware qubit routing algorithm based on a graph theoretic
framework. Our algorithm is designed for the grid and
certain “grid-like” architectures. We experimentally show
the competitiveness of algorithm by comparing it against
the approximate token swapping algorithm, which is used
as a primitive in many state-of-the-art quantum transpilers.
Our algorithm produces circuits of comparable depth
(better on random permutations) while being an order
of magnitude faster than a typical implementation of the
approximate token swapping algorithm.

Index Terms—qubit routing, parallel token swapping,
grid graphs

I. INTRODUCTION

Noisy Intermediate Scale Quantum (NISQ) - era quan-
tum computers are constrained by various hardware
limitations. The underlying technology (for example, su-
perconducting qubits, trapped ion etc.) determines error
rates and realizability of different single and two qubit
gate operations. The small number of physical qubits
available to NISQ processors 1 limits the use of quantum
error correcting codes; a feature to be expected for fault
tolerant quantum computers.

In the meantime various engineering as well as al-
gorithmic solutions has been proposed to reduce the
overall circuit error by carefully navigating the con-
straints imposed by the hardware. One such constraint,
which particularly manifests in devices based on the
superconducting qubit architecture, limits the set of pairs
of physical qubits that can take part in a two qubit gate

1as of writing this paper the number of qubits on available systems
range from 5 to about 200

operation. The pairs of physical qubits which can take
part in a two qubit gate operation are said to be coupled.
Suppose QL is a logical quantum circuit that we wish to
execute on a given hardware. We assume that not all pairs
of physical qubits are coupled. In this case we need to
map the logical qubits to physical qubits 2. This mapping
must ensure that every pair of logical qubits that take
part in a two qubit gate is mapped to a pair of physical
qubits that are coupled. However, in most cases, there
is no single mapping that can simultaneously satisfy all
of the coupling requirements imposed by QL. In such a
situation, logical qubits are remapped, possibly multiple
times, to different physical locations (physical qubits)
so that all the two qubit gates in QL are executed on
a schedule satisfying the dependencies in QL. A single
qubit gate can be executed in-place, without moving the
qubits. Hence, for clarity of exposition we can ignore
the presence of single qubit gates in QL when discussing
qubit routing. However, in practice the scheduling of two
qubit gates does depend on single qubit gates and hence
plays a role in determining the depth of the physical
circuit (QP ).

If a qubit is remapped, it has to be physically moved
to its new location. This step is called routing and is
usually achieved by adding appropriate swap gates to
the logical circuit. A swap gate exchanges the state of
its two input qubits. In some hardware, a swap gate
is constructed using a sequence of three controlled-not
gate. However these extra swap operations increase the
size (the number of gates) and the depth of the circuit
(the length of the critical path in the circuit). Because the
transformed circuit may then be too big to be reliably

2Note that due to the absence of any usable error correcting codes
in the NISQ era, these mappings are one to one.
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implemented on the given hardware, the output state of
QP may significantly deviate from its expected state (the
output state of QL). If the output state is classical (result
of some measurements), we may be able to mitigate the
problem by executing QP multiple times. However, such
a strategy invariably leads to more resource utilization.

As such, it is important to “pack” the logical circuit
within a physical circuit of small depth by optimizing the
mapping and the routing steps. In this paper, we focus on
optimizing routing of qubits for the grid and “grid-like”
architectures. Almost all superconducting qubit based
architectures are planar. That is, the coupling of the qubit
pairs can be represented by some planar graph. Majority
of these planar architectures are “close to” some grid
graph. This was our main motivation for studying routing
on this type of architectures.

Specifically, we design a routing algorithm for the grid
by exploiting the locality in the underlying permutation.
Our algorithm leads to a significantly better perfor-
mance than and produces routing of depth comparable
to the state of the art. Our algorithm can be extended
to graphs which are Cartesian product of two graphs.
Our algorithm builds upon the routing via matching
framework introduced by Alon et. al. [1]. As such, it
is a parallel routing scheme as opposed to the token
swapping framework commonly used. It is expected to
benefit a wide range of quantum programs including
simulation of spatially local Hamiltonians.

