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Abstract—As the computing landscape evolves, system de-
signers continue to explore design methodologies that leverage
increased levels of heterogeneity to push performance within
limited size, weight, power, and cost budgets. One such method-
ology is to build Domain-Specific System on Chips (DSSoCs)
that promise increased productivity through narrowed scope of
their target application domain. In previous works, we have pro-
posed CEDR, an open source, unified compilation and runtime
framework for DSSoC architectures that allows applications,
scheduling heuristics, and accelerators to be co-designed in a
cohesive manner that maximizes system performance. In this
work, we present changes to the application development work-
flow that enable a more productive and expressive API-based
programming methodology. These changes allow for more rapid
integration of new applications without sacrificing application
performance. Towards the design of heterogeneous SoCs with
rich set of accelerators, in this study we experimentally study
the impact of increase in workload complexity and growth in
the pool of compute resources on execution time of dynamically
arriving workloads composed of real-life applications executed
over architectures emulated on Xilinx ZCU102 MPSoC and
Nvidia Jetson AGX Xavier. We expand CEDR into the application
domain of autonomous vehicles, and we find that API-based
CEDR achieves a runtime overhead reduction of 19.5% with
respect to the original CEDR.

Index Terms—heterogeneous programming models, runtime
systems, resource management

I. INTRODUCTION

As technology scaling reaches its limits, system designers
are exploring an increasingly diverse range of methodolo-
gies for building systems that can maximize their compute
performance within limited size, weight, power, and cost
budgets. One such methodology in the literature is the design
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and fabrication of Domain-Specific System on Chip (DSSoC)
devices. The motivation of such devices is fairly simple: in a
general-purpose computing context, heterogeneous computing
systems are difficult to program and utilize effectively. The
hypothesis with DSSoC devices, then, is that by restricting the
applications used on a given system to a particular domain,
it becomes more feasible to build productive software and
programming abstractions for the finalized hardware.

We believe that such software and programming abstrac-
tions have a number of key requirements. These abstractions
should support scenarios where multiple users can coexist
and interleave their applications across the DSSoC’s hetero-
geneous pool of processing elements (PEs) while utilizing
compute resources effectively in a dynamic way. Many of
the predominant heterogeneous compute frameworks such as
CUDA [1], OpenCL [2], or SYCL [3] assume an environment
where an application expert performs offline analysis across a
number of possible implementations for a given application,
determines the optimal static mapping for all computational
kernels in that application, and produces a fixed binary that
represents a single, expertly-tuned instance of the application.
In an environment of widespread heterogeneous computation,
these greedy, inflexible mappings ignore runtime resource
contention and will clearly lead to system inefficiencies when
such programs are required to share system resources with
an arbitrary number of other heterogeneous applications. One
might expect that resource contention issues would be solved
by the operating system, but Roscoe argues [4] that the rate of
architectural advancement for modern SoCs has tremendously
outpaced the work in operating systems to meet them. Hence,
to handle this, we believe that DSSoC software abstractions
must be coupled with intelligent, intermediate runtime systems
that are capable of arbitrating or scheduling requests from all
applications to the PEs across the DSSoC. To enable this run-
time to effectively arbitrate resources among applications, each
application must also be capable of mapping its computational
kernels to as wide of a number of the system’s heterogeneous
processing elements as possible. Namely, the programming
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abstractions provided to the user should be agnostic from
the underlying hardware as this provides a number of key
benefits: it allows for maximum flexibility when the runtime
is performing its scheduling, and it allows the user to program
for the DSSoC in a productive manner without needing to
become a hardware expert in the process.

