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Abstract—High-Performance Computing (HPC) centers and

cloud providers support an increasingly diverse set of applications
on heterogenous hardware. As Artificial Intelligence (AI) and
Machine Learning (ML) workloads have become an increasingly
larger share of the compute workloads, new approaches to
optimized resource usage, allocation, and deployment of new AI
frameworks are needed. By identifying compute workloads and
their utilization characteristics, HPC systems may be able to
better match available resources with the application demand.
By leveraging datacenter instrumentation, it may be possible
to develop AI-based approaches that can identify workloads
and provide feedback to researchers and datacenter operators
for improving operational efficiency. To enable this research,
we released the MIT Supercloud Dataset, which provides de-
tailed monitoring logs from the MIT Supercloud cluster. This
dataset includes CPU and GPU usage by jobs, memory usage,
and file system logs. In this paper, we present a workload
classification challenge based on this dataset. We introduce a
labelled dataset that can be used to develop new approaches
to workload classification and present initial results based on
existing approaches. The goal of this challenge is to foster
algorithmic innovations in the analysis of compute workloads
that can achieve higher accuracy than existing methods. Data and
code will be made publicly available via the Datacenter Challenge
website : https://dcc.mit.edu.

I. INTRODUCTION

High-Performance Computing (HPC) centers and cloud

providers support a wide range of computational workloads,

ranging from domain-specific scientific applications such as
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computational fluid dynamics, which represent applications

written in high-performance programming languages such as

C and Fortran, to Artificial Intelligence (AI)/Deep Learning

(DL)/Machine Learning (ML) model training and inference.

These diverse applications require different approaches to

performance optimization as well as resource scheduling. HPC

operators need new tools to understand the compute running

on these systems and automated tools help identify mismatches

between hardware capabilities and application requirements.

To this end, workload classification helps to identify compute

characteristics of unknown workloads and either present op-

timization pathways or alternatives to resource scheduling to

minimize waste. This also enables potential approaches to job

scheduling in a shared HPC cluster. Wildani [1] make a case

for the development of workload classification techniques to

better correlate workloads with system design requirements.

While this work focuses on storage, understanding compute

requirements has taken on a new urgency with the wide variety

of hardware [2] available to HPC and cloud providers for

the increasingly large AI/ML workloads which are typically

written in high-level, interpreted languages such as Python or

Julia, to name two. Thus, the goals of ensuring high perfor-

mance, high availability, and efficient allocation of resources

requires providers to collect, integrate, fuse, and analyze the

data of various system components such as storage, hardware,

networking, applications, power, and other sensors from the

cluster/datacenter. In particular, the analysis of compute uti-

lization data from various compute workloads in a cluster has

the potential to inform pathways to the optimization of cluster

operations as well as user code. The recently released MIT

Supercloud dataset [3] aims to provide such a curated dataset

to enable these types of analyses.

A. Background and related work

Several prior efforts on workload classification and identi-

fication exist in the literature. For example, [4] present results

from workload classification on NERSC datasets. Approaches

presented include feature selection followed by clustering

algorithms, resulting in the categorization of jobs into three

broad classes based on I/O characteristics. Energy consump-

tion is a critical part of datacenter operations and [5] used
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power utilization signatures for workload classification. Yoo

et. al. [6] used random forests to extract and characterize

the patterns of unsuccessful job statuses based on known job

characteristics. Part et. al. [7] describe a scalable analytics

framework applied to logs from the Oak Ridge Leadership

Computing Facility. Klinkenberg et. al. [8] used sensor data

from HPC systems to predict node failures. Finally, Ban-

jongkan, et. al. [9] used a multi-label classification approach

to predict job status based on HPC logs. Unfortunately, to the

best of our knowledge, not all the data used for these analyses

or implementations of methods are publicly available, which

limits the wide-spread use of the proposed methods. To address

this need, we are releasing a set of HPC monitoring logs from

known workloads, referred to as the labelled dataset herein,

along with baseline implementations of our approaches to

workload classification. While the initial dataset being released

focuses primarily on AI/ML workloads, we intend to augment

this dataset with other domain-specific scientific applications

running in our cluster. We also envision using subsets of

MLPerf [10] as part of a larger labelled dataset.

