
1

PLSSVM: A (multi-)GPGPU-accelerated Least
Squares Support Vector Machine

1st Alexander Van Craen
IPVS

University of Stuttgart
Stuttgart, Germany

Alexander.Van-Craen@ipvs.uni-stuttgart.de

2nd Marcel Breyer
IPVS

University of Stuttgart
Stuttgart, Germany

Marcel.Breyer@ipvs.uni-stuttgart.de

3rd Dirk Pflüger
IPVS

University of Stuttgart
Stuttgart, Germany

Dirk.Pflueger@ipvs.uni-stuttgart.de

Abstract—Machine learning algorithms must be able to effi-
ciently cope with massive data sets. Therefore, they have to scale
well on any modern system and be able to exploit the computing
power of accelerators independent of their vendor. In the field of
supervised learning, Support Vector Machines (SVMs) are widely
used. However, even modern and optimized implementations such
as LIBSVM or ThunderSVM do not scale well for large non-
trivial dense data sets on cutting-edge hardware: Most SVM
implementations are based on Sequential Minimal Optimization,
an optimized though inherent sequential algorithm. Hence, they
are not well-suited for highly parallel GPUs. Furthermore, we
are not aware of a performance portable implementation that
supports CPUs and GPUs from different vendors.

We have developed the PLSSVM library to solve both issues.
First, we resort to the formulation of the SVM as a least
squares problem. Training an SVM then boils down to solving a
system of linear equations for which highly parallel algorithms
are known. Second, we provide a hardware independent yet
efficient implementation: PLSSVM uses different interchange-
able backends—OpenMP, CUDA, OpenCL, SYCL—supporting
modern hardware from various vendors like NVIDIA, AMD,
or Intel on multiple GPUs. PLSSVM can be used as a drop-in
replacement for LIBSVM. We observe a speedup on CPUs of up
to 10 compared to LIBSVM and on GPUs of up to 14 compared
to ThunderSVM. Our implementation scales on many-core CPUs
with a parallel speedup of 74.7 on up to 256 CPU threads and
on multiple GPUs with a parallel speedup of 3.71 on four GPUs.

The code, utility scripts, and documentation are all available
on GitHub: https://github.com/SC-SGS/PLSSVM.

Index Terms—Machine Learning, SVM, Optimization, Per-
formance Evaluation, Graphics Processors, OpenMP, CUDA,
OpenCL, SYCL

I. INTRODUCTION

The two most common tasks in supervised machine learning
are classification and regression. Classification predicts to
which set of categories/classes objects or situations belong,
while regression estimates the function value of a functional
dependency, e.g., a statistical process. Both can be solved
using the same algorithms, by matching a function value to two
or more discrete classes. Moreover, both share the challenge
to scale in the size of the data in order to cope with massive
data sets.

In the classification task, the well-known and commonly
used Support Vector Machines (SVMs) show competitive
performance and have very few parameters to tune. The widely
used SVM library LIBSVM [1] has already been cited over

50 000 times. A survey conducted by Kaggle in 2017 showed
that 26 % of the data mining and machine learning practi-
tioners use SVMs [2]. Examples of current research topics
are COVID-19 pandemic predictions [3], automatic COVID-19
lung image classification [4], forecasting of carbon prices [5],
face detection [6], or propaganda text recognition [7].

The basic idea of the SVMs was introduced in 1992 by
Boser et al. [8] and extended in 1995 by Cortes and Vapnik
[9] to the today’s state-of-the-art approach. Based on this
approach, Joachims published one of the first SVM libraries
SVMlight [10]. Chang and Lin developed LIBSVM [1], which
is one of the most widely used SVM libraries today. Both
are based on the Sequential Minimal Optimization (SMO)
algorithm [11]. Additionally, plenty of research have focused
on parallelizing SVMs on multi-core Central Processing Unit
(CPU) systems. For example, Fan et al. [12] developed LI-
BLINEAR as a LIBSVM extension and Zeng et al. [13]
described a novel parallel SMO algorithm.

ThunderSVM [14] is a rather new SVM implementation
supporting CPUs and NVIDIA Graphics Processing Units
(GPUs) using the Compute Unified Device Architecture
(CUDA). Additionally, there have been various other attempts
to port SVMs efficiently to GPUs, e.g., with CUDA [15, 16,
17], but also using other languages and frameworks such as the
Open Computing Language (OpenCL) [18], Python [19, 20],
OpenACC [21], or SYCL [22]. However, all approaches
mentioned so far are based on SMO, an inherently sequen-
tial algorithm, and, therefore, not very well suited for high
performance GPU implementations and vast data sets.

Suykens and Vandewalle [23, 24] developed the least
squares formulation of the SVM problem. In this formulation,
training an SVM is reduced to solving a system of linear
equations, a problem for which highly parallel algorithms
exist. Suykens et al. improved their Least Squares Support
Vector Machine (LS-SVM) further by introducing weights [25]
and extending their implementation to also support sparse data
structures [26]. Furthermore, they introduced the multi-class
classification for LS-SVMs [27]. An exact correlation between
SVMs using SMO and LS-SVMs was investigated by Ye and
Xiong [28].

Due to the higher parallelization potential of the LS-SVM,
we decided to base our Parallel Least Squares Support Vector

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works (doi: 10.1109/IPDPSW55747.2022.00138).

ar
X

iv
:2

20
2.

12
67

4v
3

 [
cs

.L
G

]
 5

 S
ep

 2
02

2

https://github.com/SC-SGS/PLSSVM
http://dx.doi.org/10.1109/IPDPSW55747.2022.00138

Machine (PLSSVM) library on the least squares formulation
of Suykens and Vandewalle [23]. Our goal is to provide a
High Performance Computing (HPC) implementation of a LS-
SVM suitable for modern massively parallel heterogeneous
hardware.

Do et al. [29, 30] developed an LS-SVM implementation
using CUDA to support NVIDIA GPUs. However, they only
investigated their implementation on data sets with less than
200 dimensions. Our PLSSVM implementation can easily
cope with data sets having more than 65 000 data points with
more than 16 000 features, as shown in Section IV. Other
LS-SVM implementations were developed, e.g., an LS-SVM
purely written in Python using PyTorch by Drumond [31].

In this paper, we describe our C++17 PLSSVM library,
which efficiently brings SVMs to massively parallel accelera-
tors, and we present and analyze some of our first performance
results. We have implemented the basic functionality of the
most widely used SVM library, LIBSVM [1], as a drop-
in alternative with significant acceleration aided by GPUs.
However, sparse data sets, where all but a few feature entries
are zero, are treated as if they would represent dense data, i.e.,
explicitly representing zeros where necessary. As of now, our
implementation only supports binary classification.

Our aim is to provide vendor-independent scalable per-
formance for high-end compute nodes. To the best of our
knowledge, our PLSSVM library is the first SVM implementa-
tion, let alone LS-SVM implementation, that supports multiple
backends, in particular OpenMP, CUDA, OpenCL, and SYCL
(hipSYCL and DPC++). This allows us to support a broad
spectrum of hardware, e.g., GPUs from different vendors like
NVIDIA, AMD, and Intel. This distinguishes our approach
from most previous implementations, which are restricted to
NVIDIA GPUs due to their focus on CUDA. A thorough
comparison of the differences and advantages of the individual
languages and frameworks for SVMs will be covered in a
future work. Furthermore, we support multi-GPU execution
for the linear kernel.