II. PROBLEM FORMULATION

In this section, we formally introduce the qubit routing
problem and the routing via matching framework. An
example is given in Figure 1. Physical couplings between
the qubits can be represented by an undirected simple
graph, usually referred to as the coupling graph. We
will use G = (V,E) to denote this graph (see Figure
1-(c)). In this paper we assume G to be the m× n grid
graph. A vertex in V is identified with a pair of indices
(i, j) on the grid (i ∈ [m] and j ∈ [n]3). Figure 1-(a)
gives an example of a logical circuit with four qubits
and five gates. In Figure 1-(b) this circuit is represented
as a directed acyclic graph (QL). The vertices of QL

correspond to the gates of the circuit and the edges
represent the dependencies among them. The label(s) on
the vertices correspond to the qubit(s) involved in the

3[n] = {1, . . . , n}

gate. Figure 1-(d) gives a possible physical realization
QP of QL on the coupling graph G. The circuit QP

is feasible for G as all its gates use qubits that are
adjacent in G. We see that both the size (5 → 9)
and the depth (3 → 6) of QP is greater than that
of QL. These increases in size and depth invariably
make it more likely that the output of QP will deviate
significantly from that of QL, which is particularly true
for NISQ devices without error correction. The goal
of the transformation algorithm, the transpiler, is to
produce a feasible circuit for a given coupling graph,
which is pareto-optimal with respect to the objectives of
minimizing the physical circuit size and depth. Note that
a unique solution that minimizes both the size and depth
of QP may not exist. Unfortunately, this problem is NP-
hard, even if we want to optimize one of the objectives.
Further, seeking optimally may not even be of much use
if the optimal circuit is not that far from (in terms of
size and/ or depth) from some arbitrary feasible circuit.
This is particularly the case when G is quite sparse and
QL has many infeasible gates. As an extreme example,
suppose QL be the QFT circuit on n-qubits and G = Pn

is the path with n vertices. It is an easy exercise to see
that per layer of the logical QFT circuit we need Ω(n)

SWAP gates.

To make the above optimization problem feasible, it
is often decomposed into an alternating sequence of
mapping and routing problems. In the mapping phase,
we try to pick a mapping of the logical qubit to the
physical qubit. For example, Figure 1-(c) shows an initial
mapping of the logical qubits to the vertices of G. In the
routing phase we move the logical qubits to their new
locations determined by the mapping. In this paper we
focus on the latter. To this end, our routing algorithm can
be used in any transpiler that uses the above framework
as an alternative to the routing algorithm used there.

The destinations of the logical qubits in the routing
phase is given by a permutation on V . Oftentimes, we
do not care about the location of some qubits. In such a
case, the destinations are given by a bijection f : S → R,
where S,R ⊂ V . We can extend f to a permutation by
selecting destinations for the don’t-care qubits. Here we
assume this extension has already been determined by
the transpiler and we are given a permutation to route. In
the routing via matchings model, the routing schedule is
determined by a sequence of matchings in G. We move

2
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Figure 1: An example of routing to make the logical circuit in (a) conform to the physical couplings according to (c).

the logical qubits along the edges in these matchings.
More specifically, for each edge (i, j) in a matching we
add a SWAPi,j gate to the circuit with physical qubits
i and j as inputs. Hence a matching corresponds to a
layer of a mutually disjoint set of SWAP gates which
can be executed in parallel. The depth of the circuit
is increased by the number of matchings in the routing
schedule. Therefore, our goal is to identify a sequence
of matchings that minimizes the depth. In addition, the
computation should be efficient and scalable for the
scheme to work in practice. Unfortunately, computing
an optimal matching sequence is NP-hard[2]. As of yet
there is no approximation guarantee for this problem,
except for the case when G is the path graph. In contrast,
for the serial variant of the problem, where we only care
about minimizing the number of swaps, the approximate
token swapping algorithm by Miltzow et. al. [3] has
an approximation factor of 4. Interestingly, the swaps
discovered by the token swapping algorithm produces a
routing schedule with depth comparable to our parallel
routing algorithm.