Prior to the publication of the MIT Supercloud Dataset [3],

several HPC cluster and commercial cloud datasets have been

made publicly available. These include the Parallel Work-

loads Archive (PWA) [11], [12], the Grid Workloads Archive

(GWA) [13], and the Failure Traces Archive (FTA) [14].

Additional datasets include the Argonne Leadership Comput-

ing Facility [15], Google Cluster-Usage Traces [16]–[18], the

Atlas Cluster Trace Repository [19], the Philly-Traces [20]

dataset from Microsoft, and the Blue Waters System Monitor-

ing Data Set [21]. We refer the reader to the publications cited

above for details on each dataset and availability. Along with

these datasets, there is an increased interest in the analysis

of cluster traces [22]–[25] with a variety of goals such as

developing better understanding of resource utilization and

optimizing cluster operations to name a few. We hope that the

MIT Supercloud Workload Classification Challenge (WCC)

introduced in this paper will further address this need to

understand HPC operations and foster new areas of research

in this field.

B. Our Contribution

In this paper we present the results of machine learning

classification algorithms on labelled HPC compute jobs as the

baseline for the MIT Supercloud WCC. This is accomplished

by utilizing a subset of the MIT Supercloud Dataset that

consists of manually labelled AI training jobs. The results

presented here serve as a baseline for the MIT Supercloud

WCC, which is the first public challenge as part of the larger

MIT Datacenter Challenge (DCC). For additional details,

including data availability and updates on the MIT DCC,

please see https://dcc.mit.edu/.

The MIT Supercloud WCC, and the MIT DCC more

broadly, is meant to foster the development of novel time

series data pre-processing techniques and machine learning

algorithms for datacenter operations. We envision these inno-

vations as tools which are generally applicable in any sensor

environment where time series data are involved. In summary,

the primary contributions of this paper are as follows:

• Detailed presentation of the MIT Supercloud Dataset’s

labelled dataset

• Announcement of the MIT Supercloud Workload Classi-

fication Challenge

• Baseline implementations of the MIT Supercloud Work-

load Classification Challenge

II. DATASET

A. The MIT Supercloud Dataset

The MIT Supercloud Dataset [3] was collected on the TX-

Gaia system, which is a heterogeneous cluster consisting of

a set of GPU-accelerated nodes and another set of CPU-only

nodes. The first partition has 224 nodes with two 20-core Intel

Xeon Gold 6248 processors with a total 384GB of RAM and

two NVIDIA Volta V100 GPUs with 32GB of RAM each. The

dataset consists of time series of CPU and GPU utilization,

memory utilization, GPU temperature, snapshots of compute

node state, file I/O, as well as the scheduler log. All identifiable

data has been removed or anonymized. Currently over 2.1 TB

of data are available for download at https://dcc.mit.edu/data.

Further detailed descriptions of data collection, parsing, and

anonymization are available in the paper [3].

B. The Labelled Dataset

At present, among the over 2 TB of data in the MIT

Superclould Dataset, approximately 2 GB consist of labelled

workloads, with 3,430 unique jobs. The labelled data was

created by running and manually labelling commonly used

deep neural networks in vision, Natural Language Processing

(NLP) and Graph Neural Networks (GNN). At present, there

are ten deep neural network models in the labelled dataset

as shown in Table I. However, many sub-architectures of the

models in Table I were collected as part of the labelled dataset.

This results in twenty six distinct classes of neural networks

in the labelled dataset, as show in tables VII, VIII, and IX in

the Appendix. Implementations of all models used to generate

this data and the datasets are available for public download at

https://dcc.mit.edu/. The labelled dataset collection is ongoing

and we expect to augment the existing data with additional AI

and other HPC compute workloads.

