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Abstract—Modern computing systems are increasingly more
complex, with their multicore CPUs and GPUs accelerators
changing yearly, if not more often. It thus has become
very challenging to write programs that efficiently use the
associated complex memory systems and take advantage of the
available parallelism. Autotuning addresses this by optimizing
parameterized code to the targeted hardware by searching
for the optimal set of parameters. Empirical autotuning has
therefore gained interest during the past decades. While new
autotuning algorithms are regularly presented and published,
we will show why comparing these autotuning algorithms is a
deceptively difficult task.

In this paper, we describe our empirical study of state-of-
the-art search techniques for autotuning by comparing them
on a range of sample sizes, benchmarks and architectures. We
optimize 6 tunable parameters with a search-space size of over
2 million. The algorithms studied include Random Search (RS),
Random Forest Regression (RF), Genetic Algorithms (GA),
Bayesian Optimization with Gaussian Processes (BO GP) and
Bayesian Optimization with Tree-Parzen Estimators (BO TPE).

Our results on the ImageCL benchmark suite suggest that
the ideal autotuning algorithm heavily depends on the sample
size. In our study, BO GP and BO TPE outperform the other
algorithms in most scenarios with sample sizes from 25 to 100.
However, GA usually outperforms the others for sample sizes
200 and beyond. We generally see the most speedup to be
gained over RS in the lower range of sample sizes (25-100).
However, the algorithms more consistently outperform RS for
higher sample sizes (200-400). Hence, no single state-of-the-
art algorithm outperforms the rest for all sample sizes. Some
suggestions for future work are also included.
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I. INTRODUCTION

While CPUs are still the core of modern computers, we
have seen a significant increase in their complexity in recent
decades. Accelerators such as GPUs (Graphics Processing
Units) can greatly improve efficiency and performance if
developers can utilize them correctly. Hence, new data
centers, and most of the world’s Top500 No. 1 systems since
2010 [1]] are typically HPC (High-Performance Computing)
systems with large collections of both CPUs and GPUs.

Increasingly heterogeneous systems make the task of
optimizing for performance an increasingly difficult one,
with rapidly changing GPU / Accelerator architectures
complicating matters even further.

A. The case for autotuning

Researchers spend considerable efforts in computer
science and related fields on optimization of their programs,
so they can take advantage of the significant yearly
improvements in the performance of HPC systems.

However, as the complexity of these systems grows,
optimizing programs grows beyond the practical limits of
developers’ ability to understand the entire system.

To address this, traditionally built analytical methods — as
in the case of compiler optimization — are used to understand
how all the system components relate to one another. The
knowledge of these systems is then turned into rules that
can be followed to optimize programs. The rules can add,
modify or remove large chunks of code without changing the
semantics of the program. However, sometimes these rules
cannot encode the optimal solution perfectly, and so they
contain heuristics.

While heuristics often perform well, they can also
limit the program from finding the optimal solution,
especially in ever-changing heterogeneous architectures. In
fact, sometimes new inventive methods that work well for
their time can be shown later not to be ideal [2]].

To find the optimal solution, one therefore often needs to
test the programs and observe how they perform. Using this
additional data, one can apply empirical methods that search
for the optimal solution through trial and error. When these
empirical methods are applied to general programs, we refer
to the methods as autotuning.

Ideally, compilers and translators should hide as many
architecture-based optimization details as possible from the
language user so that their codes can be used efficiently
across generations of systems. This was one of the key
consideration when Falch and Elster developed the ImageCL
programming language [3] that was built upon OpenCL [4].
To abstract away several of the GPU-specific parameters
without any input needed from the end-user, they developed
an autotuner [3] that showed promising results.

In this paper, we compare several state-of-the-art
autotuning techniques that are commonly used in practice
across various benchmarks and architectures. These
include Random Forest Regression (RF), a traditional



technique that was used in the seminal work by
James Bergstra [6l]. Sequential model-based optimization
techniques like Bayesian Optimization with Gaussian
Processes (BO GP) [7] and Tree-Parzen Estimators
(BO TPE) [8] have also seen widespread adoption [9],
[10]. In addition to these techniques, metaheuristic
algorithms are also commonly used such as Particle Swarm
Optimization (PSO), Simulated Annealing (SA) and Genetic
Algorithms(GA) [11l], [12]. However, despite extensive
research into new autotuning methods, there is still no
consensus across these disciplines on which autotuning
method is optimal.