III. RELATED WORK

There have been a considerable number of recent
studies on the qubit mapping problem ([4], [5], [6], [7]).
Some of these methods combine mapping and routing
to one combinatorial optimization problem (example
[8]) or using routing time as a measure of efficacy of
the mapping scheme (example [9]). In contrast, only a
handful of work is proposed to specifically deal with the
qubit routing problem in isolation, when a mapping is
already determined. In this section we briefly go over
the literature on qubit routing.

Token swapping either in the serial or in the parallel
setting (a.k.a routing via matchings) has been studied

for close to three decades. Some relevant results can be
found in ([2], [1], [3], [10]) and the references therein.
Here we briefly mention some work relevant to routing
qubits that has been proposed in the last few years.
Childs et. al. [9] initiated a systematic study of various
routing (as well as qubit mapping) strategies for both
general as well as special classes of coupling graphs. The
(partial) routing algorithms proposed there mostly used
standard methods from earlier works by Alon, Miltzow
and others [1], [3]. Routing via reversals has also been
applied in the qubit routing setting. This is a particularly
promising approach as the reversal of n qubits along a
line can be carried out faster using certain topological
transformations of spin chains [11] in the Majorana
picture. Such schemes have been well studied for linear
networks (as reversal of spin chains in condensed matter
physics - for example in [12], [13] etc. and more recently
in [14]). Bopat et. al. [11] proposed a qubit routing
scheme for general graphs by reducing the problem to
that of routing on a tree.

IV. THE PROPOSED ALGORITHM FOR GRID

In this section, we present our qubit routing algorithm
for the grid graph. The algorithm builds on the 3-step
grid routing algorithm in [1]. Just like the algorithm in
[1] ours will also work on any graph G which can be
expressed as a Cartesian product G1�G2 of two graphs
G1, G2. Vertices of G are ordered pairs (u, v) where
u ∈ G1 and v ∈ G2. There is an edge between two
vertices (u, v) and (u′, v′) if and only if either (u, u′) is
an edge of G1 or (v, v′) is an edge of G2. The m×n grid
graph is the Cartesian product of Pm�Pn, where Pn is
the path with n vertices. In what follows we present our
algorithm on the grid graph. After that, we will briefly

3



(d) (e)(a) (b) (c)

Figure 2: An example of routing on a 3×3 grid. (a) Arrows indicate the destination of the qubits. (b) Shows the bipartite multi-
graph G[1, 3] indicating qubit movements between columns. Edges that are part of different perfect matchings are distinguished
using different styles (solid, dashed and dotted). (c)-(e) are the three rounds of the routing. For example the qubit initially at
(2, 2) moves to (3, 2) and then to (3, 3) after the end of the second round. Note that each round may involve multiple steps,
where each step is a set of concurrent swap operations.

discuss the modifications needed to extend it to Cartesian
product graphs at the end of this section.

We begin by briefly discussing the original grid rout-
ing algorithm of [1]. An example is shown in Figure
2. Let G be an m × n grid graph. Suppose the per-
mutation π on G sends some qubit at location (i, j) to
(i′, j′). For a fixed j′ there are exactly n qubits that
will be sent to the column labeled j′. By successive
applications of Hall’s marriage theorem, we can identify
a set of n permutations (σ1, . . . , σn) on the columns
with the following property. After routing the qubits in
column i using σi, the destination columns of every
qubit will be unique in each row. That is, we can
route the qubits along the rows in parallel so that after
we are done with this round, every qubit is in its
correct destination column. Then in the next round, we
route the qubits in each column in parallel. As such,
this algorithm involves three rounds of routing in a
column-row-column order. We will denote this routing
scheme as GridRoute(G, π;σ1, . . . , σn), which returns a
sequence of matchings (M1, . . . ,Mt) of G. However,
we can also perform the routing in the row-column-
row order (GridRoute(GT , πT ;σ1, . . . , σm)4) and finally
choose the strategy that leads to the smallest depth.
In each round the parallel routings along the rows or
the columns is done using the odd-even transposition
algorithm for routing on a path. The above three-round
strategy can be extended to the case when G = G1�G2

4Here, GT is the transpose of the grid G (determined by the
automorphism which sends (i, j) → (j, i)) and π(i, j) = (i′, j′)
iff πT (j, i) = (j′, i′)

as follows. G can be thought of as a “grid-like” graph
where each row (resp. column) is replaced by copy of
G1 (resp. G2). In each round we route the qubits in
parallel on the respective copies of G1 (resp. G2) using
some appropriate routing algorithms for G1 (resp. G2).
In a similar manner, we can extend our locality aware
routing algorithm for grids to this more general case.