All data in the labelled dataset includes both CPU and GPU

time series. Due to the fact a single job may request multiple

GPUs across multiple nodes, the number of distinct GPU time

series is larger than 3,430. For example, the datasets used

in the experiments herein contain over 17,000 distinct GPU

time series, although the labelling is repeated for a single job

with multiple nodes and multiple GPUs. For completeness,

modified versions of tables appearing in [3] are included as

Tables II and III here, which show the features in the CPU

and GPU datasets relevant to classification. Further details on

the CPU and GPU time series datasets are available in [3].



TABLE I
ARCHITECTURE TOTALS FOR ALL MODELS

Vision Networks Job Count Language Models Job Count Graph Neural Networks Job Count

VGG 560 Bert 189 DimeNet 33
ResNet 464 DistillBert 172 SchNet 39
Inception 484 PNA 27
U-Net 1431 NNConv 32

TABLE II
CPU TIME SERIES FEATURES FOR CLASSIFICATION

Metric Description

CPUFrequency CPU clock frequency
CPUTime Time spent on compute by CPU
CPUUtilization CPU utilization by job
RSS Resident Memory Footprint Set Size
VMSize Virtual memory used by process
Pages Linux memory pages
ReadMB,WriteMB Amount of data read/written

TABLE III
GPU TIME SERIES FEATURES FOR CLASSIFICATION

Metric Description

utilization gpu pct Percentage of GPU utilized
utilization memory pct Percentage of memory utilized
memory free MiB Available GPU memory
memory used MiB GPU memory in use
temperature gpu GPU temperature
temperature memory GPU Memory temperature
power draw W Power drawn

III. WORKLOAD CLASSIFICATION CHALLENGE

The MIT Supercloud WCC is a supervised learning chal-

lenge with the goal of classifying labelled deep learning

compute jobs running on the MIT Supercloud HPC. As

discussed above, the MIT Supercloud labelled dataset consists

of 3,430 labelled jobs collected from an operational HPC

system. This presents many non-trivial challenges, some of

which we discuss below.

A. Challenge Datasets

As part of the WCC we are releasing seven datasets which

are shown in Table IV. Note, the released datasets have been

split into training and testing datasets with an 80/20 split

ratio. Each dataset contains approximately 60 seconds of GPU

only data sampled from all trials in the labelled dataset that

ran at least for (approximately) one minute. The datasets

were generated by sampling in three different ways: the first

60 seconds of each time series, the middle 60 seconds of

each time series, and a 60 second sample drawn at random

from the time series. Each dataset is saved in the Numpy

npz format and contains following the files: X train, y train,

model train, X test, y test, model test. Using the training

sets as an example, X train is a three dimensional vector

containing the time series data. For example, in the 60-start-1

dataset, the dimensions are (14590, 540, 7) which correspond

to trials, time series samples, and sensors respectively. For all

datasets, the seven sensors in the last dimension correspond to

the seven sensors in Table III and follow the same ordering as

the table. That is, element 0 is utilization gpu pct, element 1

is utilization memory pct, etc. y train is a vector of integer

class labels, with one label for each of the twenty six different

architectures outlined in Tables VII, VIII, and IX in the

Appendix and model train contains the text names of the

models corresponding to each numerical label in y train.

TABLE IV
WORKLOAD CLASSIFICATION CHALLENGE DATASETS

Dataset Training Trials Testing Trials Samples Sensors

60-start-1 14,590 3,648 540 7
60-middle-1 14,213 3,554 540 7
60-random-1 14,184 3,546 540 7
60-random-2 14,183 3,546 540 7
60-random-3 14,175 3,544 540 7
60-random-4 14,193 3,549 540 7
60-random-5 14,193 3,549 540 7

B. Formal Challenge Statement

Using the datasets discussed in Section III-A, either individ-

ually or in combination, MIT Supercloud WCC submissions

will be evaluated on classification accuracy, where the goal is

to achieve an accuracy exceeding those presented in Sections

IV and V.