This paper is structured as follows: In Section II we discuss
the basics of SVMs and the transformation into their LS-
SVM representation, suitable for highly parallel processing. In
Section III, we then deduce important implementational details
from the LS-SVM equations. In particular, we tackle the
problem by solving the resulting equation with the Conjugate
Gradients (CG) [32] algorithm and a parallel matrix assembly.
In Section IV, we examine our achieved speedup factors, while
maintaining accuracies on par with the SMO approaches: up
to 10 for LIBSVM on the CPU and up to 14 compared to
ThunderSVM on a single GPU. Additionally, we investigate
the runtime characteristics of the individual components of our
library as well as the influence of epsilon (the relative residual
used in the CG algorithm) on the runtime and accuracy, and
finally we demonstrate that our approach is scalable with a
parallel speedup of up to 74.7 on a many-core CPU with
256 threads and on four NVIDIA A100 GPUs with a parallel
speedup of 3.71. Section V concludes this paper with a
summary and an outlook on future work.

II. SUPPORT VECTOR MACHINES

In this section, we describe SVMs and their transforma-
tion into a least squares problem. The transformation to the
LS-SVM is crucial as the state-of-the-art SMO approach is
inherently sequential and, therefore, unsuitable for achieving
high speedups on massively parallel devices.

A. Training

To learn an SVM classification model a d-dimensional data
set T with m data points ~xi and their corresponding labels
yi is required for training. Based on T , an SVM learns to
distinguish between different classes. We assume a binary
classification problem and, w.l.o.g., that classes are labeled
yi = ±1. The actual learning process is to find the hyperplane
〈~w, ~xi〉 + b = 0 that divides the two classes best. Therefore,
the normal vector ~w is scaled in a way that the margin, and
thus the width of the separation, is 2

‖~w‖ . The bias b indicates,
with b

‖~w‖ , the distance of the hyperplane to the origin. This
can be expressed by the following inequality:

yi · (〈~w, ~xi〉+ b) ≥ 1 ∀i. (1)

If the data cannot be separated linearly, this inequality cannot
be solved. In order to train such problems as well, a vector ~ξ
of positive slip variables ξi is introduced:

yi · (〈~w, ~xi〉+ b) ≥ 1− ξi ∀i. (2)

At this point the goal is to find the hyperplane with the largest
bandwidth, where both, the errors and the sum of the violations
by ~xi, should be minimized. In order to weight the two terms
to minimize, a positive weighting constant C is introduced.
Now we can describe the problem mathematically by:

min
~w,b,~ξ

(
1

2
‖~w‖22 + C

∑
∀i

ξi

)
| C > 0,

s.t.: yi · (〈~w, ~xi〉+ b) ≥ 1− ξi | ξi ≥ 0 ∀i.
(3)

B. Classification

To classify a data point, the SVM computes on which side
of the previously learned hyperplane the data point lies. This
requires the normal vector ~w and the bias b to compute:

ŷ = sgn
(
〈~w, ~̂x〉+ b

)
. (4)

The sign of ŷ determines the class the test point ~̂x is more
likely to belong to. The distance from the hyperplane indicates
the confidence in a correct classification.

C. Least Squares Support Vector Machines

In its least squares form, the secondary condition in Equa-
tion 3 is no longer understood as an inequality but as an
equality. In contrast to the classic SVM, not only a few data
points are rated for classification, but the LS-SVM determines
a weighting proportional to the distance between each data
point and the hyperplane. Therefore, in the LS-SVM all data
points are interpreted as support vectors. In this case, the
weighting can also be negative in contrast to the classical

SVM. Because of this, the ξi are squared so that only positive
distances are added. To compensate for that, the weighting C
is halved:

min
~w,b,~ξ

(
1

2
‖~w‖22 +

C

2

∑
∀i

ξ2i

)
,

s.t.: yi · (〈~w, ~xi〉+ b) = 1− ξi | ξi ≥ 0 ∀i.
(5)

For a detailed comparison between the SVM and the LS-SVM
regarding their models and accuracies, see Ye and Xiong [28].

D. Dual Problem
The hyperplane determined by the (LS-)SVM is dependent

on—and thus clearly determined by—the support vectors.
Therefore, the normal vector ~w can also be set up as a linear
combination of these support vectors:

~w =

m∑
i=1

αiyi~xi | αi ∈ R. (6)

While αi ∈ ~α is equal to zero for all ~xi that are not support
vectors and, therefore, not weighted, αi is non-zero for the
support vectors. For the LS-SVMs normally all αi are non-
zero. Using the Lagrange multipliers αi and the Karush-
Kuhn-Tucker conditions, the minimization problem can be
reformulated into its dual form, as proposed by Saunders
et al. [33]. On this basis, Chu et al. [34] formulated, under
elimination of ~ξ and ~w, the following maximization problem:

max
~α

 m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj〈~xi, ~xj〉

 ,

s.t.: 0 ≤ αi ≤ C,
m∑
i=1

αiyi = 0.

(7)

E. Kernel Trick
In machine learning, the linearity of methods is often

exploited, and the so-called kernel trick is used to classify
non-linear problems with linear classifiers. A possible kernel
function is a mapping k : X ×X → R given the input space
X ∈ Rd, if it is defined on an inner product space (F, 〈·, ·〉)
and, if a feature mapping Φ : X → F to the feature space
F ∈ Rd̂ with d̂ ≥ d exists [35]:

k(~xi, ~xj) = 〈Φ(~xi), Φ(~xj)〉. (8)

The scalar product in Equation 7 is now replaced by the kernel
function k,

max
~α

 m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj · k(~xi, ~xj)

 ,

s.t.: 0 ≤ αi ≤ C,
m∑
i=1

αiyi = 0.