The grid routing algorithm described above overlooks
the possible locality in the underlying permutation,
which exists in a wide range of quantum applications.
More specifically, there are cycles of the permuta-
tion π that are contained within small regions of the
grid in many of these applications. The permutations
(σ1, . . . , σm) are chosen by finding a set of m perfect
matchings on a bipartite multi-graph, which, unfortu-
nately, are done in an arbitrary manner and may end up
creating a schedule with unnecessary overhead (see for
example Figure 3). By considering the locality of qubit
movement, our algorithm ensures that the permutations
selected in the first stage does not make any qubit take
a path to reach their destination that is too long relative
to a path used in an optimal routing scheme. This will
promise smaller depth in the transpiled circuit.

A. Preliminaries

Before proceeding to describe our algorithm, we in-
troduce some additional notations and definitions. We
define a bipartite multi-graph G[a,b]([n], [n]), where us-
ing [n] we identify the set of n columns of G. For
notational simplicity, we use G[a,b] to refer to this graph.
For each pair ((i, j), (i′, j′)) of vertices in G, where
i ∈ {a, . . . , b}, there is an edge labeled (i, i′) between

4



(i, j)

(i′, j′)

P

Q

Figure 3: Suppose π(i, j) = (i′, j′). Depending on the permu-
tation chosen in the first round the qubit at (i, j) may end up
getting routed via the path P instead of a shorter path Q.

the vertex labeled j and j′ in G[a,b] iff (i′, j′) = π(i, j).
Figure 2-(b) shows the graph G[1,3] corresponding to the
permutation in (a). Let M = {(i1, i′1), . . . , (in, i

′
n)} be

a perfect matching of G[1,m]. We define a metric ∆ that
we use to determine how far a matching is from some
row in G.

∆(M, r) =

n∑
j=1

|ij − r|+
n∑

j=1

|i′j − r|

Let P be a set of all perfect matchings of G[1,m] (see
[1] for a proof of their existence). We define a complete
bipartite graph H(P, [m]) where the left vertices are
the matching in P and the right vertices are the rows
of G. Lastly, we introduce the maximum cardinality
bottleneck bipartite matching (MCBBM) problem ([15],
[16]). Given an edge weighted bipartite graph, the task
in MCBBM is to find a maximum matching which
minimizes the maximum weight of any edge in the
matching.

B. The Locality-aware Routing Algorithm
Algorithm 1 Main Procedure

Input: A m× n grid graph G, a permutation π
Output: A sequence of matchings M of G

1: (M1, . . . ,Mt)← LocalGridRoute(G, π)

2: (M ′1, . . . ,M
′
t′)← LocalGridRoute(GT , πT )

3: if t ≤ t′ then
4: return (M1, . . . ,Mt)

5: else
6: return (M ′1, . . . ,M

′
t′)

7: end if

Algorithm 2 LocalGridRoute(G, π)

Input: A m× n grid graph G, a permutation π
Output: A sequence of matchings M of G

1: M← ∅
2: construct G[1,m]

//first we find a set of m perfect

matchings in G[1,m]

//let Ec be the set of edges in

G[1,m]

3: w ← 0 //search window size

4: P ← ∅
//apply a doubling search

5: while |P| < m do
6: r ← 1 //starting row

7: for 0 ≤ i ≤
⌊

m
w+1

⌋
do

8: Find all perfect matchings (if any) in
G[r,min(r+w,m)] and add them to P
//remove the edges in P from

G[1,m]

9: Ec ← Ec \ ∪M∈PM
10: r ← r + w + 1

11: i← i+ 1

12: end for
13: if w = 0 then
14: w ← 1

15: else
16: w ← 2w

17: end if
18: end while
19: construct H from P
20: M

\ ← MCBBM(H)