C. Additional Considerations

The proposed WCC is made difficult by the fact that not

all time series have the same length. Furthermore, given that

the CPU and GPU time series are sampled at different rates,

they will have different lengths for the same trial. Solving the

issue of aligning time series of varying lengths for machine

learning is one of the primary problems this dataset presents.

This is made more complex by the fact the data was collected

in a multi-sensor environment, as indicated by the number

of features in Tables II and III. Below are some further

considerations posed by the labelled dataset and the MIT

Supercloud WCC.

Given the number of samples in the labelled dataset, a

neural network is likely to overfit. Can this be dealt with using

regularization or resampling techniques? Would traditional

machine learning techniques be better suited for this problem?

Given the high data sampling frequency and long job run

times the labelled dataset can be very large. To this end, what



kind of preprocessing and/or dimensionality reduction (if any)

should be used?

Related to the previous point, determining feature impor-

tance may allow the exclusion of particular features without

affecting classification accuracy.

Unlike traditional machine learning datasets, a single trial

in the labelled dataset is not a vector in R
n but a matrix

in R
n×m matrix, n being the number samples in the time

series and m the number of features. While deep learning

architectures such as Long Short-Term Memory Recurrent

Neural Networks [26] address this issue, are there innovative

data preprocessing techniques that map R
m×n

→ R
n without

sacrificing classification accuracy?

IV. TRADITIONAL MACHINE LEARNING - BASELINE

MODELS AND RESULTS

In this section and Section V we present baseline models

and results from traditional machine learning and neural

network architectures respectively. The traditional machine

learning models we experimented with were support vector

machines (SVM), random forests (RF), and XGBoost, and

a discussion of these appears in the subsections below. All

experiments were performed on the TX-Gaia system mention

in Section II-A. Further details on the TX-Gaia system can

be found in [3]. Additionally, the code used to generate the

results below will be available at https://dcc.mit.edu/.

A. Support Vector Machines and Random Forests

For both the SVM and RF architectures fourteen tests were

performed. This was the result of applying two different

dimensionality reduction techniques to the seven datasets in

Table IV. The first dimensionality reduction technique was

principal component analysis. As each trial in the datasets

from Table IV have 540 samples across 7 sensors, before per-

forming PCA each trial was reshaped to have the dimensions

3,780.

As with any other type of sequential data, another challenge

was the nature of time series encoding. For time series data,

each column does not necessarily represent a stand alone

feature, as any given point is extremely correlated with other

samples temporally closer to it as well as points inside other

periods. This requires feature engineering on the time series

data for each layer as well as means to compare and contrast

sequences across different sensors.

To address both of these challenges, the second dimension-

ality reduction technique was to compute the covariance matrix

for each trial. That is, given a single trial M ∈ R
540×7, from

either the training or testing sets, we computed the covariance

matrix with respect to the seven sensors, M⊤
M ∈ R

7×7. As

M
⊤
M is symmetric, we further reduced the dimensions of

each trial by taking the upper triangular portion of M
⊤
M.

These values were then stacked into a single row vector in

R
28. This had the result of compressing the original training

and testing datasets in R
3 into datasets in R

2. For exam-

ple, on the 60-start-1 training dataset, this technique maps

R
14590×540×7

7→ R
14590×28, where 28 is the total number of

unique variances/covariances that could be computed between

seven sensors (the number of entries in the upper triangle of

a matrix in R
7×7). This significant reduction in dimensions

helps reduce noise and thus allows easier detection of the real

signal between sensor measurements and job types. It also

allows us to directly assess the relevance of the relationship

between sensors in the identification of job types.

For both SVM and RF, the best models were selected

by performing a 10-fold grid search over a variety of hy-

perparameters. The hyperparameter specific to SVM was the

regularization parameter C, with values of 0.1, 1.0, and 10.0.