Our goals are to investigate whether there is an
optimization algorithm that outperforms all others for all
sample sizes and how the optimal selection of autotuning
algorithms changes as a function of benchmark, hardware,
and sample size. This work is an extension of previous
work [13].

The rest of this paper will be organized as follows: The
following section Section [II| introduces general theoretical
background, followed by an introduction to autotuning
techniques (Section [[I). Section [[V]introduces and discusses
related work, whereas Section [V] details our experimental
design and Section details the framework we use to
conduct the experiments. Finally, Section contains our
experimental results and our discussion of the data, and
Section concludes the paper and gives some ideas
regarding future work left to be done.

II. BACKGROUND

GPUs were originally designed for fast processing of
graphics. However, in recent decades they have also
been found to be excellent accelerators for sufficiently
parallelizable workloads. GPUs have thus been used as
General Purpose GPUs (GPGPU) to accelerate a wide range
of scientific computations. Many of the largest computing
clusters in the world today use GPUs as an essential
computational resource. The design and optimization of
GPU workloads and architectures have therefore become
important for many other subjects than video game graphics.

A. Performance Portability

Due to the wide range of hardware available for
computers, a program will often functionally behave
the same for all compatible platforms. However, the
performance can vary greatly. A configuration of a problem
that runs well on one GPU might perform terribly on
another GPU of a different architecture. ATLAS [14] is
an Automatically Tuned Linear Algebra library, that is
an early well-known effort that addresses this by testing
out various configurations of matrix block sizes to decide
which configuration is optimal for a given system’s memory
hierarchy. Similar concepts are also part of Intel’s matrix
library MKL and the FFT library FFTW [15].

B. ImageCL

ImageCL [3] is an OpenCL-based language for abstracting
some of the hardware-specific details of OpenCL to
provide performance portability. The language abstracts
away parameters such as the work group size and thread
coarsening from OpenCL into tuning parameters via a
configuration file. Thread coarsening describes how many
data elements each thread has to process. After the
configuration has been specified, the program can be
compiled and run to test its performance with the assigned
configuration. The ImageCL autotuner AUMA [5] uses
this process to tune the ImageCL kernels automatically.
Designing and implementing a general optimal autotuner is
still an open research question.

C. Significance tests and effect sizes

When evaluating program characteristics such as
performance, the result will often vary significantly
depending on many uncontrollable factors, e.g. OS

scheduling, caching, clock frequencies, branch predictors,
etc. We therefore need statistical tools that can handle this
uncertainty and still allow us to be confident in the results.
This section will introduce our chosen significance test and
effect size for our study.

1) Mann-Whitney U test: If the variables from the
distributions we are comparing can be assumed to be
independent, we can use the non-parametric Mann-Whitney
U test [16]. This test can be used to investigate whether
two independent samples are from populations with identical
distributions. The null hypothesis is that a randomly chosen
sample from one population is equally likely to be less than
or greater than a randomly selected sample from the other
population.

2) Common Language Effect Size: While significance
tests can be used to determine whether there is a significant
difference between populations, it does not say anything
about the size of the difference. We can get a low p-value
in two ways, either by having a large difference and few
samples, or a small difference but many samples. Since the
p-value makes no distinction between these two cases, we
need an effect size to determine the size of this significant
difference.

Many effect sizes can be quite difficult to interpret, and so
McGraw and Wong designed the Common Language Effect
Size (CLES) [L7]. If we compare two populations A and B
and have concluded that the alternative hypothesis that the
median of population A is greater than B, then the CLES
describes the probability that any random observation from
A is greater than a sample from B. With random samples
Xy from A and random samples Xp from B, the CLES is
defined as in Eq. 1} where the 0.5 factor is a tie-breaker as
described in the work by Vargha and Delaney [18].