In prior work, we have explored the development of such
a runtime through a framework called CEDR, a Compiler-
Integrated, Extensible, DSSoC Runtime [5], [6]. CEDR has
been designed to holistically target the joint challenges of
choosing the composition and capabilities of accelerators on
a DSSoC, determining the optimal scheduling heuristic for an
application domain, and providing a productive set of software
abstractions for programmers writing applications for DSSoCs.
The primary contribution of CEDR thus far is its status
as an open source ecosystem 1 that integrates compile-time
application analysis with a Linux userspace-based runtime
system that addresses the aforementioned challenges. The pro-
gramming model for CEDR relies on a Directed Acyclic Graph
(DAG)-based program representation where each node in the
graph represents schedulable unit of computation, and edges
represent temporal dependencies. While this representation has
proven itself to be a sufficiently powerful format to meet
the aforementioned challenges with clear support for notions
of concurrency and heterogeneity, it does have a number of
limitations with regards to programmer productivity. First,
despite a large amount of progress in compilation tooling, it is
still comparatively difficult for many programmers to express
applications in performant, DAG-based representations. Addi-
tionally, a DAG-based application format cannot accurately
capture the control flow structures of many programs in a
way that preserves scheduler flexibility without a mechanism
to enable conditional DAG dependencies. In this work, we
seek to address these limitations through the integration of a
simplified API-based programming model that better aligns
with traditional practices in programming for homogeneous
computing systems. By incorporating both blocking and non-
blocking APIs, we are able to make this change without
impacting the ability to write performant applications and
thus the utility that CEDR provides for hardware designers or
scheduling heuristic developers seeking to stress their systems.
The primary contributions of this work are as follows:

• We modify the programming model of CEDR to allow
for a more productive API-based application workflow.

• We integrate non-blocking APIs that allow for perfor-
mance programmers to maximally exploit opportunities
for parallelism in their code.

• We expand CEDR to the domain of autonomous vehicles
and incorporate lane detection.

• We perform hardware experiments with increasing het-
erogeneity and expose scenarios in which parallelism of
heterogeneous accelerators is limited by the availability
of homogeneous CPU cores.

1Available at: https://github.com/UA-RCL/CEDR
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Fig. 1: An overview of CEDR’s integrated compiler and
runtime system.

The rest of the paper is organized as follows: in Section II,
we explore the details of the modified API-based CEDR. In
Section III, we detail the workload and system configurations
that will be leveraged in our experimental analysis. In Sec-
tion IV, we analyze our modified CEDR runtime across a
variety of workload and system configurations. In Section V,
we include an updated analysis of CEDR’s standing within the
literature. Finally, in Section VI, we summarize our findings
and conclude with avenues for future work.

II. CEDR-API

A. Background

For completeness, we begin with an overview of how the
existing CEDR runtime operates. Shown in Fig. 1, CEDR is
broadly composed of two components: a compilation workflow
and a runtime workflow. The compilation workflow is used to
transform user applications into applications that CEDR can
execute. For details about this process in the baseline runtime,
we refer readers to Section 2.2 of Mack et al. [6]. At the
end of this process, a CEDR Application is produced that
consists of a shared object binary and a JSON-based DAG. The
shared object contains a number of functions representing the
computational nodes within the DAG, but it does not contain
application-level control flow information. Instead, the JSON
captures temporal dependencies between nodes and high level
control flow of the user’s application. This pair of objects is
submitted to the runtime, referred to as the “CEDR Daemon
Process” in Fig. 1 via inter-process communication (IPC).

The CEDR Runtime consists of a few key components:
a number of worker threads, a ready queue of tasks, and a
main event loop that receives, parses, launches, and manages
applications. Each PE in the system – accelerator or CPU
core – is paired with a worker thread that manages executing
tasks on that compute resource. In the case of CPU cores,
each worker thread is assigned via its processor affinity to
run on the corresponding resource. However, for accelerator
cores, their respective worker thread is assigned via its affinity
to some CPU core in the system, and that CPU core is
responsible for coordinating any configuration updates or data
transfers that accelerator requires. Within the main event loop,
CEDR periodically pushes work to these threads by scheduling
tasks to them from its ready queue of tasks according to
a user-defined heuristic as part of the program’s Runtime

https://github.com/UA-RCL/CEDR


Configuration input. The Runtime Configuration also allows
the user to enable or disable features such as PAPI-based
performance counters [7]. As tasks are completed, the worker
threads signal completion back to the main thread and JSON
DAG dependencies of those tasks are then pushed to the back
of the ready queue. To support heterogeneous execution, when
a task is scheduled to a given resource, CEDR dynamically
updates that task’s function pointer such that its worker thread
invokes a function that is compatible with that resource. As
applications are submitted over the IPC channel, they are
parsed and their executions are started by placing the head
nodes of their DAGs into this same ready queue. This process
continues indefinitely until an IPC command is received that
tells CEDR to shutdown at which point it serializes all the
logs it has collected relating to task execution, performance
counter measurements, and so on for later offline analysis by
the user.

