
HAL Id: hal-03619760
https://hal.science/hal-03619760

Submitted on 25 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Local Search for Automatic Parameterization of
Distributed Tree Search Algorithms

Tiago Carneiro, Loizos Koutsantonis, Nouredine Melab, Emmanuel Kieffer,
Pascal Bouvry

To cite this version:
Tiago Carneiro, Loizos Koutsantonis, Nouredine Melab, Emmanuel Kieffer, Pascal Bouvry. A Local
Search for Automatic Parameterization of Distributed Tree Search Algorithms. PDCO 2022 - 12th
IEEE Workshop Parallel / Distributed Combinatorics and Optimization, May 2022, Lyon, France.
�hal-03619760�

https://hal.science/hal-03619760
https://hal.archives-ouvertes.fr

A Local Search for Automatic Parameterization of
Distributed Tree Search Algorithms

Tiago Carneiro†, Loizos Koutsantonis†§, Nouredine Melab∗, Emmanuel Kieffer†, Pascal Bouvry‡
FSTM, University of Luxembourg†, Luxembourg

DCS-FSTM/SnT, University of Luxembourg‡, Luxembourg
INRIA Lille - Nord Europe∗, France

Université de Lille, CNRS/CRIStAL∗, France
Wings ICT Solutions§, Athens, Greece

{tiago.carneiropessoa, emmanuel.kieffer, pascal.bouvry}@uni.lu, nouredine.melab@univ-lille.fr
lkoutsantonis@wings-ict-solutions.eu

Abstract—Tree-based search algorithms applied to combina-
torial optimization problems are highly irregular and time-
consuming when solving instances of NP-Hard problems. Due to
their parallel nature, algorithms for this class of complexity have
been revisited for different architectures over the years. However,
parallelization efforts have always been guided by the perfor-
mance objective setting aside productivity. Using Chapel’s high
productivity for the design and implementation of distributed
tree search algorithms keeps the programmer from lower-level
details, such as communication and load balancing. However, the
parameterization of such parallel applications is complex, con-
sisting of several parameters, even if a high-productivity language
is used in their conception. This work presents a local search-
based heuristic for automatic parameterization of ChapelBB,
a distributed tree search application for solving combinatorial
optimization problems written in Chapel. The main objective of
the proposed heuristic is to overcome the limitation of manual
parameterization, which covers a limited feasible space. The
reported results show that the heuristic-based parameterization
increases up to 30% the performance of ChapelBB on 2048 cores
(4096 threads) solving the N-Queens problem and up to 31%
solving instances of the Flow-shop scheduling problem to the
optimality.

Index Terms—Parallel tree-based search, Combinatorial opti-
mization, Parameter configuration, High-productivity languages,
Chapel

I. INTRODUCTION

Algorithms for solving combinatorial optimization problems
(COPs) can be divided into exact (complete) or approximate
methods [1]. The exact ones guarantee to return a proven
optimal solution for any instance of the problem in a finite
amount of time. Among the complete algorithms, the tree-
based enumerative strategies, such as backtracking and branch-
and-bound (B&B), are the most widely used methods for
solving instances of COPs to optimality [2].

Tree-based search algorithms applied to combinatorial op-
timization problems are highly irregular and time-consuming
when solving instances of NP-Hard problems. Due to their
parallel nature, algorithms for this class of complexity have
been revisited for different architectures over the years [3].
However, parallelization efforts have always been guided by
the performance objective setting aside productivity. The study
of a feasible high-productivity language for the design and

implementation of tree-based search led us to the Chapel
language [4]. In the context of this work, Chapel stands out.
It is a compiled language that allows one to hand-optimize
data structures for performance and also provides high-level
features for dealing with the irregularity of the solution space,
such as iterators, which are responsible for load balancing at
both distributed and intra-node levels.

Using Chapel for the design and implementation of dis-
tributed tree-search algorithms hides from the programmer per-
spective details, such as lower-level communication messages,
load balancing, metrics reduction and distributed coherency of
the incumbent solution. However, the parameterization of such
parallel applications is complex, consisting of several param-
eters, even if a high-productivity language is used in their
conception. Usually, the parameterization of the productivity-
aware tree search is performed manually by using parameters
from previous experiments. However, it is difficult to improve
these parameters manually, as a misconfiguration might lead
to poor parallel performance. Moreover, there are cases where
the previous experience comes from different problems or
different system architectures, which might result in poor
parameterization.