(9)

The classification function (Equation 4) must also be adapted.
This is achieved by using Lagrange multipliers and the sub-
stitution of the scalar product with the kernel function,

f(~x) = sgn

(
m∑
i=1

αiyi · k(~xi, ~x) + b

)
. (10)

In our PLSSVM implementation the following three kernel
functions k(~xi, ~xj) are available:

linear: 〈~xi, ~xj〉
polynomial: (γ · 〈~xi, ~xj〉+ r)d, γ > 0, d ∈ Z
radial: exp(−γ · ‖~xi − ~xj‖22), γ > 0

F. System of Linear Equations

Following Suykens and Vandewalle [23], Equation 9 can be
transformed into a system of linear equations,[

Q ~1m
~1Tm 0

]
·
[
~α
b

]
=

[
~y
0

]
, (11)

where Q ∈ Rm×m is a quadratic matrix, ~1m is a vector with
m times the number one, and Qij = k(~xi, ~xj) + 1

C δij . The
Kronecker Delta δij is equal to zero everywhere, except for i =
j. To reduce the matrix size, Chu et al. [34] divided the matrix
Q into four parts: the lower row ~qT and the right column ~q,
the last entry of the matrix Qm,m and Q̄, the remaining part
of Q,

Q =

[
Q̄ ~q
~qT Qm,m

]
. (12)

With this partitioning, a new matrix Q̃ is constructed:

Q̃ :=Q̄−~1m−1 · ~qT − ~q ·~1Tm−1 +Qm,m ·~1m−1 ·~1Tm−1.
(13)

Equation 11 can now be represented in a smaller system [34]:

Q̃ · ~̃α = ~̄y − ym ·~1m−1, (14)

where ~̃α is unknown and ~̄y is defined as the first m−1 values
of ~y. From Equation 14, the bias b and the weights ~w can be
derived by:

b = ym +Qm,m · 〈~1m−1, ~̃α〉 − 〈~q, ~̃α〉

~w =
m∑
i=1

αiΦ(~xi).
(15)

G. Parallelizability

From an algorithmic point of view, the SMO method takes
one point from each class and computes a hyperplane between
them. Then another pair is drawn, seen if the point pair is
in the current margin, and if so, the existing hyperplane is
adjusted accordingly. This procedure is repeated until the next
hyperplane adjustment would change it less than some ε > 0.

It is evident that this algorithm is inherently sequential
and cannot be parallelized without special adaption. There-
fore, optimized SMO implementations do not use point pairs
but point groups. They parallelize the hyperplane adjustment
within these groups, whereby the computation becomes more
complex the larger these groups grow. Thus, these SMO
variations have parallelization potential but are not suitable for
massively parallel HPC hardware. Additionally, the larger the
groups grow, the more the classification behavior corresponds
to the LS-SVM behavior.

In contrast, solving the LS-SVM problem can be translated
to solving a system of linear equations. This matrix is posi-
tive, symmetric definite, for which there are well-known and
efficient algorithms suitable for massively parallel hardware.

III. IMPLEMENTATION

We developed the PLSSVM library for maximum per-
formance and portability. Therefore, we have not only im-
plemented the LS-SVM using a single framework but with
multiple ones: we cover OpenMP, CUDA, OpenCL, and SYCL
(hipSYCL and DPC++). This opens up the possibility to
target a broad variety of different hardware architectures, in
particular CPUs and GPUs from NVIDIA, AMD, and Intel.
All backends are optional, i.e., they are only conditionally
included if the necessary hardware and software stack is
available. The actual used backend can be selected at runtime.

We use C++17 focusing on modern best practices and
support switching between double and single precision floating
point types by changing a single template parameter. The
training of PLSSVM can be split into four steps: (1) read
the whole training data set used to set up the system of linear
equations (Equation 14), (2) load the training data onto the
device, (3) solve the system of linear equations and write-
back the solution to the host memory, and (4) save the learned
support vectors with the corresponding weights to a model file.

Currently, our implementation only supports dense data for
calculations. If sparse data sets are used, they are at first
converted into a dense representation by filling in zeros.

In the following, we investigate implementational details of
these four steps. Hereby, the main focus lies on the solution
of the system of linear equations, since this is the most
computationally intensive part.

A. Data Layout

While the data points are initially read into an irregular 2D
data structure, they are later transformed into a 1D vector
laid out consecutively in memory. Since the data is accessed
dimension-wise during execution, the data vector is not created
arranging the individual points in row-major order, but it is
constructed in column-major order. This has the advantage
that it is significantly more cache-efficient for our indexing
scheme on GPUs and thus results in better performance.

B. Solving the System of Linear Equations

To solve the system of linear equations (Equation 14), we
use the CG method. This is possible because the matrix Q̃ is
symmetric and positive definite [34]. Hereby, we implement a
variant of Shewchuk et al. [36].

Since Q̃ has (m − 1)2 entries, it is not feasible for large
training data sets to store the matrix completely in memory.
Therefore, the matrix is only represented implicitly: each entry
Q̃i,j is recalculated for each use according to Equation 13:

Q̃i,j = k(~xi, ~xj) +
1

C
· δi,j − k(~xm, ~xj)

−k(~xi, ~xm) + k(~xm, ~xm) +
1

C
.

(16)

C. Optimizations

Matrix-vector multiplications are the most computational
expensive task in the CG algorithm. Therefore, we decided
to calculate this function in parallel on the available GPUs,

carefully tuning the implementation using multiple optimiza-
tion strategies to achieve the best performance possible. Note
that the CPU only OpenMP implementation is currently not
as well optimized as the GPU implementations used by the
other backends.

The following sections exclusively use the CUDA notation
for the memory and execution models.1 However, all optimiza-
tions were also applied to the OpenCL and SYCL backends.

1) Blocking: The calculations are divided into individual
blocks, which in turn are calculated independently in parallel.
To ensure that as few boundary conditions as possible have
to be checked (i.e., avoiding branch divergence), we decided
to introduce a padding that is always at least the size of
a full block. Since the matrix is symmetric, the effort can
be halved by computing only the upper triangular matrix.
The omitted entries can then be mirrored. In our approach,
we simply spawn threads for the whole matrix, but only the
threads corresponding to blocks above the diagonal are used
for the actual calculations. Thus, each thread with an index
i ≥ j computes Q̃i,j . This technique is inexpensive since
thread creation on GPUs is rather lightweight.

2) Caching: Since two vector-entries of ~q are required for
every calculation of Q̃i,j , it is worthwhile to precalculate ~q.
This reduces the amount of expensive scalar products per
matrix element from three to one by storing m− 1 values.

3) Block-Level Caching: GPUs have different memories
at their disposal. The very fast registers are separated for
each thread, as opposed to the slower shared memory, which
is shared by all threads in a thread block. However, shared
memory is still much faster than global memory accessible by
all threads, even across thread blocks.

Therefore, it is necessary to employ some form of block-
ing to utilize the faster shared memory. For each thread
block, blocksize · 2 many data points are needed to calculate
blocksize2 many kernel operations (e.g., scalar products for
the linear kernel; see subsection II-E). We start by loading
a few features of the data points, which are needed for
the first operations, into the shared memory. To utilize the
full bandwidth of the shared memory, which is much higher
compared to the bandwidth of the global memory, it becomes
important to evenly distribute the memory reads over all warps.
Next, we proceed with the actual calculations, followed by
loading the next features of the data points into the shared
memory, and so on.

4) Thread-Level Caching: While our block-level caching
operates between the shared memory and the global memory,
we also apply blocking inside each thread of a thread block
between its registers and the shared memory.

Our implementation allows both blocking sizes to be
changed during compilation. This way, the optimizations can
be adapted to the given hardware to maximize the performance
gains.