. . .

f or  ( i  = 0;  i  < N;  i ++)  {

i nput  = r ead_i nput ( ) ;

out 1 = KERNEL1( i nput ) ;

out 2 = KERNEL2( i nput ) ;

KERNEL3( out 1,  out 2) ;

}

. . .

i nput

K1 K2

K3

i < N

Yes

No

. . .

Fig. 2: An example of an application structure that cannot be
represented in the previous DAG-based representation without
compressing it to a single node and losing the ability to
schedule each kernel independently.

B. Limitations of the Existing Runtime
To motivate the contributions of this work, we first begin

by discussing limitations in the types of applications that
can be represented with a DAG-based format in the previous
release of CEDR. Due to the acyclic nature of DAG-based
applications, this format is unable to represent control flow
concepts of iteration or conditional branching. This leads
to issues when trying to schedule applications that have
structures like that shown in the left half of Fig. 2. Kernel1,
Kernel2, and Kernel3 may all be individually compatible with
accelerators on the system, but because a DAG-based program
representation cannot allow for a sufficiently granular program
representation like that shown in the right half of Fig. 2, this
entire for-loop structure must be collapsed to a single DAG
node and presented to CEDR as a single unit to be scheduled.
Because it is unlikely that an accelerator exists on the system
that can handle this specific sequence of iterated kernels, this
single node is likely to only be supported on the CPU, and
benefits of acceleration in this application are reduced.

C. Contributions of this Work
To address these limitations, in this work, we adjust CEDR’s

frontend tooling to consist of a new API-based development

workflow shown in Fig. 3. One of the core developments is a
new libCEDR library and associated cedr.h. The structure
of this library is shown in the left side of Fig. 3. APIs for
use in application code are exposed to developers through the
cedr.h header file. This header contains high level kernel
declarations that do not contain any implementation details of
the underlying operation with samples provided in Listing 1.
As different DSSoC platforms develop different accelera-
tor implementations of these kernels, they are incorporated
through libCEDR Modules. As an example, for a platform
with a Fast Fourier Transform (FFT) accelerator, libCEDR
provides an fft module. This module is then responsible
for providing physical implementations of the high-level APIs
as desired. Finally, the platform.h header file provides
global information about the platform in use such as base
addresses for accelerators’ AXI4 [8] interfaces to enable
driverless memory-mapped I/O (MMIO) control and dispatch
of tasks. It is expected that all APIs in this library provide,
at a minimum, standard C/C++ implementations that can be
leveraged across all the platforms that CEDR supports. As
such, at compilation time, the user configures platform.h,
chooses which libCEDR Modules to enable, and receives two
outputs: a static libcedr.a archive containing only the
CPU C/C++ implementations of all implemented APIs and
a “runtime” libcedr-rt.so shared object containing both
the CPU C/C++ implementations and all chosen accelerator
implementations through their respective libCEDR Modules.

Listing 1: Sample libCEDR API Declarations
void CEDR_FFT(data_t* input, data_t* output,

size_t size, bool forward_transform);
void CEDR_GEMM(data_t* A, data_t* B, data_t* C,

size_t ROW_A, size_t COL_A, size_t COL_B);
void CEDR_CONV2D(data_t* input, size_t height,

size_t width, data_t* mask,
size_t mask_dim, data_t* output);

Once libCEDR is compiled, a user moves through the
workflow shown in the right side of Fig. 3. One key benefit
of this compilation approach is the way that it enables rapid
application bring up and evaluation prior to testing in complex
heterogeneous computing scenarios. In early stages of devel-
opment integration, a user can begin by treating libCEDR
like any other CPU-based library. Once they are convinced that
their application is functionally correct, they can compile for
CEDR-API by simply building as a shared object that avoids
linking in implementations for their libCEDR API calls. This
shared object application is then provided to the runtime using
the same IPC submission flow shown in Fig. 1.