This work presents a local search-based heuristic for auto-
matic parameterization of ChapelBB, a distributed tree search
application for solving combinatorial optimization problems
written in Chapel. The main objective of the proposed heuristic
is to overcome the limitation of hand-based parameterization,
which strongly relies on executions on different systems and
covers a limited solution space. Results show that the heuristic-
based parameterization increases up to 30% the performance
of ChapelBB on 2048 cores (4096 threads) solving the N-
Queens problem and up to 31% solving instances of the Flow-
shop scheduling problem to the optimality.

The remainder of this document is structured as fol-
lows. Section II brings background information introduces
ChapelBB, the productivity-aware tree-based search to be
parameterized. In turn, Section III presents the heuristic-based
approach for parameterization of ChapelBB. The evaluation of
the heuristic-based parameterization is shown in Section IV.
Finally, conclusions are outlined in Section V.

x
x x

1

1-3 1-4

Pool of nodes (P)

Depth=1

Depth=2

Depth=3

Cutoff = 3

Task 0
(locale 0)

1-2

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5

1-5

1 - 5 - 2 1 - 5 - 3 x1 - 5 - 4

1 - 2 - 3 1 - 2 - 4 1 - 2 - 5 1 - 5 - 2

.....
.
x

Fig. 1. Schematic representation of an initial search on locale 0 - task 0 that
generates the pool P for a permutation combinatorial problem size N = 4
and cutoff = 3. The figure depicts the branch that has the element 1 of
the permutation as the root and generated 4 valid and feasible incomplete
solutions at depth cutoff = 3.

II. THE PRODUCTIVITY-AWARE DISTRIBUTED
TREE-BASED SEARCH

This section introduces ChapelBB, a productivity-aware
distributed tree search designed and implemented in Chapel.
The application solves permutation-based combinatorial op-
timization problems to the optimality and implements the
master-worker scheme detailed in Section II-B.

A. The Chapel High-productivity Language

Chapel is an open-source parallel programming language
designed to improve productivity in high-performance comput-
ing. In Chapel, the program is started with a single task, and
parallelism is added through data or task-parallel features [5].
Furthermore, as Chapel belongs to the partitioned global
address space (PGAS) languages, the application has a global
memory addressing space, and each segment of this space
is assigned to a different locale [6]. In Chapel, a locale is
similar to a MPI process, and a computer node can host one
or more locale. Due PGAS, a task can refer to any variable
lexically visible, whether this variable is placed on the same
locale on which the task is running, or on the memory space
of another one. Moreover, indexes of data structures can be
globally expressed, even in the case where the implementation
of such data structures distributes the indexes across several
locales.

Iterators in Chapel: are similar to procedures that can be
used to isolate iterations from the loop body. Each value
yielded by the iterator corresponds to an iteration of the loop.
Chapel provides different parallel and distributed iterators
that implement load balancing between computer cores and
processes. Related works on distributed tree search show that
the iterators provided by Chapel are the key feature to achieve
a trade-off between productivity and parallel efficiency [4],
[7]. The complex communication pattern of a distributed
master-worker algorithm is encapsulated by the iterators. As a
consequence, there is no need for explicitly dealing with work
distribution, load balancing, termination criteria, or metrics
reduction.

Pd = P
(Implicit Bulk-Transfer)

Distributed pool (Pd)

0
Pd

Locale 0

1

Locale 1

Pd

Locale 2

2
Pd

Fig. 2. The distributed pool Pd consists of several sets P i
d, i ∈ {0, ..., L−

1}, where L is the number of locales on which the application runs. This
distribution is performed through an attribution operator, which invokes an
implicit bulk transfer.

B. The Master Locale and the Initial Search

ChapelBB (Algorithm 1) starts with task 0 running serially
on locale 0. As ChapelBB is an algorithm that follows the
master-worker load distribution scheme, it is necessary to gen-
erate an initial load which should be kept into the distributed
pool of nodes Pd. As illustrated in Figure 1, this initial load
is generated through a partial search (line 5) referred to as
the initial search. The latter is partial as it just evaluates
sequentially a small portion of the solution space with the sole
objective to generate valid, feasible, and incomplete solutions
(subproblems) to be kept into Pd.