1For a mapping between the CUDA notations and the correspond-
ing OpenCL and SYCL names see https://developer.codeplay.com/products/
computecpp/ce/guides/sycl-for-cuda-developers/migration (2022-01-20).

https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/migration
https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/migration

5) Distribute Blocks Across Multiple GPUs: Our imple-
mentation is capable of utilizing multiple GPUs for the linear
kernel. In order to achieve an even utilization of all GPUs, we
do not divide the data set itself, but we split all data points
feature-wise. For example, if the data is in a ten-dimensional
space (i.e., each data point has ten features) and two GPUs
are available, each data point is split into two five-dimensional
data points and each GPU is assigned one of these. Due to
the linearity of the linear kernel, only the result vectors of the
single devices have to be summed up. The polynomial and
radial kernels do not currently support multi-GPU execution.
The remaining calculations stay the same, no matter how many
devices are used. This approach also reduces the memory
usage per GPU, so that larger data sets can be learned.

IV. RESULTS

This chapter presents the experimental results for our LS-
SVM implementation. At first, we compare our PLSSVM
(v1.0.1) with the CPU versions of the normal and dense2

implementations of LIBSVM (3.25) and ThunderSVM (git
commit 55ee783) as well as with the GPU implementation of
ThunderSVM. We do not include the CUDA implementation
of LIBSVM in our tests, since the normal training workflow
does not support GPU execution, only the cross validation
is implemented for a GPU. Afterward, we investigate the
runtime behavior of the different components of PLSSVM.
We also discuss the influence of the epsilon parameter (the
relative residual of the CG method) on the resulting runtime
and accuracy. Finally, we show that our implementation indeed
scales on many-core CPUs and multiple GPUs.

A. Hardware Platforms

We used two different hardware platforms for our perfor-
mance measurements. All the CPU runtimes were measured
on a machine with two 64 cores / 128 threads AMD EPYC
7742 CPUs @2.25 GHz and 2 TB DDR4 RAM. The runtimes
involving GPUs were computed on a machine with four
NVIDIA A100 GPUs (each: 6912 shader units @1.095 GHz,
40 GB HBM2 memory, 1.555 GB

s memory bandwidth, and
9.7 TFLOPS (FP64) peak performance), two 64 cores / 128
threads AMD EPYC 7763 CPUs @2.45 GHz, and 1 TB DDR4
RAM. However, on the GPU machine we ensured that only
64 physical cores, all on the same socket, were used. The
GPU machine is equipped with NVLink 3.0 which is, however,
not used by our library since we have no direct GPU-to-
GPU communication. All measurements were performed with
double precision floating point types (FP64).

B. Data Sets and Experimental Setup

In order to report scaling runtimes with respect to a growing
number of data points and features, we decided to focus
on synthetically generated dense data sets. The training files
are created by Python’s scikit-learn single-label generator
make_classification [37]. These synthetic data sets

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#libsvm for dense data
(2022-01-20)

can be reproduced with the generate_data.py script
located in the PLSSVM GitHub3 using the problem type
“planes”. We have generated separate new data files for each
individual run to average over a variety of different spatial
arrangements of the same problem.

The two generated clusters are adjacent to each other and
overlap with a low probability in a few points. Additionally,
one percent of the labels were set randomly to ensure some
noise in the generated data. The SMO approach would be a
better fit for well separable data. However, real-world data
is rarely free of noise and in the rarest cases also well and
clearly separable. The more noisy and ambiguous the training
data is, the better the LS-SVM is suited (for the theoretical
background, see [28]). Therefore, the data for this analysis
were selected with a little noise but still relatively well sepa-
rable. This ensures that the data suits the SMO approach while
representing the structure of real-world-like data. The number
of data points and features for all synthetically generated data
sets are power of twos. However, our library is not limited or
specifically optimized to sizes of power of twos, it is rather
used for convenience in the logarithmic plots.

In addition to these synthetically generated data sets, we
also used the real-world SAT-6 Airbone data set [38]. This
data set consists of images displaying six different land cover
classes. Since we currently only support binary classification,
we mapped the labels of all man-made structures (buildings
and roads) to −1 and the labels of the remaining classes
(barren land, trees, grassland, and water bodies) to 1. The data
set is split into training data with 324 000 (193 729 with label
−1 and 130 271 with label 1) images of size 28× 28 with 4
color channels (RGB-IR) resulting in 3136 features per image
and test data with 81 000 images. All features are scaled to
values between [−1, 1] using LIBSVM’s svm-scale.

Since the methods have different termination criteria, it
is not trivial to compare the runtimes with each other. We
compare the runtimes by adjusting the epsilon of the loss
function for the SMO methods and the epsilon of the relative
residual used in the LS-SVM algorithm. We start with 0.1
and increment the epsilon in steps of ×0.1 (i.e., 0.01, 0.001,
etc.) until an accuracy of more than 97 % was reached on
the training data. If the training data was non-separable, i.e.,
we were not able to reach a minimum accuracy of 97 %, we
compared the runs that converged in accuracy in the first three
digits. Except for the epsilon, the default values of the libraries
were retained. This implies that no special optimizations with
regard to the used hardware were performed for any of the
three used SVM implementations.

All runtimes were averaged over at least ten measurement
runs. Our comparison is limited to NVIDIA GPUs, since
ThunderSVM is only implemented in CUDA. To make the
comparison fairer, we use our PLSSVM CUDA backend
for the GPU runs and the OpenMP backend for the CPU.
However, this does not limit the results to the CUDA backend

3https://github.com/SC-SGS/PLSSVM/blob/v1.0.1/utility scripts/generate
data.py (2022-01-20)

https://github.com/SC-SGS/PLSSVM/tree/v1.0.1
https://github.com/Xtra-Computing/thundersvm/tree/55ee783952d1c95118314c256a844183eef3bbe7
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#libsvm_for_dense_data
https://github.com/SC-SGS/PLSSVM/blob/v1.0.1/utility_scripts/generate_data.py
https://github.com/SC-SGS/PLSSVM/blob/v1.0.1/utility_scripts/generate_data.py

TABLE I
RUNTIME EXAMPLES FOR THE DIFFERENT BACKENDS ON DIFFERENT
GPUS FOR 215 DATA POINTS WITH 212 FEATURES EACH REACHING

APPROX. 93.76% ACCURACY.

hardware CUDA OpenCL SYCL

NVIDIA GTX 1080 Ti 369.57 s 380.98 s 738.46 s

NVIDIA RTX 3080 251.66 s 266.00 s 269.96 s

NVIDIA P100 92.87 s 97.85 s 329.06 s

NVIDIA V100 37.96 s 55.48 s 72.13 s

AMD Radeon VII — 152.05 s 189.21 s

Intel UHD Graphics Gen9 P630 — 3788.43 s 7355.93 s

but generally holds for all our GPU backends, since they all
have similar runtime behaviors with respect to the number of
data points and features.