For RF the hyperparameter was the number of trees, or esti-

mators, having values of 50, 100, and 250. Both SVM and RF

were implemented using Scikit-learn’s [27] SVC and Random-

ForestClassifier classes respectively. For the non-covariance

datasets, the hyperparameter common to both models was the

number of PCA dimensions, searching over the values 28,

64, 256, and 512. For both SVM and RF, standardization

was performed using Scikit-learn’s StandardScaler class, with

standardization being applied before either covariance or PCA

dimensionality reduction.

The results for the SVM and RF experiments appear in

Table V, where the columns corresponding to the random

datasets are labeled as R1, R2, etc. With the exception of the

60-start-1 dataset, the best overall performing model was RF

with covariance dimensionality reduction. This is a significant

result in that the time complexity for the covariance dataset,

with a feature space in R
28, was significantly less than the

PCA datasets with larger feature spaces. Another result worth

pointing out is that, apart from the SVM model with PCA

dimensionality reduction, the worst performance was achieved

on the start dataset. A possible explanation for this is the

compute occurring at this time is not necessarily correlated

uniquely with the specific neural network model being run.

For example, the data preprocessing and data loading phases

occurring at this time may be generic across all models.

TABLE V
SVM AND RF TEST ACCURACY (%)

Model Start Middle R1 R2 R3 R4 R5

SVM PCA 82.13 80.84 76.62 75.32 76.78 75.29 75.46
SVM Cov. 67.24 73.21 71.66 71.32 71.05 70.55 70.61
RF PCA 83.17 89.76 85.58 86.69 86.51 86.31 86.42
RF Cov. 81.80 93.02 90.05 90.64 90.01 90.73 90.90

B. Regularizing Gradient-Boosting Classifier

In addition to the above models, we also performed tests

using the XGBoost algorithm, a type of sparsity-aware tree-

boosting classifier. This recent ensemble method has gained

great popularity in a variety of machine learning applications

such as credit scoring, bioactive molecule prediction, and

sentiment analysis [28], and its competitive performance has

repeatedly placed it among the top contenders at Kaggle

competitions [29]. We evaluated its performance on the 60-

random-1 dataset, applying standardization and covariance



dimensionality reduction as in Section IV-A. The grid search

consisted of 5-fold cross validation on the following hyper-

parameters. The first was γ, which set the minimum loss

reduction required to make a further partition on the leaf

node of a tree. Additionally, we performed a grid search over

both α and λ hyperparameters, which correspond to ℓ1 and ℓ2
regularization terms on the weights respectively.

Our XGBoost model achieved a test set accuracy of 88.47%

after 40 boosting rounds. Further experiments determined that

model performance plateaus after around 40 boosting rounds

and the model is overfitting as the training set error is very

close to zero. Additionally, we were able to identify important

covariances that have higher predicative power by comparing

the feature importance value for each covariance. Feature

importance indicates, on average, how frequently each attribute

split point improves the accuracy metric. From this analysis we

identified the top three sensor variances/covariances in terms

of feature importance:

• Covariance between GPU % Utilization and CPU %

Utilization

• Variance of GPU % Utilization

• Variance of Power Draw

This result could lead to further investigations on how these

GPU sensor measurements interact differently for each job

type. For example, one could inspect the relative efficiency

of the GPU in converting power to utilization for different

job types by the corresponding magnitudes of measurements

from the utilization GPU and power draw sensors, and contrast

across different job types. This would give further insight on

job efficiency on a more granular level.