As one can see in Algorithm 1, task 0 initially receives the
size N of the problem and the cutoff depth (lines 1− 2). This
work focuses on permutation-based combinatorial problems,
for which an N -sized permutation represents a valid and
complete solution. Therefore, in the partial search, task 0 im-
plicitly enumerates all feasible and valid incomplete solutions
containing cutoff elements of the permutation, keeping them
into the pool P (line 3), which is local to task 0. Lines 6 to
8 are responsible for defining the PGAS-based pool of nodes
Pd. In line 9, Pd receives via implicit bulk transfer the nodes
of P .

The parallel search takes place in line 10, adding parallelism
by using the forall statement along with distributed iterators
(DistributedIters), which are responsible for the as-

Algorithm 1: The Master-worker scheme.
1 N ← get problem()
2 cutoff ← get cutoff depth()

3 P ← {} Node
4 metrics ← (0, 0)
5 metrics + = initial search(N, cutoff, P)

6 Size ← {0..(|P | − 1)} // Domain
7 D ← Size mapped onto locales to a standard distribution
8 Pd ← [D] : Node

9 Pd = P // Using implicit bulk-transfer

10 forall node in Pd following a distributed iterator with(+ reduce
metrics) do

11 metrics + = Search(N,node, cutoff)
12 end
13 present results(metrics)

Locale 0 (master)

Distributed pool (Pd)

Metrics/Solutions

New requests

Distributed-level
chunk

+reduce metrics
+reduce solutions

Locale 1

Intra-node
chunk

Task 1
Task-local pool

Task t-1
Task-local pool

Metrics/Solutions

New requests

Task 0

local pool (P1)

...

...

Locale L-1

Intra-node
chunk

Task 1
Task-local pool

Task t-1
Task-local pool

Metrics/Solutions

New requests

Task 0

local pool (PL-1)

...

...

+reduce metrics
+reduce solutions

...

Fig. 3. In the master-worker scheme followed by ChapelBB, locale 0 (master) is responsible for generating the pool Pd and controlling the search, distributing
subproblems for the worker locales according to a distributed iterator. In the intra-node level, each worker locale receives nodes from the master and task 0
generates a local pool (Pl). In turn, subproblems are distributed to tasks according to an intra-node iterator. Figure adapted from [8]).

signment of nodes in Pd to locales in a master-worker manner
(distributed load balancing). There is no need for programming
a termination criterion or a reduction of the search metrics. The
search finishes when the distributed active set Pd is empty, and
metrics are reduced by using the reduction intents provided by
Chapel (+ reduce).

In the context of this work, iterators can be considered
similar to OpenMP schedulers. Finally, both intra- and inter-
locale levels of parallelism are exploited by using Chapel par-
allel iterators. For more details about ChapelBB, the interested
reader may refer to [4], [9].

C. Aspects of Implementation

So far, two implementations of ChapelBB have been de-
veloped. The first one corresponds to a distributed back-
tracking for enumerating all complete and valid solutions
of the N-Queens problem. This latter consists of placing
N non-attacking queens on a N × N chessboard, and it
is often used as a benchmark for novel tree-based search
algorithms [10]. The N-Queens is a proof-of-concept that
motivates further improvements in solving related combina-
torial optimization problems. The second implementation is
a distributed branch-and-bound (BB) for solving instances of
the Flow-shop scheduling problem (FSP), a classical NP-Hard
problem, to the optimality. In short, FSP aims at scheduling
N jobs on M machines {m1,m2, . . . ,mM} in that order. For
more details, refer to [4].

The implementation of ChapelBB is openly available at the
Chapel-based Optimization repository [11].

III. A LOCAL SEARCH-BASED APPROACH FOR THE
PARAMETERIZATION OF CHAPELBB

A. Challenging Issues

In order to maximize parallel performance and efficiency, on
each computer ChapelBB is executed, it is required to provide
to the application configuration parameters. These parameters
are found manually and based on previous experience. It
is important to point out that it is required to find good
parameters for each system on which ChapelBB runs, as a
good parameters configuration for a given cluster might not
work for another one. Additionally, a parameters configuration
found for c computer nodes on the same system might not be
good for a different number of computer nodes. The same
goes for multiple problems: each implementation requires a
specific parametrization.