Table I displays some example runtimes for our CUDA,
OpenCL, and SYCL (DPC++ for the Intel GPU, hipSYCL
otherwise) backends on multiple NVIDIA GPUs as well as an
AMD and Intel GPU. The runtimes only include the actual
learning part on the GPUs to factor out the influences of
the different CPUs in the different systems. On the NVIDIA
GPUs, the CUDA backend is the fastest, closely followed
by OpenCL. hipSYCL is only slightly slower than OpenCL
for compute capabilities of 7.0 or newer. However, for GPUs
with an older compute capability, hipSYCL is over three times
slower than CUDA or OpenCL indicating that PLSSVM uses
a feature which hipSYCL does not efficiently map to older
NVIDIA GPUs. On the AMD GPU, hipSYCL is again slightly
slower compared to OpenCL. On the Intel GPU, our SYCL
backend is two times slower than our OpenCL backend. More
profiling has to be done to study the exact reasons for the poor
performance of our SYCL backend in some setups compared
to the other backends. However, this analysis and the influence
of the hardware characteristics of the different GPU vendors
on the runtime goes beyond the scope of this paper.

C. Runtime Comparison

First, we discuss the overall runtime of our implementation
using the CPU and GPU for training the SVM; see Figure 1.
We only consider the linear kernel for the synthetic data sets,
since the behavior can be projected one-to-one to the other
kernels.

The runtime behavior for PLSSVM, ThunderSVM, and
LIBSVM on the CPU, for a fixed number of features and
a varying number of data points, is shown in Figure 1a. All
three SMO implementations behave very similarly, with the
dense implementation of LIBSVM having a slight advantage
over its sparse implementation. ThunderSVM performs better
than LIBSVM in the medium size range, while in the ex-
tremes the LIBSVM variants are faster. However, all SMO
implementations exhibit a steeper slope, compared to the LS-
SVM method used in PLSSVM. We out-scale both LIBSVM
variants, starting with 211 data points. For 214 data points
in 210 dimensions we need approximately 56.2 s to train the
PLSSVM while LIBSVM already needs 7.0 min (dense) re-

210 212 214

data points

20

22

24

26

28

210

ru
nt

im
e

[s
]

PLSSVM
ThunderSVM
LIBSVM
LIBSVM-DENSE

(a) CPU runtimes relative to the num-
ber of data points with 210 features.

27 29 211

features

21

24

27

210

213

ru
nt

im
e

[s
]

PLSSVM
ThunderSVM
LIBSVM
LIBSVM-DENSE

(b) CPU runtimes relative to the num-
ber of features with 213 data points.

29 211 213 215

data points

21

23

25

ru
nt

im
e

[s
]

PLSSVM
ThunderSVM

(c) GPU runtimes relative to the num-
ber of data points with 212 features.

27 29 211 213

features

21

23

25

27

ru
nt

im
e

[s
]

PLSSVM
ThunderSVM

(d) GPU runtimes relative to the num-
ber of features with 215 data points.

Fig. 1. Double logarithmic runtime comparison for sparse/dense LIBSVM,
ThunderSVM, and PLSSVM on both CPU and GPU in relation to the number
of data points and features. The runtimes were measured with an epsilon, such
that the resulting models reach approximately 97% accuracy on the training
data or after convergence of the accuracy in the first three decimal places.

spectively 9.8 min (sparse) and ThunderSVM performs worst
with 18.3 min.

In Figure 1b, we examine the scalability with respect to the
number of features, while the number of data points was fixed
to 213. Increasing the number of features, PLSSVM scales (up
to 210) slightly better than LIBSVM and significantly better
than ThunderSVM. The behavior for the LIBSVM variants
changes at 212, but this has not been investigated further.

Figure 1c and 1d show the same experimental setup but
now using a single GPU instead of a CPU. The runtimes
for PLSSVM using the GPU are orders of magnitude faster
than their CPU counterpart (see Figure 1a). PLSSVM needs
about 58 s to train a data set with 214 data points and 210

features on the CPU. Using a single GPU reduces this runtime
by a factor of 24 to only 2.4 s. This is surprising since
both systems have a comparable computational power with
9.7 TFLOPS theoretical peak performance for the NVIDIA
A100 GPU and with 4.6 TFLOPS (base) to 6.96 TFLOPS
(boost) for the two AMD EPYC 7742 CPUs. This underlines
how much optimization potential there still is in our OpenMP
implementation.

The average coefficient of variation for the SVM implemen-
tations in Figure 1a and 1b are 0.26 (PLSSVM), 0.92 (Thun-
derSVM), 0.60 (LIBSVM), and 0.66 (LIBSVM-DENSE). This
shows that the runtimes of our implementation have drastically
less variations between executions when compared to the three
SMO implementations.

Figure 1c shows the runtimes for 28 to 215 data points

with 212 features each. Up to 211 data points, the runtime
of PLSSVM does not increase, indicating a significant static
overhead using a GPU. However, for large data sets, this
overhead is negligible (also see Figure 2a). The slopes of the
SVM implementations indicate that both have approximately
the same overall complexity, with PLSSVM having a drasti-
cally smaller constant factor. Training the SVM model using
a data set with 214 data points needs 10 s using PLSSVM.
ThunderSVM takes 72 s, resulting in a runtime increase of a
factor of 7.2.

The differences become larger if we fix the number of
data points to 215 and vary the number of features from 26

to 214. This time, PLSSVM has a slightly flatter slope than
ThunderSVM. ThunderSVM needs 241 s for training a data
set with 211 features. Using PLSSVM this can be reduced by
a factor of 14.2 to only 17 s. This additionally indicates that
our implementation scales better with the number of features
compared to ThunderSVM. Increasing the number of features
by a factor of four from 211 to 213 using PLSSVM, increases
the runtime by a factor of roughly 5.5. Actually, we had
expected that the factor would be larger, since a four-fold
increase of the number of features means an eight-fold increase
of the matrix entries. However, in the selected scenario, the
complexity of the problem to learn remains the same. It can
thus be stated that, despite more features, fewer CG iterations
are needed to solve the system of linear equations to a similar
accuracy. Note that the observed performance advantage of
PLSSVM over ThunderSVM thus depends to some extent on
the actual classification problem.

However, it should not become as large as the factor of
ThunderSVM in any case, since the complexity of the problem
generally does not increase drastically with an increasing
number of data points for an LS-SVM. In this example, the
number of required CG iterations dropped from an average of
30.5 iterations for a data set with 210 points and 210 features to
only 26 iterations for 215 data points and the same number of
features. Using ThunderSVM the runtime drastically increases
by a factor of 239 compared to the CPU runtimes.

As for the CPU runtimes, the average coefficient of variation
on the GPU is again remarkably smaller for PLSSVM (0.11)
than for ThunderSVM (0.37).

Looking at profiling results using NVIDIA’s Nsight Com-
pute profiling tool, we noticed that ThunderSVM spawns a
plethora of small compute kernels on the device (over 1600 in
our profiled scenario with 214 data points and 212 features),
most of them running significantly less than one millisec-
ond. However, the compute kernel with the highest compute
intensity only reaches approximately 233 GFLOPS which
only amounts to 2.4 % of the A100’s theoretical FP64 peak
performance. In contrast, our implementation only spawns
3 compute kernels that each have a much higher compute
intensity than ThunderSVM’s kernels. The kernel responsible
for the implicit matrix-vector multiplication inside the CG
algorithm reaches over 3.1 TFLOPS using double precision
resulting in 32 % FP64 peak performance.