V. RECURRENT NEURAL NETWORKS - BASELINE MODELS

AND RESULTS

Recurrent neural networks (RNNs) have shown their effi-

cacy in a variety of NLP tasks [30] [31] [32]. Similar to NLP

tasks, our data consists of time series that are sequentially and

temporally ordered, which traditional multi-layer perceptrons

cannot properly capture. Recurrent neural networks address

this issue by sequentially processing sequences one step at

a time, passing the output of one time step as the input

of the next time step, making them suitable for our task at

hand. However, unlike traditional machine learning models,

neural networks often require longer training times. As a

result, instead of training on all seven datasets in Table IV,

we trained on the 60-start-1, 60-middle-1, and 60-random-

1 datasets. Prior to training, each dataset was standardized

using Scikit Learn’s StandardScaler class as in Section IV.

No other feature engineering or preprocessing was applied to

the datasets.

A. Long Short-Term Memory Networks

A special type of RNN, Long Short-Term Memory net-

works (LSTM) are explicitly designed to address the long-

term dependency problem in traditional RNNs [26]. To es-

tablish a baseline comparison to classical machine learning

approaches, we picked a fairly straightforward standard bidi-

rectional LSTM architecture. A bidirectional LSTM trains two

LSTMs on the input sequence, one from start-to-end, and the

other in reverse. This allows the LSTM to learn additional

long-term context of the input sequence from both past and

future information, rather than just past information as in a

unidirectional LSTM.

The input sequence is fed into a bidirectional LSTM with

a hidden layer size of 128 with all 7 sensors as the feature

vector. Then, the output of both LSTMs were concatenated

and passed through a fully-connected layer projecting down

to a feature size equal to the length of the sequence. This

was then passed through a dropout layer with p=0.5 to reduce

overfitting, a leaky rectified linear unit (leaky ReLU) [33]

activation function as a non-linearity, and finally fed into

another fully-connected layer that outputs a vector of size

equal to the number of classes we are predicting. Lastly, we

apply a log-softmax transform on the output vector to get the

log-probabilities of our classes. For our loss function, we take

the negative log-likelihood loss of the log-probability vector

with respect to the correct classes.

During training, a cyclical learning rate scheduler was used

with cosine annealing as it has been shown to drastically im-

prove convergence and reduce training time [34]. Each model

was trained for 1000 epochs, early stopping if the validation

accuracy did not improve over 100 epochs. For consistency

and simplicity, we report the best validation accuracy in our

results rather than using a more nuanced, ”best gut sense”

manner of choosing the best epoch model that minimizes

overfitting. This process was then repeated for a stacked 2-

layer bidirectional LSTM, with a dropout layer with p=0.5 in

between, and all other hyperparameters held equal for a total

of two LSTM models.

B. Applying Convolutions to LSTMs

As the seven GPU features in our dataset are correlated

with one another, and our intuition informs us that we are

likely to see certain patterns of GPU activity during workloads,

we also introduce elements from the domain of computer

vision and image recognition. Convolutional networks (CNNs)

[35] ”slide” filters (called convolutional kernels) across the

dataset that allow it to learn intermediate features - in image

processing tasks these might include learning to recognize

facial features or parts of a vehicle in image recognition tasks.

We feed the input sequence into two 1-dimensional convo-

lutional layers sandwiching a max pooling layer to reduce the

dimensionality of the feature maps. This output is then fed into

the same bidirectional LSTM architecture from Section V-A

and trained in the same manner. Because the training time of

RNNs increases with the length of the input sequence, this

had the side benefit of speeding up training time by almost 8

times.

We repeated this process with two more models with hidden

sizes of 256 and 512, and a CNN-LSTM with a hidden size

of 512, but with a smaller kernel and step size (and thus a



TABLE VI
RNN TEST ACCURACY (%)

Model Start Dataset Middle Dataset Random Dataset

LSTM (h=128) 82.57 92.09 90.81

LSTM (h=128, 2-layer) 80.51 91.90 90.52
CNN-LSTM (h=128) 82.65 89.90 90.55
CNN-LSTM (h=256) 67.60 89.36 88.61
CNN-LSTM (h=512) 64.45 65.67 73.80
CNN-LSTM (h=512, small kernel) 66.26 71.47 75.21

longer sequence output length to be fed into the LSTM) for a

total of four CNN-LSTM models.