Consider the tuple T = (S, c, π,Π), where S is the system
on which ChapelBB is executed, c is a system configuration in
terms of computer nodes, and π is the instance of the problem
Π to be solved to the optimality. This way, the objective is to
find a parameters vector P which minimizes the execution time
of ChapelBB(T ,P). In this context, the challenge is to find
a parameters vector P which minimizes the execution time
of ChapelBB(T ,P) and also presents good performance for
another configuration c′ and another instance π′ ∈ I , where
I is the set of instances of Π used in the experiments.

Before introducing the algorithm to find by hand feasible
and valid parameter configuration for ChapelBB, the parame-

TABLE I
PARAMETERS USED TO CONFIGURE THE DISTRIBUTED SEARCHES AND THE VALUES THEY CAN RECEIVE.

Parameter Alias Description Possible values
c1 First Cutoff Initial cutoff depth 3,4,5
c2 Second Cutoff Second cutoff depth 6,7,8
c3 Load balancing Distributed load balancing static, dynamic, guided
s1 Distributed chunk Distributed load balancing chunk size 1,4,8,16,32
s2 Intra− node Chunk Intra-node load balancing (dynamic) chunk size 8,16,32,64,128
s3 Hyperthreading Use hyper-threading? true, false
t1 Coordinated Locale 0 acts only as the coordinator? true, false
t2 PGAS PGAS-based active set? true, false

ters used to configure the distributed search are introduced as
follows.

B. Parameters

As one can see in Table I, an implementation ChapelBB
for solving to optimality instances of the problem Π receives
eight parameters for execution, which are divided into three
classes that reflect their importance: Critical, Secondary and
Tertiary.

The parameters for which a misconfiguration drastically
affects the parallel performance and efficiency of the search
are classified as Critical. There are three parameters in this
class: c1 – the initial cutoff depth; c2 – the second cutoff depth,
and c3 – the distributed load balancing scheme. In turn, the
Secondary class consists of the chunk size of the distributed
and intra-node load balancing schemes – s1 and s2, respec-
tively, and whether to use hyperthreading for improving intra-
node parallelism – s3. Finally, the least critical parameters,
which belong to the Tertiary class are the binary variables
t1 and t2, which corresponds to the decision of removing the
master locale (id 0) from the search process, using it just to
coordinate the search, and whether to distribute or not the
centralized pool of nodes Pd (See Figure 2), which could
improve locality. Therefore, P = [c1, c2, c3, s1, s2, t1, t2].

C. The Manual Algorithm

An initial parameters configuration P is chosen according
to previous experience, from results returned from executions
of ChapelBB on another system S′. Thus, the initial step of the
manual algorithm is to execute ChapelBB(T ,P) to get its
execution time e. Then, we perturb the critical parameters of
P , usually one at a time, generating the neighboring vector
P ′ to verify whether this perturbation results in execution
time improvement. If P ′ leads to a better performance, a
perturbation is performed on P ′, resulting in P ′′.

If a local optimum is found in the region of the critical
parameter, the next step is to explore less critical parame-
ters. However, in the manual algorithm, the search for bet-
ter secondary and tertiary parameters can be neglected, as
a wrong configuration might not degrade considerably the
parallel performance and efficiency of ChapelBB. The last step
of the manual algorithm is to run experiments on different
system configurations and for a reduced set of instances. The

parameters configuration which returns the best overall results
is then chosen.

D. The Hill-climbing Algorithm

Explicit enumeration of all possible configurations for a
given T corresponds to 16, 200 possibilities, and this parame-
ter choice would only be the proven best for T . Based on the
manual algorithm, we propose a hill climbing approach for
automatic parallelization of ChapelBB. Our objective is not to
rely only on previous experience and overcome the limitation
of manual parameterization, which neglects the secondary and
tertiary parameters.

As it can be observed in Algorithm 2, the hill climber
starts with an arbitrary parameters vector Phill and executes
ChapelBB(T,Phill), to get its cost hill cost in terms of
execution time. Then, the algorithm performs a local search on
Phill, returning the best parameters configuration that can be
found in its neighborhood. In case an improvement is found,
P and best cost are updated and the local search is called
until no further improvement is possible.