A(XA,XB) :P(XA >XB) +0.5P(XA :XB> (D)



III. AUTOTUNING

In this section, we will give a high-level overview of
the concepts of the various optimization techniques that
are used in empirical auto-tuning. We will investigate two
main groups of optimizations. First is the model-based
techniques that train a predictive surrogate model offline and
then predict online. Second is the sequential model-based
techniques that incorporate their model into the sample
collection process.

A. Random Forest & Model-based optimization

The problem of model-based auto-tuning and related fields
is the development of an approximation function A such
that a solution a approximates the true solution p. We
use this approximation function as a surrogate model as a
substitute for running the real program. This allows us to
explore the state space much more efficiently if the runtime
of the surrogate model is sufficiently faster than running
the real program. If the surrogate model’s characteristics
w.r.t to the measurement function is sufficiently similar to
the original program, then the model’s maximum/minimum
result will ideally be very close or identical with the
maximum/minimum result of the original program. We can
thus use this model to reduce the total search time to find
the optimal solution.

When designing such a surrogate model Bergstra et al.
opted for Boosted Decision Trees as models [6]. However,
bagging where we average the output of a large ensemble
of different models, is also a very effective alternative.
In 2001 Breiman [19] combined this bagging technique
with a random selection of features to create the Random
Forest model. By varying the predictors and averaging
across a collection of different decision trees, we increase
the generalization performance and make the model less
susceptible to noise.

B. Sequential Model-Based Optimization (SMBO)

The model-based approaches from the previous section
are based on a two-stage process, with sample collection
and then training and prediction. However, the samples
collected for the training set greatly impact the performance
of the models. We will therefore now discuss Sequential
Model-Based Optimization(SMBO). The key idea is to use
our surrogate model to more intelligently collect training
samples that are useful for training a precise model.

1) Bayesian Optimization: The most common type of
SMBO is based on Bayesian Optimization, where we
use a Gaussian Process(GP) to find the most interesting
training samples. Bergstra et al. used this method in
their HyperOpt library [9], [8]. They also developed Tree-
Parzen Estimators(TPE) as a less computationally expensive
alternative. The selection criteria for the next sample in an
SMBO process varies, however the most common strategy is
Expected Improvement where we collect the samples that we

predict will perform the best, given our current knowledge.
There are also various other sampling strategies, including
Upper Confidence Bounds and Thompson Sampling.

2) Genetic Algorithms: Among the metaheuristic
optimization algorithms van Werkhoven [12] showed that
Genetic Algorithms performs well for autotuning.

Genetic algorithms [20] can also be viewed as a type of
SMBO in the way that it performs crossover and mutation on
previous generations to create more sophisticated solutions.
Genetic algorithms start with a random population of
samples and then iteratively alter this population towards
better solutions. We can describe the process in 5 main steps:

1) Chromosomes(configurations) are randomly generated
to form a population.

2) Chromosomes evaluated using measurement function.

3) The best chromosomes are kept, the rest discarded.

4) New population is generated by crossover and mutation.

5) Repeat until max iterations.
Here, the crossover is an alteration of the configurations
by combining parts of the configurations from the best
chromosomes. The idea is then that a combination of good
features will hopefully lead to an even better offspring.
One way to implement this is by taking half of the
variables from configuration A and the other half of variables
from configuration B when creating their offspring C.
Additionally, to avoid getting stuck in local extrema we
add a mutation operator that introduces stochasticity into the
process. The mutation operator will with a low probability
randomly change the variables.

IV. RELATED WORK

In this section, we will give a high-level overview of the
related research fields and then investigate each of these
related research fields for related works.

A. Hyperparameter optimization in ML

Since autotuning is simply an application of mathematical
optimization for program optimization, we can see strong
similarities with hyperparameter optimization. The machine-
learning(ML) community often creates models that contain
hyperparameters that greatly impact the performance of
the models. The community has therefore performed
extensive research in how to most efficiently optimize these
hyperparameters. Hyperparameter optimization therefore
focuses on the optimization of models, where the
measurement function M is usually the loss L of the model.