During startup, the CEDR Runtime is provided with the
corresponding libCEDR-rt shared object containing all of
the system’s API implementations, and it builds a mapping
from each API and resource type pairing to a physical
implementation of that API on that resource if one exists.
When an application is received by the CEDR Runtime’s
main event loop, the shared object is parsed and a new
system thread is spawned that executes that application’s
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Fig. 3: Overview of the libCEDR and CEDR-API compilation methodology

main function. As this main function executes, it periodically
encounters libCEDR API calls. These calls are linked during
binary parsing against implementations in libCEDR-rt that
themselves call an enqueue_kernel function inside the
CEDR runtime. When enqueue_kernel is invoked, a task
is placed into CEDR’s ready queue, and from there, all of
CEDR’s existing heuristics are able to process it in the same
fashion as the DAG-based methodology. As this process is
multi-threaded in nature – involving the user application’s
thread, the main CEDR thread, and the eventual worker
thread of the executing resource – there is a need for a
synchronization methodology that the user application can rely
on to acknowledge completion of the underlying API call.

User Code

 User 
Application libCEDR CEDR

libCEDR Call

mutex init
barrier init

CEDR dispatch

enqueue_kernel

scheduler

barrier wait

API Impl

libCEDR Call

User Code

Worker 
Thread

Fig. 4: Synchronization methodology dispatching heteroge-
neous kernels from libCEDR to CEDR

An overview of this synchronization methodology is shown
in Fig. 4. Before pushing the requested task to the ready
queue, the user’s application thread initializes a set of
pthread_cond and pthread_mutex variables to use
to receive updates on the progress of its task. After dis-
patching the new task with CEDR, the thread then reaches
a pthread_cond_wait barrier and goes to sleep. As
the task propagates through to the scheduler and eventual
API implementation, the corresponding worker thread sig-
nals task completion back to the application thread via
pthread_cond_signal. After this, the application thread
wakes and resumes its computation.

While this methodology ensures that we preserve func-
tional correctness relative to the baseline application’s single-
threaded execution, it does leave performance to be desired for

high-performance users as it does not allow them to parallelize
execution of kernels. To support these needs, we have also de-
veloped non-blocking variations of all APIs that are present in
libCEDR. These APIs allow the end user to have full control
over the task synchronization primitives such that they can
manually maximize parallelism in the underlying application.
It has been designed such that it is still compatible with the
standalone validation to shared object compilation workflow
shown in Fig. 3. As we will see in Section IV-A, these non-
blocking APIs allow users to extract equivalent performance to
the DAG-based methodology without sacrificing productivity
improvements and support for richer program representations.

III. EXPERIMENTAL SETUP

For our experiments, we use the Xilinx Zynq Ultrascale+
ZCU102 [9] and NVIDIA Jetson AGX Xavier [10] develop-
ment boards. We use three representative real-world appli-
cations for our evaluations covering radar processing, com-
munications system, and autonomous vehicle domains with
Pulse Doppler (PD), WiFi TX (TX), and Lane Detection
(LD). Pulse Doppler calculates velocity of an object, by
measuring distance of the object using 256-point FFTs, and
measuring the frequency shift between transmitted and emitted
signals. WiFi TX generates packets of 64 bits and prepares
for transmission over an arbitrary channel through scrambler,
encoder, modulation, and forward error correction processes.
WiFi TX relies on 128-point inverse FFT for each packet
transmitted. Lane Detection is a convolution intensive routine
from autonomous vehicles domain. In the literature, it has been
shown that implementing convolution in the frequency domain
rather than the spatial domain through a combination of FFT
and pointwise product (ZIP) operations can reduce algorithmic
complexity and inference time [11].

A workload composed of these three applications allow
us to evaluate various scenarios where a heterogeneous SoC
is shared by multiple applications in an interleaved manner.
An example scenario could involve Lane Detection running
as a continuous process where Pulse Doppler and WiFi TX
applications arrive dynamically and are executed periodically.
Such scenarios allow us to study the relationship between de-
gree of SoC heterogeneity, scheduling overhead and quality of
schedules achieved by various heuristics targeting autonomous



vehicles domain. The Lane Detection application stresses the
FFT accelerator on the emulated heterogeneous SoC with
number of 1024-point FFTs and IFFTs scaling to 16384 and
8192 instances respectively for a 960x540 image. WiFi TX and
Pulse Doppler are lower latency applications with number of
FFTs scaling to 100 and 512 respectively. Driven by these
three applications, we use FFT and ZIP as key functions
that are supported with accelerator based execution. Each
application is implemented via the hardware agnostic API calls
for each function.