E. The Local Search

Due to the huge amount of time required for the search to
complete when bad parameters are chosen, the local search
does not evaluate a large solutions space, only neighbors with
distance one from Phill. For each parameter p of Phill, the
search generates the neighboring vectors Pleft and Pright.
For instance, if c3 (See Table I) in Phill is dynamic, Pleft

has all elements equal to the ones of Phill but c3, which is

Algorithm 2: A hill climbing algorithm for automatic
parameterization of ChapelBB.

Input: The tuple T .
Output: A parameters vector P and the cost of ChapelBB(T ,P).

1 Phill ← get random parameters()
2 P ← ∅
3 best cost ← 0
4 hill cost ← ChapelBB(T ,Phill)

5 while hill cost < best cost do
6 best cost ← hill cost
7 P ← Phill

8 < Phill, hill cost > ← local search(T ,Phill, hill cost)
9 end

10 return < P , hill cost>

Algorithm 3: The local search used by the hill climber.
Input: The tuple T , the parameters vector Phill, and hill cost.
Output: A tuple < Pbest, search cost >, which corresponds to

the best parameters found by the local search and the cost
of ChapelBB(T ,Pbest), search cost.

1 Pleft ← ∅, Pright ← ∅
2 Pbest ← Phill

3 left cost ← 0, right cost ← 0
4 best cost ← 0
5 search cost ← hill cost

6 forall parameter p in Phill do
7 Pleft ← get left neighbor(Phill, p)
8 Pright ← get right neighbor(Phill, p)

9 left cost ← ChapelBB(T ,Pleft)
10 right cost ← ChapelBB(T ,Pright)

11 best cost ← min(left cost, right cost)

12 if best cost < search cost then
13 search cost ← best cost

14 if left cost < right cost then
15 Pbest ← Pleft

16 else
17 Pbest ← Pright

18 end
19
20 end
21 end
22 return < Pbest, search cost >

equals to static. In turn, Pright has c3 equals to guided.
The concepts of left and right are similar to the next and
the previous elements of a circular doubly linked. If the local
search finds a cost improvement, the search returns the best
parameters vector Pbest and the cost of ChapelBB(T ,Pbest),
search cost.

F. Aspects of Implementation

As parallelism is added in Chapel, it is possible to call
the ChapelBB itself as the cost function of the parameter-
ization heuristic, as shown in both pseudocodes previously
presented. Moreover, the heuristic can be used also as an initial
parameters generation, so the search can be started without
parameters, only receiving T . In the current implementation,
the parameterization is only performed for a given tuple T .
If the user wants to get a parameter for another system
configuration or instance, it is required to start the search
receiving a different T .

IV. EVALUATION

A. Experimental Protocol

In this evaluation, the hill climbing algorithm detailed in
Section III-D is used to find feasible parameters for two
implementations of ChapelBB: the first one solves instances of
the FSP to the optimality, whereas the second one enumerates
all feasible and complete solutions of the N-Queens problem.
We compare the results obtained by the hill climber to the ones
obtained manually, based on previous executions on another
system, which has a different processor architecture and high-
performance network.

As pointed out in Section III-C, in the manual parameter-
ization, we run a set of experiments, for a reduced set of
instances, on a number of nodes smaller than the one we
want to run the final experiments. The reason for such a
choice is that a reservation containing several nodes is usually
difficult to get. Moreover, good parameters for a high number
of computer nodes differ considerably from the parameters
for a small number of nodes and single-node execution. In this
way, both the manual and the heuristic-based parameterization
are performed on 20 computer nodes. Then, we compare the
execution times for 32 computer nodes.

In the experiments, N-Queens problems of size (N) ranging
from 17 to 21 are considered. The instance chosen for param-
eterization is the N-Queens of size N = 19, which can be
considered as a big instance. In turn, the FSP benchmark in-
stances used in our experiments are the FSP instances defined
by Taillard [12]. We use 9 instances where M = N = 20. For
most instances where M = 5 or 10, the bounding operator
gives such good lower bounds that it is possible to solve
them in few seconds using a sequential B&B. Instances with
M = 20 and N = 50, 100, 200 or 500 are very hard to solve.
For example, the resolution of the instance Ta056 (N = 50,
M = 20), performed in [13], lasted 25 days with an average of
328 processors and a cumulative computation time of about 22
years. For the parameterization, the instance chosen is ta28,
which, among the 9 selected instances for the experiments, is
a medium-sized one.