In summary, we can note that our implementation performs

29 211 213 215

data points

2 6

2 3

20

23

26

ru
nt

im
e

[s
]

read
transform
cg
write
total

(a) GPU runtime behavior of the indi-
vidual PLSSVM components depend-
ing on the number of data points with
212 features.

27 29 211 213

features

2 6

2 3

20

23

26

ru
nt

im
e

[s
]

read
transform
cg
write
total

(b) GPU runtime behavior of the indi-
vidual PLSSVM components depend-
ing on the number of features with
215 data points.

Fig. 2. Double logarithmic runtime scaling behavior of the individual
PLSSVM components on a single GPU. The total runtime depends on
the number of CG iterations, which are chosen so that the model reaches
approximately 97% accuracy on the training data or after convergence of the
accuracy in the first three decimal places.

comparable to the SMO implementations on the CPU and
heavily outperforms ThunderSVM on the GPU.

D. The SAT-6 Airbone Real-World Data Set

Using the real-world data set, we observe a similar behavior.
On the SAT-6 Airbone training data set, we achieved the
highest accuracy with the radial basis function kernel. Training
the SVM classifier using a single GPU takes 23.5 min for our
PLSSVM implementation, resulting in an accuracy of 95 %
on the test data set. ThunderSVM needs 40.6 min for 94 %
accuracy and is thus a factor of 1.73 slower than PLSSVM.

E. Runtime Analysis of the PLSSVM Components

Figure 2 breaks down the runtime of our PLSSVM library
using a single GPU into its various components:
• read: Reads the input training data file and parses its

content into a dense 2D representation.
• transform: Transforms the previously created 2D train-

ing data structure into a 1D vector in Structure-of-Arrays
(SoA) layout for a better caching efficiency. This is only
relevant for the GPU implementations.

• cg: In the CG component, the actual system of linear
equations is solved using the selected backend.

• write: Creates and writes the resulting model file to disk.
• total: This represents the runtime of a complete training

run including “read”, “transform”, “cg”, “write” and re-
maining parts like initializing the backend and hardware.

Figure 2a shows the components’ runtimes for data set sizes
from 28 up to 215 using 212 features each. It can be seen
that the total runtime is heavily dominated by the solution of
the system of linear equations using the CG algorithm if the
data set is sufficiently large enough. For data sets with less
than 212 data points, the IO components “read” and “write”
contribute more to the total runtime than solving the system
of linear equations. However, for a data set size of 215, the
CG algorithm is responsible for 92 % of the total runtime, the
other measured components combined are only accountable
for 5 % and, therefore, negligible. The remaining 3 % of the

10 1510 1110 710 3

epsilon

20

40

60

 ru
nt

im
e

[s
]

0

10

20

30

40

 c
g

ite
ra

tio
ns

(a) Runtime and number of CG itera-
tions relative to the relative residual.

10 1510 1110 710 3

epsilon

60

70

80

90

 a
cc

ur
ac

y
[%

]

0

10

20

30

40

 c
g

ite
ra

tio
ns

(b) Accuracy and number of CG iter-
ations relative to the relative residual.

Fig. 3. Runtime, accuracy, and number of CG iterations in relation to the
relative residual of the CG method’s epsilon. Measured on the GPU machine
with 215 data points and 212 features each.

runtime are due to parts that are not displayed here, such as
the overhead when accessing the GPU for the first time or the
cleanup at the end of the program execution. Figure 2a shows
that “read”, “transform”, and “write” do scale better than “cg”
for an increasing number of data points. They can therefore
also be neglected for the runtime of even larger training sets.
The “cg” component has the worst complexity: doubling the
number of data points increases the runtime by a factor of 3.3.

In Figure 2b we proceed as before and fix the number
of data points to 215 while varying the number of features
from 26 to 214. The result stays the same: solving the system
of linear equations is again responsible for over 92 % of
the total runtime. Doubling the number of features increases
the runtime by roughly a factor of 2.11. Here, a factor of
two can be justified by the fact that the effort for implicitly
calculating each matrix entry doubles, since the vectors used
in the scalar products have twice the size. Furthermore, the
problem becomes more complex in higher dimension, so that
it can be observed that more CG iterations are needed to reach
a similar accuracy. Again, this factor is problem dependent. In
any case, a factor larger than two is to be expected, provided
that the additional features actually lift the problem into a
higher dimension. First tests have indicated that the factor is
close to two if the vectors are only extended with zeros.

F. Runtime and Accuracy Depending on Epsilon

Figure 3 displays the runtime and achieved accuracy based
on the chosen epsilon using a single GPU. The epsilon is used
as a termination criterion in the CG algorithm. The data set
contains 215 data points with 212 features each.

Figure 3a shows the runtime and number of CG iterations
with respect to epsilon. For epsilon values up to 1e-06,
the number of CG iterations does not increase significantly.
Refining the epsilon ×0.1 further, increases the number of
CG iterations by a factor of twelve from 2 to 24. After
that, refining the epsilon even further, steadily increases the
number of CG iterations on average by 2. As already discussed
in subsection IV-E, the total runtime is heavily dominated
by solving the system of linear equations. This in turn is
dominated by the number of CG iterations. Therefore, both
lines lie on top of each other. This is additionally underlined

21 23 25 27

cores

21

23

25

27

sp
ee

du
p

read
cg
write
total
optimal

(a) Scaling behavior of the dif-
ferent PLSSVM components with
respect to the number of cores for
212 data points and 211 features.

20 21 22

GPUs

20

21

22

sp
ee

du
p

read
transform
cg
write
total
optimal

(b) Scaling behavior of the dif-
ferent PLSSVM components with
respect to the number of GPUs for
216 data points and 214 features.

Fig. 4. Scaling behavior with an increasing number of available hardware for
the PLSSVM components on a many-core CPU and a multi-GPU system.

by the fact that the runtime per CG iteration stays the same
for data sets of the same size.

A different behavior can be observed in Figure 3b. Here,
the accuracy and number of CG iterations correlate until an
epsilon of 1e-05 is reached. Afterward, the accuracy jumps to
56.9 % followed by 87.6 % and then reaching its final value
of 90.8 % for an epsilon of 1e-08. However, the number of
CG iterations steadily grows from 24 iterations for an epsilon
of 1e-07 to 47 iterations for an epsilon of 1e-15.

In general, it is nice to note that the runtime does not
explode when decreasing epsilon by eight orders of magnitude
from 1e-07 to 1e-15, it merely grows by a factor of about
1.83. Thus, if a high accuracy is desired, it is fine to select a
relatively small epsilon; the exact choice is not critical.

G. Scaling on a Many-Core CPU and Multiple GPUs

Figure 4 shows the scaling behavior, displayed in a double-
logarithmic graph, for the different PLSSVM components with
respect to the number of cores on a CPU and the number of
GPUs in the system. On the CPU, only the linear kernel is
plotted, since the overall scaling behaviors of the polynomial
and radial kernels are the same. For the multi-GPU runs,
we were only able to investigate the linear kernel, since the
polynomial and radial kernels do not yet support the execution
on multiple GPUs.