We compile all three applications using the CEDR compi-
lation toolchain described in Section II and prepare binaries
to be executed on heterogeneous SoC configurations that are
emulated on both ZCU102 and Jetson development boards.
The ZCU102 is formed of 4 ARM cores running at 1.2
GHz and programmable FPGA fabric where we invoke FFT
accelerators running at 300 MHz. The FFT accelerator is
implemented using Xilinx FFT IP supporting up to 2048-point
FFTs. The FFT accelerator uses direct memory access (DMA)
to manage data transfers between ARM cores and accelerator
through AXI4-Stream [8]. The Jetson board is formed of 8
ARM cores running at 2.3 GHz and a Volta GPU running
at 1.3 GHz, where we implement FFT and ZIP accelerators
as CUDA kernels. The data transfers between ARM cores
and the accelerators are handled with standard cudaMemcpy
functions using the PCIe interface.

We compose heterogeneous SoCs by varying the number
and types of processing elements on the ZCU102 platform
from the pool of 3 ARM cores along with 8 FFT accelerators.
We utilize the Jetson platform to demonstrate the portability of
our compile and runtime system and conduct cross-platform
comparisons in terms of factors that contribute to the runtime
and scheduling overhead. The amount of data processed by
an application is considered a frame, measured in Megabits
(Mb). Injection rate is defined as the rate at which frame
instances are generated per second and measured in Mbps.
We use 29 injection rates between 10 and 2000 Mbps, where
each injection rate defines a periodic rate of job along with
its associated input data arrival for the given workload. We
use Round Robin (RR), Earliest Finish Time (EFT), Earliest
Task First (ETF), and the runtime variant of the Heterogeneous
Earliest Finish Time (HEFTRT [12]) scheduling heuristics
executed along with the CEDR management thread using one
of the ARM cores on the target SoC.

We use metrics of average scheduling overhead per appli-
cation and average execution time per application for perfor-
mance evaluation. The scheduling overhead captures the time
spent by the runtime in making scheduling decisions. This
time is proportional to the number of scheduling rounds made
by the runtime as well as the complexity of the scheduling
algorithm. The application execution time is the time differ-
ence between the beginning and completion of an application’s
execution, including the overhead of all scheduling decisions
in between. Lower execution times indicate the scheduler’s
capability to manage the workload efficiently. To make these
two metrics comparable across different runtime configura-
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Fig. 5: Runtime overhead in API and DAG-based CEDR.

tions, we normalize them with respect to the number of
applications and take their average over 25 trials to reduce
the effect of noise. For brevity, throughout the article, we will
take each metric (for instance “execution time”) to refer to
its corresponding averaged-per-application version (“average
execution time/application”).

IV. EXPERIMENTS

A. Runtime and Scheduling Overhead Analysis

We present the runtime overhead of API-based CEDR with
respect to the DAG-based CEDR as illustrated in Fig. 5.
We define the runtime overhead as the overall time spent
by CEDR to receive, manage, and terminate all applications
in a given workload. This overhead excludes the overhead
of task scheduling, as we define it separately as scheduling
overhead. For this experiment, we use 5 instances for each
of the Pulse Doppler and WiFi TX applications as a workload
and collect runtime overhead across the sweeping range of the
injection rate on the ZCU102 platform with 3 ARM CPUs and
1 FFT accelerator. The X-axis shows the injection rates, and Y-
axis shows the runtime overhead. As the injection rate grows,
the runtime overhead reduces and then saturates at around
injection rate of 200 Mbps for both API and DAG-based
CEDR. The applications arrive in an increasingly overlapping
manner to the runtime with the increase in injection rate
and, in turn, ready queue size grows. This gives runtime
the opportunity to manage multiple tasks concurrently rather
than serially, which in turn enables the runtime to complete
processing same number of applications in a shorter span of
time, thereby reducing the runtime overhead. The saturation of
the trend lines indicate that beyond a certain injection rate, the
runtime becomes oversubscribed, where all the applications
within the workload get executed by CEDR with maximum
concurrency. We further observe from this plot that, throughout
the saturated region, the API-based CEDR achieves a 19.52%
reduction on average in runtime overhead with respect to the
DAG-based CEDR. This reduction can be attributed to the
simplification of runtime steps in API-based CEDR compared
to DAG-based CEDR. For the DAG-based CEDR, the runtime
overhead involves time required for receiving and parsing
application DAG files via IPC to construct application DAG,
parsing shared object, pushing tasks to the ready queue, pop-
ping completed tasks from the queue, and finally terminating
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Fig. 6: Execution time with respect to injection rate for
different schedulers with 3 CPUs, 1 FFT, and 1 MMULT.

the completed applications. For the API-based CEDR, two
factors contribute to the reduced overhead. First, API-based
CEDR does not need to parse DAG files when applications
are submitted via IPC. Second, pushing tasks to the ready
queue is eliminated as it is handled by the application thread.