To compare the performance of two tree-based search algo-
rithms, both should explore the same search space. When an
instance is solved twice using a parallel tree search algorithm,
the number of explored nodes varies between two resolutions.
Therefore, for all FSP instances, the initial upper bound (cost
of the best found solution) is set to the optimal value, and the
search proves the optimality of this solution. This initialization
ensures that precisely the critical sub-tree is explored, i.e.,
the nodes visited are exactly those nodes which have a lower
bound smaller than the optimal solution [14].

B. Experimental Testbed

The experiments were executed on the new Aion Cluster,
hosted at the University of Luxembourg. All computer nodes
are symmetric and operate under Red Hat Enterprise Linux
8.3, 64 bits. The nodes are equipped with two AMD Epyc

TABLE II
SUMMARY OF THE ENVIRONMENT CONFIGURATION FOR MULTI-LOCALE

EXECUTION AND COMPILATION.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE 128

CHPL_TARGET_CPU native
CHPL_HOST_PLATFORM linux64

CHPL_LLVM none
CHPL_COMM gasnet

CHPL_GASNET_SEGMENT everything
CHPL_COMM_SUBSTRATE ibv
GASNET_PSM_SPAWNER ssh

ROME 7H12 @ 2.6 GHz, a total of 64 cores (128 threads) per
node, and 256 GB ram. In the experiments, up to 32 nodes
have been reserved, total of 2048 cores, hosting 4096 threads.
All computer nodes are interconnected through a InfiniBand
(IB) HDR100 network, configured over a Fat-Tree Topology.
The number of locales (Chapel processes) is passed to the
application using Chapel’s built-in command line parameter
-nl L, where L is the number of locales on which the
application is executed. In these experiments, each computer
node hosts one Chapel locale.

Both the hill climber and ChapelBB implementations were
programmed for Chapel version 1.25.0, and the default task
layer (qthreads) is the one employed. Chapel’s multi-locale
code runs on top of GASNet, and several environment vari-
ables should be set with the characteristics of the system the
multi-locale code is supposed to run. One can see in Table II
a summary of the runtime configurations for multi-locale
execution. The Infiniband GASNet implementation is the one
used for communication (CHPL_COMM_SUBSTRATE) along
with SSH, which is responsible for getting the executables
running on different locales (GASNET_PSM_SPAWNER).

C. Experimental Results

One can see in Table III parameters found manually and
via the hill climbing heuristic for the N-Queens and the FSP
problems. A first detail that is it worth to mention concerns the
parameters found by the heuristic for the N-Queens problem.
The previous experience shows us that the dynamic dis-
tributed load balancing scheme presents the best performance
for both the N-Queens and the FSP problems [4], [9]. In
turn, on the Aion cluster, which is AMD-based, ChapelBB
shows the best performance enumerating the solutions of the
N-Queens using guided as the load balancing scheme. For
all other scenarios, the best configuration uses the dynamic
iterator. It is important to point out the limitation of relying on
previous experience without proper evaluation of all classes of
parameters. Without using the heuristic, we would continue to
use the dynamic iterator instead of exploring other configu-
rations for the load distribution scheme.

For the manual parameters choice, the best initial and
secondary cutoff depths found are 4 and 8, respectively. In
turn, the use of a heuristic made it possible to find a initial
cutoff depth deeper for the N-Queens and a shallower depth
for the FSP. A deeper initial cutoff might result in fine-
grained subproblems, and a shallower depth might result in
subproblems with a coarser granularity, which might result in

TABLE III
PARAMETERS FOUND MANUALLY AND VIA HEURISTIC TO EXECUTE
CHAPELBB. THE ORDER OF THE PARAMETERS FOLLOWS TABLE I.

Parameters
Heuristic–Queens (guided, 5, 8, 1, 8, 128, false, false)
Manual–Queens (dynamic, 4, 8, 16, 32, 128, false, false)

Heuristic–FSP (dynamic, 3, 7, 8, 8, 128, true, false)
Manual–FSP (dynamic, 4, 8, 64, 32, 128, false, false)

load imbalance. First, sub-tress that would became unfeasible
in deeper depths are not pruned yet in the enumeration process.
Second, with coarse-grained subproblems, computer nodes
might starve more easily, as the pool gets empty while other
computer nodes did not finish their enumeration.