In the field of hyperparameter optimization, J. Bergstra
has provided several seminal works. He presented results
that showcased Random Search as superior to Grid Search
for hyperparameter optimization [23] and that both BO GP
and BO TPE algorithms outperform Random Search [§]]. In
2012 Bergstra also published an autotuning technique based
on machine learning with boosted regression trees [6], before
publishing a hyperparameter optimization library, HyperOpt,



Table I: Overview of previous experimental designs for empirical optimizations.

Author Samples/Experiments/Evaluations E]

Significance test

Research field  Algorithms

Hutter et al. [10] 30-300 Min / 25 / 1000 Mann-Whitney U AlgConf SMAC, ROAR, TB-SPO, GGA(GA)
Eggensperger et al. [21]  Varied”|(50 to 200) / 10 / n/a Unpaired t-test AlgConf BO TPE, SMAC, Spearmint
Falkner et al. [22] Varies?/ Varies / Varies n/a AlgConf RS, BO TPE, BO GP, HB,
HB-LCNet and BOHB
Snoek et al. [7] Varie@(l-SO,l-lOO) /100 / n/a n/a HypOpt BO GP, Grid search
Bergstra et al. [8] 230 /20 / n/a n/a HypOpt RS, BO TPE, BO GP, Manual
Bergstra et al. [23] 1-128 / 256-2 / n/a n/a HypOpt RS, Grid Search(GS)
Bergstra et al. [6] 10-200 / n/a / n/a n/a HypOpt Boosted Regression Trees,
GS, Hill Climbing
Falch and Elster [5] 100-6000 / 20 / n/a n/a Autotuning NN, SVR, Regression Tree
van Werkhoven [12] Varied?l/ 32 /7 n/a Autotuning Many Metaheuristic Methods
Willemsen et al.[24] 20-220 / 35 / n/a n/a Autotuning BO, RS, SA, MLS and GA
Ansel et al. [25] Varied?l/ 30 / n/a n/a Autotuning Multi-armed bandit, Manual
Nugteren et al. [[11] Varie@(107 or 117)/ 128 / n/a n/a Autotuning RS, SA, PSO
Akiba et al. [26] Varie/ 30/ n/a "Paired MWU" Autotuning RS, HyperOpt, SMAC3,
GPyOpt, TPE+CMA-ES
Grebhahn et al. [27] 50, 125 / Unclear ﬂ/ n/a "Wilcox test" SBSE RF, SVR, kNN, CART, KRR, MR
Terring 25-400 / 800-50 / 10 Mann-Whitney U Autotuning RS, BO TPE, BO GP, RF, GA

“The number of evaluations of the final solution, to compensate for runtime variance.
®No common value for all benchmarks or in the case of van Werkhoven, no common value for all algorithms

“The samples sizes vary, due to pruning techniques.

4The paper mentions 15000 experiments, however it does not state how many experiments per algorithm/benchmark.

based on these techniques [9]. Snoek et al. also presented
their application of Bayesian Optimization with Gaussian
Processes in 2012 [[7]].

B. Algorithmic Configuration

A generalization of the hyperparameter optimization
field includes Algorithmic Configuration, where the field
focuses on general optimization of algorithms. In this field,
the measurement function M could be any meaningful
function for the performance of the algorithm. Frank Hutter’s
AutoML group has contributed significant research in this
community [10], [21]], [22]. This includes developing the
BOHB algorithm that combines Hyperband with TPE-based
Bayesian Optimization [22].

C. Comparative studies

The most relevant comparative study is the work by Falch
and Elster where they published an Autotuner, AUMA,
based on a feedforward neural network in 2017 [5]. The
autotuner was designed specifically to autotune ImageCL
and OpenCL kernels. The proposed technique showed
promising results.

In 2019, van Verkhoven published comprehensive results
comparing various metaheuristic optimization techniques,
and these results indicate that Genetic Algorithms performs
well among the metaheuristic optimization techniques [12].
These results also focus on OpenCL kernels. The results
are based on 32 experimental runs and a single sample
size for each algorithm. The results are therefore a good
indication for future research, yet more research is needed

to compare against other state-of-the-art techniques. The
work has since been extended by Willemsen et al.[24]]. Their
2021 work compares Bayesian Optimization to previous
search techniques implemented in Kernel Tuner. The results
indicate that Bayesian Optimization outperforms the other
search techniques for most kernels and sample sizes.