Figure 4a shows the speedup for the “read”, “cg”, and
“write” components on a CPU with 2 · 64 physical cores and
2 · 128 hyper-threads using the OpenMP backend. The “trans-
form” component is omitted since the 2D to 1D transforma-
tion is only applied for the GPU backends. The classification
data set contains 212 data points with 211 features.

We observe that all components of our PLSSVM library
scale equally well with an increasing number of available
CPU cores on up to 16 cores. The runtime decreases from
25.3 min on a single core to 3.1 min on 16 cores. Using
more than 64 cores increases the runtime of the “read” and
“write” components: At this point, OpenMP switches from a
single socket to two sockets on our system. However, the “cg”
component scales well even for up to 256 CPU cores. In this
case, the initial runtime of 25.3 min has been reduced to 20 s,
which corresponds to a parallel speedup of roughly 74.7.

Figure 4b shows the scaling behavior of the same three
components together with the “transform” component on up
to four A100 GPUs using the CUDA backend. Here, the
data set contains 216 data points with 214 features. Increasing
the number of GPUs does not result in better runtimes for
the “read”, “transform”, and “write” components. This is
rather obvious, since none of them uses the GPUs. The “cg”
component, which dominates the total runtime, is executed
on the GPUs. Using four GPUs reduces the total runtime
by a factor of 3.71 from 13.49 min to 3.72 min. This nicely
demonstrates good scaling on multiple GPUs.

The total amount of memory used for the given data set on a
single GPU is 8.15 GiB. Using four GPUs reduces the amount
of memory used to 2.14 GiB per GPU. While this results only
in a reduction of a factor of 3.6, instead of the optimal factor
of 4, it nevertheless shows that using multiple GPUs not only
allows us to train SVM classifiers more efficient, but also
to process data sets that would not fit on a single GPU. In
contrast, using the same data set with ThunderSVM results in
a memory consumption of 13.08 GiB on a single GPU.

H. Comparison of the Implementations

To summarize, all four implementations show competitive
performance for solving binary classification problems on the
CPU. PLSSVM and ThunderSVM can utilize modern GPUs.
ThunderSVM is restricted to GPUs from NVIDIA, as its
backend is exclusively written in CUDA. PLSSVM is the only
implementation supporting more than one GPU as well as
GPUs from different vendors.

Since LIBSVM and ThunderSVM are well-established
SVM libraries, they provide more functionality than PLSSVM
so far. For example, all libraries have specific implementations
for linear, polynomial, and radial basis functions kernels. In
addition, LIBSVM and ThunderSVM have a sigmoid kernel
and LIBSVM even supports precomputed kernels. Multi-class
classification as well as regression are not yet supported by our
PLSSVM library, in contrast to ThunderSVM and LIBSVM.
However, it is not difficult to include these functionalities on
the basis of our library if needed.

Note that the state-of-the-art SMO algorithm and the least
squares approach solve slightly different optimization prob-
lems. Therefore, for a given data set, the termination criterion
(epsilon) can not be reused between the two methods. This
makes comparing the overall runtimes between the two ap-
proaches more difficult. In general, straightforward problems
are better suited for SMO, as only few support vectors can
be sufficient to compute the separating hyperplane. Difficult
classification problems with plenty of data points and complex
clusters that require many support vectors are better suited
for the LS-SVM approach. The termination criterion for the
iterative solver of our PLSSVM has to be selected suitably.
However, all of our classification tasks so far have shown that
the runtime is not very sensitive with respect to the termination
criterion epsilon for high accuracies.

Finally, both ThunderSVM and LIBSVM support sparse
data representations, which are used in their internal calcu-

lations. PLSSVM so far only supports sparse data represen-
tations when reading and writing. When parsing sparse data,
we allocate memory for all features including those that are
zero, resulting in a dense data representation internally.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduced the new SVM library PLSSVM.
It is based on the rarely used least squares approach. In con-
trast to the SMO method that is used in most state-of-the-art
implementations, it includes all data points as support vectors
to compute the class-separating hyperplane. While SMO has
limited parallelization potential, the LS-SVM approach is well-
suited for massively parallel hardware and thus large data sets.
PLSSVM is the very first SVM implementation supporting
multiple backends—OpenMP, CUDA, OpenCL, and SYCL—
to be able to target different hardware platforms from various
vendors, being it CPUs or GPUs.

We demonstrated with classification tasks for artificial and
real-world dense data sets of different sizes that we are capable
of competing with well-established SMO implementations
such as LIBSVM or ThunderSVM on the CPU although our
basic implementation is currently still very much open to
optimizations. Since there are already many widely distributed
implicit matrix-vector multiplication implementations avail-
able that we have not considered yet, this shows that there
is much potential for further work on a highly scalable multi-
node LS-SVM implementation. On the GPU our library shows
its main strength and severely outperforms ThunderSVM by a
factor of 14. We verified that our implementation scales well
on many-core CPUs and multiple GPUs achieving a parallel
speedup of 3.71 on four NVIDIA A100 GPUs.

The GPU implementations have a small overhead accessing
the GPU(s). Therefore, the CPU implementations are better
suited for learning classifiers for very small data sets. Note
that PLSSVM is currently implemented using a dense CG
implementation. In the case of very sparse data sets with many
features, it is therefore better to use ThunderSVM. PLSSVM
clearly outperforms both LIBSVM and ThunderSVM for large
non-trivial classification tasks by orders of magnitude, making
use of the high parallelization potential of LS-SVMs.

Canonical next steps include the optimization of the CPU
implementation, to consider sparse data structures for the
CG solver, and to target multi-node multi-GPU systems to
be able to use even larger data sets as currently possible
and to report the scaling behavior of our library on more
GPUs and CPU cores. In future work, we will investigate the
advantages and disadvantages of the different backends, and
provide extensive scalability studies on non-NVIDIA GPUs.
As a long-term future task, we want to extend all PLSSVM
kernels to support multi-node multi-GPU execution including
load balancing on heterogeneous hardware. Finally, we intend
to extend PLSSVM to provide all the standard functionality of
LIBSVM to our users. This includes multi-class classifications
and regression tasks.

ACKNOWLEDGEMENT

We thank the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) for supporting this work by funding
– EXC2075 – 390740016 under Germany’s Excellence Strat-
egy. We acknowledge the support by the Stuttgart Center for
Simulation Science (SimTech).

REFERENCES

[1] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM TIST, vol. 2, no. 3, pp.
1–27, 2011.

[2] “Kaggle’s 2017 user survey,” https://www.kaggle.
com/amberthomas/kaggle-2017-survey-results/report,
accessed: 2022-01-20.

[3] V. Singh et al., “Prediction of covid-19 corona virus
pandemic based on time series data using support vector
machine,” J. Discret. Math. Sci. Cryptogr., vol. 23, no. 8,
pp. 1583–1597, 2020.

[4] L. N. Mahdy et al., “Automatic x-ray covid-19 lung
image classification system based on multi-level thresh-
olding and support vector machine,” MedRxiv, 2020.