//Using M
\
we identify a row in G

for each perfect matching in P
//construct the permutations σ1, . . . , σn

21: for all (i, i′) ∈M ∈ P do
22: σj(i) ← r //where (M, r) ∈ M

\
and

π(i, j) = (i′, j′)

23: end for
24: return GridRoute(G, π;σ1, . . . , σn)

C. Correctness, Runtime Analysis and Extension

Correctness. LocalGridRoute(G, π) will eventually
discover a set of m perfect matchings. It follows then that
for a fixed r ∈ [m], the set {j′ | π(σ−1j (r), j) = (i′, j′)}
has n elements. Hence the permutations (σ1, . . . , σn)

satisfy the necessary requirements of the GridRoute

algorithm.
Running Time. The main while loop at line–5 runs

at most dlogme times. We can find a perfect match-
ing (or determine there is none) in G[a,b] in time

5



O(mn
√
n) [17], since G[1,m] has mn edges. Hence the

main while loop takes O(m2n
√
n) time per iteration

and Õ(m2n
√
n) time in total. Here Õ hides a poly-

logarithmic factor in m,n. Since H is a complete
bipartite graph with m vertices and

(
m
2

)
edges, using

the algorithm of Punnen and Nair [16]we can solve
MCBBM on H in Õ(m2.5) time, which is dominated by
the previous bound. The rest of the algorithm involves
computing the actual swap sequence which takes time
linear in the size of G. This cost is dominated by the
work done before line 24. Hence the total time taken
by LocalGridRoute(G, π) is Õ(m2n

√
n) and the main

procedure (Algorithm 1) takes Õ(m2n
√
n + mn2

√
m)

time.
Extension to Cartesian Products. We can extend our

algorithm for Cartesian product graphs by extending the
GridRoute subroutine appropriately. Specifically, replac-
ing the odd-even transposition with routing algorithms
for G1 and G2. However, depending on the structure of
G1, G2, optimizing for locality may not be that signif-
icant. If G1, G2 are somewhat path-like in a technical
sense (for example their path-widths are small), then we
expect our locality aware algorithm to produce useful
improvements over the naive algorithm.

V. EXPERIMENTAL RESULTS

Our locality-aware algorithm can always be made
to produce a routing scheme with a smaller or equal
depth as opposed to the naive grid routing algorithm.
Otherwise, we can replace the output of the locality
aware algorithm by that of the naive algorithm. This
has virtually no computational overhead. We compare
our locality-aware grid router against the approximate
token swapping (ATS) algorithm [3] which has been used
as a primitive on some state-of-the-art qubit transpilers
(for example in [9]). We set up the experiments based
on a wide range of grid sizes and multiple random
mapping schemes (local and global). Figures 4 and 5,
respectively, summarize the effectiveness of the algo-
rithm in terms of depth of the routing schedule and the
execution time. Figure 4 shows that our locality-aware
router performs better than ATS when π is a random
permutation (green vs brown plot in Figure 4). If the
cycles of π are constrained inside disjoint blocks then
both algorithms seem to generate a routing schedule of
similar depths (blue vs red plot in Figure 4). On the other

hand if the cycles of π forms overlapping blocks, then
ATS performs better than our algorithm. If π happens to
contain long and skinny cycles that stretch in orthogonal
directions, then our locality aware scheme will fail to
optimize for both cycles simultaneously. This is not a
bottleneck for ATS. In terms of the running time we see
that our algorithm scales well and in fact is significantly
faster–an order of magnitude on larger grids vs ATS. For
our comparison we used the ATS implementation from
[9]. Our experimental data and source code can be found
at [18].

Figure 4: Depth of computed swap networks.

Figure 5: Time spent on finding swap networks.

VI. CONCLUSION

In this extended abstract, we introduce an efficient
routing algorithm for grid and Cartesian product archi-
tectures by taking advantage of the locality in the un-
derlying permutation. Experiments demonstrate that the
proposed method leads to comparable depth to a state-of-
the-art algorithm with significantly higher performance.
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