D. Frameworks

Rasch et al. published ATF: A generic autotuning
framework in 2019 [28]. The framework was compared
against the older OpenTuner framework [25] and CLTune
framework by C. Nugteren and V. Codreanu [11].
CLTune [I1] compared several of the state-of-the-art
techniques at the time, with an experiment size of 128. They
performed two experiments on two benchmarks, with sample
sizes of 107 and 117, respectively. The results give a strong
indication that Simulated Annealing(SA) and Particle Swarm
Optimization (PSO) outperforms Random Search, however
the superiority of PSO and SA depends on the benchmark at
hand. The experimental size of this study could be sufficient
to make such conclusions significant, however the authors
do not provide any significance test.

Akiba et al. provides a very thorough experimental design
and analysis with significance tests when comparing their
hyperparameter optimization framework Optuna [26]] against
HyperOpt [9]], SMACS3 [[10] and other frameworks. However,
the study compares the performance of the frameworks
and not the underlying algorithms in the framework. The
study is thus a very good indicator of the performance of



the Optuna framework yet does not provide any significant
general conclusions about the algorithms.

E. Search-based Software Engineering

The software engineering community has also invested
significant research into finding techniques for optimal
application-level configurations. Among the most recent
work is an excellent empirical study by Grebhahn et
al. [27]]. The authors evaluated several popular techniques
in Software Engineering, including k-Nearest Neighbours,
Support Vector Regression and Random Forests for creating
surrogate performance models. These models can then be
used to predict optimal application-level configurations.

FE. Overview of related studies

Given all these related works, we have compiled a Table
of the experimental details and algorithms for each of the
most influential works that we have found. In Table [ we
present the experimental details of the Related works we
found in our survey. The rows in the table also include
the experimental details for our design as we will discuss
in Section [V] Some tools presented as algorithms here are
frameworks and thus employ more techniques than the core
search algorithms they are based on.

From analyzing this table, we can note that while
the HypOpt/AlgConf field has focused on various
implementations of Bayesian Optimization, the Autotuning
field has focused on Metaheuristics optimization and
traditional techniques, e.g. SA, PSO, GA, SVR, kNN,
etc. We can therefore not find any modern study that
compares the state-of-the-art algorithms in autotuning
with the best HypOpt or AlgConf algorithms. Very few
evaluate a consistent range of sample sizes, with Bergstra’s
publications being the most common exception. Many
publications also perform less than 50 experiments and do
not provide any significance tests to assess the significance
of their results. Few of the previous works provide any
effect sizes for the results, either. However, some previous
research has evaluated a larger range of different techniques,
especially the thorough work by van Werkhoven [12].

V. EXPERIMENTAL DESIGN

For our experiments, we assume that the time it takes to
run predictions using the models is insignificant compared
with the cost of running the samples. This leads us to a
design where we want to investigate how sample-efficient
each algorithm is. I.e. we want to compare the algorithms
for how well the best predicted configuration performs, given
a fixed number of samples for all algorithms.

The justification for such a design is based on case studies
where large applications are autotuned [29]]. In cases like
these, the surrogate model runtimes are negligible compared
to running the programs.

It also allows us to evaluate how the algorithms perform
instead of their implementation. The measured runtime
of these algorithms are usually heavily dependent on
implementation details, such as the programming language.

A. Distribution of samples and significance tests

When we performed our initial random sample
experiments, we got a population of samples that was
obviously non-gaussian. Neither could the populations be
modeled accurately with any of the distributions in the
SciPy statistics package. Therefore, we cannot make any
assumptions about the underlying distribution, so we need
a non-parametric significance test. An alternative could be
Bootstrapping, however that would drastically increase the
time it takes to get sufficient results.

We propose to use the Mann-Whitney UMWU) test or the
Wilcoxon rank-sum test. The choice of this test is motivated
by the wide-spread support of the Wilcoxon rank-sum test
for these types of studies [30], [27]. For our study, we chose
the significance threshold oo = 0.01.