For the N-Queens, the size of the centralized pool using
the heuristic, for N = 18, is 8.6× bigger than the one using
the manual parameters. On the other hand, there is no time
spent in distributing the active set as the PGAS flag is set
to false. The time is only spent when the master sends tree
nodes to other locales. However, in the current implementation
of Chapel, this data transfer for the distribution of the active
set is residual.

Concerning the parameters in the Tertiary class, for the
manual parameterization, it is not worth to make several exper-
iments with the PGAS flag as it did not affect significantly the
performance of the application. Only the heuristically chosen
parameters for the FSP problem are using the PGAS flag
set to true. Furthermore, the heuristic found the same intra-
node chunk size for both problems – 128. The choice of such
parameter was not performed manually. The value of 128 is
based on previous experience.

Performance Results: One can see in Figure 4 the com-
parison of ChapelBB’s parallel performance configured with
the manually and heuristically chosen parameters. Concerning
the N-Queens problem, and for the smaller size (N = 17),
ChapelBB with the heuristically chosen parameters can be
almost twice as slow as its counterpart using the manually
chosen parameters. As the solution space grows, it is possible
to improve the performance of ChapelBB solving the N-
Queens from 24% (N = 19) to 30% (N = 21) on 32 computer
nodes (2048 cores). The main reason for this big difference can
be explained by primary parameters. Using the deeper initial
depth allied to the guided distributed iterator made the search
more efficient. Using the dynamic iterator with the hand-
chosen parameters results in load imbalance. For N = 21, the
biggest load processed by a locale is 1, 47× higher than the
smallest load. In turn, the heuristic-based parameters, which
use the guided iterator and a deeper initial depth, show the
biggest tree processed by a locale only 5% bigger than the
smallest tree.

Finding a good parameters configuration is easier for the
N-Queens: a bigger problem keeps the characteristics of the
smaller ones. Thus, the results are similar for N > 18.
However, when it comes to the FSP, the parameterization
is much more difficult, even though the instances belong to
the class for which N = M = 20. Each instance has its
characteristic in terms of solution space size and irregular-
ity. Despite these challenging issues, ChapelBB configured
with the heuristically-chosen parameters shows performance
inferior to its manually-configured one only for the instances
ta22 (−22%), ta28 (−30%) and ta30 (−33%). It is important
to point out that ta22 and ta30 are the smallest instances.
This way, this performance difference, which might look big
in percent, corresponds to about one second of execution time.

Equivalent performance is observed for both parameteriza-

 0

 0.5

 1

 1.5

 2

17 18 19 20 21

N
o
rm

a
liz

e
d
 e

xe
cu

ti
o
n
 t

im
e

N-Queens size

Heuristically
Manually

(a) N-Queens

 0

 0.5

 1

 1.5

 2

29 30 22 27 23 28 25 26 24

N
o
rm

a
liz

e
d
 e

xe
cu

ti
o
n
 t

im
e

FSP instance

Heuristically
Manually

(b) FSP
Fig. 4. Relative execution time achieved by ChapelBB configured with the heuristically-chosen parameters compared to its manually configured counterpart
(a) enumerating all feasible and valid solutions of the N-Queens problem and (b) solving instances of the FSP to the optimality. The FSP instances are ordered
according to their tree sizes. Results are shown for 32 computer nodes – 2048 cores (4096 threads).

tion strategies for three instances: ta23, ta27 and ta29. By
using the heuristic, it is possible to improve the performance of
ChapelBB for the three biggest instances ta24, ta25 and ta26
in 31%, 20% and 11%, respectively. As these instances are the
biggest, e.g., solving ta24 to the optimality takes 110 seconds
on 2048 cores – 4096 threads and using the heuristically-
chosen parameters, the average execution time of ChapelBB
using the heuristically-chosen parameters is 13% lower than
its version initialized with the hand-chosen parameters.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This work presented a heuristic-based approach for the pa-
rameterization of ChapelBB, a productivity-aware tree-based
search for solving combinatorial problems. The proposed
heuristic is a hill-climbing approach based on the manual algo-
rithm previously used for the parameterization of ChapelBB.
A first concluding remark is to point out the limitation of
manual parameterization. For instance, relying on previous
experience and performing a poor search for new secondary
and tertiary parameters limited the performance of ChapelBB,
mainly when solving the N-Queens or bigger FSP instances.