[5] B. Zhu et al., “Forecasting carbon price using a multi-
objective least squares support vector machine with mix-
ture kernels,” J. Forecast., vol. 41, pp. 100–117, 2022.

[6] Y. M. Riyazuddin et al., “Effective usage of support
vector machine in face detection,” IJEAT, vol. 9, pp.
1336–1340, 2020.

[7] A. M. U. D. Khanday et al., “Svmbpi: Support vector
machine-based propaganda identification,” in Cognitive
Informatics and Soft Computing. Springer Singapore,
2021, pp. 445–455.

[8] B. E. Boser et al., “A training algorithm for optimal
margin classifiers,” in 5th Annual Workshop on COLT.
NY, USA: ACM, 1992, pp. 144–152.

[9] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[10] T. Joachims, Learning to Classify Text Using Support
Vector Machines – Methods, Theory, and Algorithms.
Kluwer/Springer, 2002.

[11] J. Platt, “Sequential minimal optimization: A fast algo-
rithm for training support vector machines,” Microsoft
Research, techreport MSR-TR-98-14, 1998.

[12] R.-E. Fan et al., “Liblinear: A library for large linear
classification,” JMLR, vol. 9, pp. 1871–1874, 2008.

[13] Z.-Q. Zeng et al., “Fast training support vector machines
using parallel sequential minimal optimization,” in 3rd
Int. Conf. on ISKE, vol. 1. IEEE, 2008, pp. 997–1001.

[14] Z. Wen et al., “ThunderSVM: A fast SVM library on
GPUs and CPUs,” JMLR, vol. 19, pp. 797–801, 2018.

[15] A. Carpenter, “cusvm: A cuda implementation of
support vector classification and regression,” http://
patternsonascreen.net/cusvm.html, pp. 1–9, 2009.

[16] Q. Li et al., “Gpusvm: a comprehensive cuda based sup-
port vector machine package,” Central European Journal
of Computer Science, vol. 1, no. 4, pp. 387–405, 2011.

[17] S. Herrero, “multisvm,” https://github.com/sergherrero/
multisvm, accessed: 2022-01-20.

[18] H. E. L. Cagnin et al., “A portable OpenCL-based
approach for SVMs in GPU,” in BRACIS. IEEE, 2015.

[19] S. Raschka et al., “Machine learning in python: Main
developments and technology trends in data science, ma-
chine learning, and artificial intelligence,” MDPI, 2020.

[20] M. Jafferji, “svm-gpu,” https://github.com/
murtazajafferji/svm-gpu, accessed: 2022-01-20.

[21] V. Codreanu et al., “Evaluating automatically parallelized
versions of the support vector machine,” Concurrency
and Computation, vol. 28, no. 7, pp. 2274–2294, 2014.

[22] “Sycl-ml,” https://github.com/codeplaysoftware/
SYCL-ML/, accessed: 2022-01-20.

[23] J. A. K. Suykens and J. Vandewalle, “Least squares
support vector machine classifiers,” Neural Processing
Letters, vol. 9, no. 3, pp. 293–300, 1999.

[24] J. A. K. Suykens et al., Least Squares Support Vector
Machines. World Scientific, 2002.

[25] ——, “Weighted least squares support vector machines:
robustness and sparse approximation,” Neurocomputing,
vol. 48, no. 1-4, pp. 85–105, 2002.

[26] ——, “Sparse approximation using least squares support
vector machines,” in 2000 IEEE ISCAS, vol. 2, IEEE.
Presses Polytech. Univ. Romandes, 2000, pp. 757–760.

[27] J. A. K. Suykens and J. Vandewalle, “Multiclass least
squares support vector machines,” in IJCNN’99, vol. 2,
IEEE. IEEE, 1999, pp. 900–903.

[28] J. Ye and T. Xiong, “Svm versus least squares svm,”
JMLR, vol. 2, pp. 644–651, 2007.

[29] T.-N. Do et al., “Gpu-based parallel svm algorithm,” J.
Front. Comput. Sci. and Tech., vol. 3, pp. 368–377, 2009.

[30] T.-N. Do and V.-H. Nguyen, “A novel speed-up svm
algorithm for massive classification tasks,” in 2008 IEEE-
RIVF. IEEE, 2008, pp. 215–220.

[31] R. Drumond, “Lssvm in python,” https://github.com/
RomuloDrumond/LSSVM, accessed: 2022-01-20.

[32] M. R. Hestenes and E. Stiefel, “Methods of conjugate
gradients for solving linear systems,” JRITEF, vol. 49,
no. 6, p. 409, 1952.

[33] C. Saunders et al., “Ridge regression learning algorithm
in dual variables,” in Proceedings of the 15th ICML.
Morgan Kaufmann Publishers Inc., 1998, p. 515–521.

[34] W. Chu et al., “An improved conjugate gradient scheme
to the solution of least squares SVM,” IEEE Transactions
on Neural Networks, vol. 16, no. 2, pp. 498–501, 2005.

[35] T. Hofmann et al., “Kernel methods in machine learning,”
Annals of Statistics, vol. 36, no. 3, pp. 1171–1220, 2008.

[36] J. R. Shewchuk et al., “An introduction to the conjugate
gradient method without the agonizing pain,” 1994.

[37] F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” JMLR, vol. 12, pp. 2825–2830, 2011.

[38] S. Basu et al., “Deepsat: A learning framework for
satellite imagery,” in ACM SIGSPATIAL. ACM, 2015.

https://www.kaggle.com/amberthomas/kaggle-2017-survey-results/report
https://www.kaggle.com/amberthomas/kaggle-2017-survey-results/report
http://patternsonascreen.net/cusvm.html
http://patternsonascreen.net/cusvm.html
https://github.com/sergherrero/multisvm
https://github.com/sergherrero/multisvm
https://github.com/murtazajafferji/svm-gpu
https://github.com/murtazajafferji/svm-gpu
https://github.com/codeplaysoftware/SYCL-ML/
https://github.com/codeplaysoftware/SYCL-ML/
https://github.com/RomuloDrumond/LSSVM
https://github.com/RomuloDrumond/LSSVM

	I Introduction
	II Support Vector Machines
	II-A Training
	II-B Classification
	II-C Least Squares Support Vector Machines
	II-D Dual Problem
	II-E Kernel Trick
	II-F System of Linear Equations
	II-G Parallelizability

	III Implementation
	III-A Data Layout
	III-B Solving the System of Linear Equations
	III-C Optimizations
	III-C1 Blocking
	III-C2 Caching
	III-C3 Block-Level Caching
	III-C4 Thread-Level Caching
	III-C5 Distribute Blocks Across Multiple GPUs

	IV Results
	IV-A Hardware Platforms
	IV-B Data Sets and Experimental Setup
	IV-C Runtime Comparison
	IV-D The SAT-6 Airbone Real-World Data Set
	IV-E Runtime Analysis of the PLSSVM Components
	IV-F Runtime and Accuracy Depending on Epsilon
	IV-G Scaling on a Many-Core CPU and Multiple GPUs
	IV-H Comparison of the Implementations

	V Conclusions and Future Work
	Acknowledgments