B. Experiment size

When choosing how many experiments to perform for
each algorithm, we need to evaluate the variance between
the results and how many experiments we need to achieve
a sufficient p-value.

However, as we ran the algorithms for different sample
sizes, we noticed that the variance in our results decreased
as a function of sample size. We therefore seek to scale the
number of experiments for each algorithm as a function of
the sample sizes we are evaluating. This will allow us to run
more experiments for lower sample sizes that have a higher
variance, and run fewer experiments for higher sample sizes.

With the assumption that we wanted at least 50
experiments for our sample_size = 400 case, we performed
800 experiments for our sample_size = 25 case and scaled
the number of experiments for the rest of the sample sizes
similarly.

C. Hyperparameters and Search Space

We have limited our study to best guess hyperparameters,
assuming that the inherent difference between the
algorithms amortizes the difference between our best
guess hyperparameters and the ideal hyperparameters.

Our study includes 6 tuning parameters. The search space
of the benchmarks is defined by the three thread dimensions
with range {X,Y,Z}, = [1..16] and the three work group size
parameters with range {X,Y,Z},, = [1..8]. This gives a total
of |S| =2 097 152 configurations. We initially generated
the training samples for the model-based approaches using
a constraint specification. We knew from prior knowledge
that the product of our work group size parameters must not
exceed 256.



Using this constraint, we only generated executable
configurations for our non-SMBO methods. The SMBO-
methods did not have any option for specifying constraint
specification in their searches. We therefore consider the
use of constraint specification a design point in which non-
SMBO methods are favored. As we will show, the SMBO
methods still greatly outperformed non-SMBO methods.

D. Benchmarks, Hardware and Runtime Environment

The benchmarks for this study consist of three
benchmarks from the ImageCL benchmark suite [5]. The
Add benchmark consists of a simple vector addition with
two vectors of size X. The Harris benchmark is slightly more
complex than the Add benchmark, as it involves executing
the harris corner detection algorithm. This algorithm is used
to detect where corners are in images. The algorithm is
performed on an image of size X by Y and is also easily
parallelizable, like the Add benchmark. The final benchmark
is the construction of an image of size X by Y with intensity
values according to the Mandelbrot set. This will create the
classic visualization of the Mandelbrot set. This is also an
easily parallelizable benchmark that lends itself to a GPU.

We ran all the benchmarks with, X = 8192,Y = 8192
which is the default value for previous internal studies on
autotuning of ImageCL. All of our benchmarks were run on
three different GPU architectures to compare the results. We
specifically chose the RTX Titan from 2019, Titan V from
2017 and GTX 980 from Fall 2014 to compare between
older and more modern architectures.

VI. AUTOTUNING FRAMEWORK

In this section we will describe the implementation of our
autotuning framework and techniques as illustrated in Fig. [T]

A. Measurement

The total runtime of performing a computation on a GPU
is heavily dependent on data transfer between the CPU’s
main memory and the GPUs memory via the PCle-bus.
Therefore, it is imperative that we first transfer the data and
then start the measurement timer when executing the kernel.
Respectively, the timer needs to stop after the kernel has
finished, but before the data is transferred back to the host
device. This ensures that we measure the actual execution
time of the computation and not the additional time to
transfer data between devices.

When the autotuning algorithm has terminated, we test the
final sample 10 times to compensate for runtime variance.
We only run the sample once during the training and
sampling process to better represent real use cases and test
the models for how well they handle noise in the samples.

B. Implementation of the algorithms

When implementing autotuning algorithms, the runtime
of each algorithm is heavily dependent on implementation

details, such as the choice of language. As discussed in
Sec. [V} we focus on the sample-efficiency of the algorithms
instead of runtime.

We have implemented the following methods in our
experimental frameworks: Random Search (RS), Random
Forest Regression (RF), Genetic Algorithms (GA), Bayesian
Optimization with Gaussian Processes (BO-GP), Bayesian
Optimization with Tree-Parzen Estimators(BO-TE).