The reported results show that the heuristic-based approach
improves the performance of ChapelBB in around 30% for
N > 18 solving the N-Queens. Solving instances of the
FSP is a more complex scenario. It is valid to mention that
both ways of parameterization result in equivalent results
for the small and medium cases. In turn, the heuristic-based
parameterization is more efficient for the biggest instances, for
which improvements result in significant execution time gains.
In such a scenario, it was possible to decrease the execution
time of ChapelBB from 13% to 31%.

A first improvement to the hill-climbing search imple-
mentation is to use a solution found by hand as the initial
solution. This way, it would be possible to overcome the main
flaw of the hand-made parameterization, which is the limited
search of better secondary and tertiary parameters. Finally,
ChapelBB also is implemented to harness all GPUs and CPUs

of the system altogether. The parameterization of such a
scenario is more challenging, as parameters from different
architectures need to be taken into account. Therefore, we also
consider implementing a version of the hill-climber for the
parameterization of this complex scenario.

REFERENCES

[1] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing Surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[2] W. Zhang, “Branch-and-bound search algorithms and their computa-
tional complexity,” DTIC Document, Tech. Rep., 1996.

[3] N. Melab, J. Gmys, M.-S. Mezmaz, and D. Tuyttens, “Multi-core versus
many-core computing for many-task branch-and-bound applied to big
optimization problems,” Future Gener. Comput. Syst., vol. 82, pp. 472–
481, 2018.

[4] T. Carneiro, J. Gmys, N. Melab, and D. Tuyttens, “Towards ultra-
scale branch-and-bound using a high-productivity language,” Future
Generation Computer Systems, vol. 105, pp. 196 – 209, 2020.

[5] B. L. Chamberlain, E. Ronaghan, B. Albrecht, L. Duncan, M. Ferguson,
B. Harshbarger, D. Iten, D. Keaton, V. Litvinov, P. Sahabu et al., “Chapel
comes of age: Making scalable programming productive,” in Cray User
Group, 2018.

[6] G. Almasi, “PGAS (partitioned global address space) languages,” in
Encyclopedia of Parallel Computing. Springer, 2011, pp. 1539–1545.

[7] T. Carneiro and N. Melab, “An incremental parallel PGAS-based tree
search algorithm,” in The 2019 International Conference on High
Performance Computing & Simulation (HPCS 2019), 2019.

[8] T. Crainic, B. Le Cun, and C. Roucairol, “Parallel branch-and-bound
algorithms,” Parallel combinatorial optimization, pp. 1–28, 2006.

[9] T. Carneiro and N. Melab, “Productivity-aware design and implemen-
tation of distributed tree-based search algorithms,” in International
Conference on Computational Science. Springer, 2019, pp. 253–266.

[10] J. Bell and B. Stevens, “A survey of known results and research areas
for n-queens,” Discrete Mathematics, vol. 309, no. 1, pp. 1–31, 2009.

[11] T. Carneiro, “Chapel-based optimization,” https://github.com/tcarneirop/
ChOp, 2022.

[12] E. Taillard, “Benchmarks for basic scheduling problems,” European
journal of operational research, vol. 64, no. 2, pp. 278–285, 1993.

[13] M. Mezmaz, N. Melab, and E.-G. Talbi, “A grid-enabled branch and
bound algorithm for solving challenging combinatorial optimization
problems,” in IEEE International Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE, 2007, pp. 1–9.

[14] G. Karypis and V. Kumar, “Unstructured tree search on SIMD parallel
computers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 5, no. 10, pp. 1057–1072, 1994.

https://github.com/tcarneirop/ChOp
https://github.com/tcarneirop/ChOp

	Introduction
	The Productivity-aware Distributed Tree-based Search
	The Chapel High-productivity Language
	The Master Locale and the Initial Search
	Aspects of Implementation

	A Local Search-based Approach for the Parameterization of ChapelBB
	Challenging Issues
	Parameters
	The Manual Algorithm
	The Hill-climbing Algorithm
	The Local Search
	Aspects of Implementation

	Evaluation
	Experimental Protocol
	Experimental Testbed
	Experimental Results

	Conclusions and Future Research Directions
	References