The results of our RNN models are reported in Table VI. A

comparison with Table V shows that the best performing RNN

models had marginally smaller accuracy values compared to

the best models in Table V on the 60-start-1 and 60-middle-

1 datasets and performed slilghtly better on the 60-random-

1 dataset. Although the RNN models posses more degrees

of freedom, and potentially can represent a larger class of

functions, these more complex models may be overfitting to

the training data and thus scoring lower in test. Additionally,

it is likely a more expansive hyperparameter sweep and aug-

mented dataset would result in the RNN models outperforming

the SVM and RF models. Nevertheless, our set of results

represents a promising start in using modern neural approaches

to tackle our challenge task of classifying workloads.

As with the SVM and RF results discussed above, the lowest

RNN accruacy, for all models, was acheived on the 60-start-

1 dataset. This further supports our explanation of this same

result in the context of the SVM and RF models from Section

IV-A.

VI. SUMMARY AND FUTURE WORK

The results in Table V are impressive given that SVM and

RF are standard machine learning algorithms and certainly

not considered state-of-the-art. In fact, among all the baseline

models evaluated herein, in general, the best accuracy was

achieved with RF. However, while this established a baseline,

given the complexity of neural network architectures, it is quite

possible greater diversity of data, modifications to the LSTM

architectures, a more extensive hyperparameter search, or other

neural network architectures may show improvement over this

baseline.

Our results with XGBoost demonstrated that appropriately-

engineered, preprocessed features in combination with a well-

proven classical machine learning technique are competitive

with state-of-the-art neural network architectures. As with

the LSTM architectures, the performance of XGBoost may

be improved with more diverse data and a more expansive

hyperparameter search.

Although deep neural networks have reduced the need

for finely-crafted, low-level feature engineering, appropriate

feature selection and high-level meta-structure features are still

relevant and a worthy pursuit in our opinion. As a result, we

believe that the performance of our RNNs can be improved

with the appropriate pre-processing and feature selection in

our dataset. Furthermore, given that our results suggest that

our models might have overfit to the training data, more could

be done to reduce overfitting, such as applying regularization

or additional dropout layers.

Additionally, other more recent and novel neural network

architectures may prove to be more accurate on our challenge

dataset. In particular, we believe that the ConvLSTM architec-

ture is promising in its ability to capture convolutional features

in both the input-to-state and state-to-state domains having

shown efficacy in weather forecasting problems [36].

Lastly, we are excited by the prospect of training models

on the entire dataset of workloads from start-to-finish. While

such models will take significantly longer to train than any

of the ones we have used in this paper, we believe that the

ability for them to learn the structures and patterns of a full

workload will help in classifying snapshots of data from live

workloads running in-progress, which represents a viable use

case for these types of models to be deployed.
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VII. APPENDIX

TABLE VII
VGG AND INCEPTION ARCHITECTURES USED FOR VISION MODELS

VGG Models Job Count Inception Models Job Count

VGG11 185 Inception3 241
VGG16 176 Inception4 243
VGG19 199

TABLE VIII
RESNET AND U-NET ARCHITECTURES USED FOR VISION MODELS

ResNet Models Job Count U-Net Models Job Count

ResNet50 111 U3-32 165
ResNet50 v1.5 91 U3-64 159
ResNet101 77 U3-128 165
ResNet101 v2 54 U4-32 163
ResNet152 76 U4-64 158
ResNet152 v2 54 U4-128 157

U5-32 158
U5-64 158
U5-128 148

TABLE IX
ARCHITECTURES USED FOR NATURAL LANGUAGE PROCESSING (NLP)

AND GRAPH NEURAL NETWORKS (GNN)

NLP Model Job Count GNN Model Job Count

Bert 185 Dimenet 33
DistillBert 241 Schnet 39

PNA 27
NNConv 32