For our non-SMBO approaches, we streamline the
experimental sample collection process by creating a dataset
of 20 000 samples in one go for each architecture and
benchmark. We can then subdivide the samples for each
sample size and experiment.

For the case of Random Search (RS), we simply select
the minimum runtime from the collection of S samples for
the given experiment. We then collect the minimum for all
E experiments in the sample size.

For model-based approaches like Random Forest (RF),
we train the models with the subset of size S — 10 for
each experiment and then run the top 10 predictions. The
top performing prediction is then stored as the output. We
repeat this process for all E experiments. The RF model
is implemented using the sk-learn RandomForestRegressor
model. Configurations are run 10 times to compensate for
runtime variance and to decrease noise in our experimental
results.

Bayesian Optimization with Gaussian Processes is
implemented using the Scikit-optimize’s gp_minimize
function. The acquisition functions is defined as the
Expected Improvement. Initialization uses 8% of the
samples, and the remaining 92% are used as prediction
samples in the search.

For the TPE variant of BO we used the Hyperopt library
by Bergstra et al. [9]. The implementation is very similar
to the GP-variant, where we specify a search range and the
number of evaluations, as well as the objective/measurement
function. The only limitation of this library compared to
gp_minimize is the inability to specify the balance of
random samples to model-driven samples.

To make our study as comparable as possible we based our
Genetic Algorithm implementation on the implementation
that van Werkhoven used in their study [12]. We have
thus only made minor changes to make the implementation
compatible with our experimental framework.

VII. RESULTS AND DISCUSSION

This section will present the results from all of our
roughly 3 019 500 samplesﬂ across various algorithms,
benchmarks and architectures. In addition, we will present
the general trends and data across our results in this section.

13 SMBO algorithms, [25, 50, 100, 200, 400] samples per algorithm,
[800, 400, 200, 100, 50] experiments + RS/RF Samples and RF predictions
for 3 benchmarks on 3 architectures.
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Figure 1: Experiment pipeline, including sample collection process and prediction stage.
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Figure 2: Percentage of optimum performance for each
algorithm on each benchmark and architecture.

One would typically want to choose the autotuning
algorithm, which is most likely to give us the best result.
This can be done by comparing the median of all our runs
of the various algorithms under question.

When providing the autotuning algorithms with more
samples, we often want to see how close they get to the
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Figure 3: Mean and confidence interval of percentage
of optimum performance across all benchmarks and
architectures.

optimum solution. Fig. 2] therefore provides how close the
median solution of each algorithm’s run on a benchmark
and architecture is to the study’s optimum solution. We
visualize the results from these heatmaps as an aggregate
line plot of the mean value of the medians in Fig. 3] with the
confidence interval generated from the heatmap values. To
better understand how all the algorithms behave compared
to Random Search, we also provide a range of heatmaps that
show the relative speedup of each algorithm compared with
Random Search, Fig. fa] Fig.[db]is the corresponding CLES
plot of the values , i.e. the probability of the algorithm’s
solution outperforming Random Search.
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Figure 4: Median speedup over Random Search and CLES over Random Search

We view all cases statistically significant (¢ =0.01) where
a given algorithm’s median performance differs by more
than 1% compared with other algorithms. This is statistically
significant under the MWU test, since our number of
experiments are sufficiently high (for sample size 25 to 400,
with 800 to 50 experiments, depending on the sample size).

A. Percentage of Optimum solution

The results in Fig. [2] and 3] show that all the benchmarks
and architectures share a few common trends. We can see
that BO GP outperforms most other algorithms for low
and mid-range sample sizes from 25 to 100 for most of
the benchmarks and architectures. From sample size 100 to
200 BO GP has a decline in performance, potentially due
to overfitting [31]]. This effect varies between benchmarks,
yet is a consistent trend for BO GP, while all other
algorithms have strictly increasing performance as a function
of sample size. The extent of this effect is likely influenced
by the dimensionality and cardinality of the search space,
in addition to the sample sizes we are investigating. The
benchmark also seems to affect this behavior, with BO
GP providing peak performance on the Harris benchmark
at sample size 100. In contrast, for the Add benchmark,
the peak varies between architectures. BO GP, on average,
provides better performance for the highest sample size for
the Mandelbrot benchmark.

For sample sizes of 200 and 400, GA outperforms all
other algorithms for most benchmarks and architectures.

BO TPE also performs well for many of these benchmarks
and architectures in the same sample size range. BO
TPE performs well for most sample sizes, yet is often
outperformed by BO GP or GA in their respective sample
size ranges. The Non-SMBO RF method often performs
worse than RS and never outperforms all the other methods.

B. Speedup over Random Search

When we compare the results of each algorithm against
Random Search in Fig. fa] we can see a few general trends.
Compared with RS, the potential relative gain of using
advanced search techniques like BO GP and BO TPE is
greatest for smaller sample sizes. Using BO GP or BO TPE
for sample sizes from 25 to 100 generally gives us 10-
40% better performance than simply using RS. However,
some combination of benchmarks and architectures give less
speedup, e.g. Mandelbrot on Titan V and RTX Titan.

For higher sample sizes like 200 and 400, GA generally
outperforms the other algorithms, with BO TPE also
performing well. However, the potential speedup over RS is
less in this range, from 3-14%, depending on the benchmark
and architecture. We would expect this trend to continue as
the sample size increases and a larger portion of the search
space is evaluated by RS.

C. Probability of outperforming Random Search (CLES)

In Fig. @b we present a plot of each algorithm’s
Common Language Effect Size over Random Search
for all benchmarks and architectures. These figures can



essentially be interpreted as probability plots of how often
an algorithm will outperform the alternative. Since our
alternative algorithm in these plots is RS, these plots show
the percentage of experiments for a given algorithm that
outperformed random search.

We can see similar trends in these plots where BO
GP performs well for low to mid-range sample sizes and
GA performs well for high sample sizes. BO TPE also
appears to be a good balance across the entire sample
range, often outperforming GA for low sample sizes and
BO GP for high sample sizes. While the potential for
performance improvements over RS is greatest for lower
sample sizes, we can observe that the algorithms more
consistently outperform RS for higher sample sizes.

VIII. CONCLUSION AND FUTURE WORK

Optimizing codes for modern computing systems with
multi-core CPUs and GPUs that update their architecture
often, is becoming increasingly challenging. Autotuning
addresses this by optimizing parameterized code to the
targeted hardware by searching for the optimal set of
parameters, including addressing memory hierarchies, etc. In
this paper, we analyzed through experimental results some
of the most popular search techniques used in autotuning and
how they compare for various benchmarks, architectures and
sample sizes.

Our study compared the search algorithms Random
Search (RS), Random Forest Regression (RF), Genetic
Algorithms (GA), Bayesian Optimization with Gaussian
Processes (BO GP) and Bayesian Optimization with
Tree-Parzen Estimators (BO TPE). The algorithms were
compared using three image-based GPU kernels on three
GPU architectures, including the RTX Titan, Titan V and
GTX 980. While the largest differences in autotuning results
were between sample sizes, the benchmark and architecture
were also shown to significantly impact the results.

Our results showed that advanced search techniques
outperform random search to a larger extent for low sample
sizes between 25 and 100 samples. For higher sample sizes
from 200 to 400 samples, advanced search techniques more
consistently outperform random search. Note that no single
search technique, among those tested, outperforms all other
techniques for all sample sizes. BO GP and BO TPE perform
well for low sample sizes from 25 to 100, and GA performs
best for higher samples sizes from 200 to 400.

A. Current and Future work

Our results provide great motivation for future work into
better understanding how the relative performance of how
search algorithms change as functions of the sample size,
benchmarks and architectures. Current work thus includes
testing a wider range of benchmarks [32], [33], architectures
and search algorithms for a wider range of sample
sizes. This will naturally require even more computational

resources than we already used for our study. Comparing
our selection of algorithms against HyperBand(HB) and
Bayesian Optimization HyperBand(BOHB) [22] as well as
Deep-learning based methods [34] is of special interest.
Investigating the effect of different input data sets to the
benchmarks could also provide insightful results.
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