Next we present an experiment aiming to validate the appli-
cation execution time and scheduling overhead trends in API-
based CEDR against DAG-based performance trends presented
in [6]. For this experiment, we borrow key parameters such as
hardware configuration, workload composition, and scheduling
heuristics from the DAG-based CEDR work, for fairness of
comparison. The hardware is composed of 3 ARM CPUs, 1
FFT, and 1 MMULT accelerators on the ZCU102 platform.
We use the same workload as utilized in [6] that consists of
WiFi TX and Pulse Doppler applications with 5 instances each
following the experimental procedure described in Section III.
Fig. 6 (a) and (b) show average execution time per application
for the DAG and API-based execution on CEDR respectively,
with respect to injection rate, where individual line plots
represent execution using different schedulers. Both Figures 6
(a) and (b) show similar saturation trends as injection rate
increases where system becomes oversubscribed at around
200 Mbps. Furthermore, the mean magnitude of the saturated
region of API-based execution deviates by 32% compared to
the one of DAG-based execution. From the scheduler per-
spective, we notice ETF scheduler resulting in a significantly
higher execution time in both plots while remaining schedulers
perform similar to each other in each setup. We note that the
ETF scheduler in the oversubscribed region shows average
execution time as 700 ms in the DAG-based CEDR, while
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Fig. 7: Scheduling overhead with respect to injection rate for
different schedulers with 3 CPUs, 1 FFT, and 1 MMULT.

we observe 425 ms with the API-based CEDR. We attribute
this execution time reduction for ETF to the ready queue size
being smaller, as API-based CEDR only schedules libCEDR
API calls/portions of the application, which have support for
heterogeneous execution. In DAG-based CEDR, the whole
application, including non-accelerated regions, is divided into
tasks that are scheduled by CEDR scheduler.

We show the scheduling overhead with respect to injection
rate and different schedulers in Figures 7 (a) and (b) for DAG
and API-based CEDR executions respectively. In both plots
we notice that with the exception of the ETF scheduler, the
scheduling overhead is stable for the remaining schedulers
across the injection rates with very close overhead values. The
ETF scheduler however shows remarkably different trend in
the API-based CEDR, where the scheduling overhead reduces
to around 1.15 ms in the saturated region, from a scale of
around 70 ms in DAG-based CEDR. This reduction is due to
fewer number of tasks that need scheduling in the API-based
CEDR. This further demonstrates that the ETF’s execution
overhead is more sensitive to the ready queue size than the
remaining schedulers.

Referring back to Fig. 6 (a) and (b), while ETF is ob-
serving a reduction in average execution time with the API-
based CEDR, the remaining schedulers observe an increase
in execution time from around 200 ms on the DAG-based
CEDR to around 350 ms on the API-based CEDR in the
oversubscribed region. This is primarily due to the way the
worker and application threads are managed in API-based
CEDR compared to DAG-based CEDR. In DAG-based CEDR,
the whole application code is executed on the worker threads
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(b) API-based CEDR

Fig. 8: Execution time over injection rates for different sched-
ulers on Jetson AGX Xavier with 3 CPUs and 1 GPU.

as DAG task nodes, hence the available CPU cores are only
shared among worker threads. In API-CEDR however, both
application and worker threads are launched on the avail-
able CPU resources, where only the worker threads execute
the application portion with heterogeneity support. For the
presented experiment on ZCU102 with 3 CPU cores, DAG-
based CEDR spawns 4 worker threads while API-based CEDR
launches an additional 10 application threads (5 instances of
each application), leading to increased thread contention on
the underlying CPUs.

We perform the same experiment on the Jetson with a
configuration of 3 CPU cores and 1 GPU as shown in Fig. 8.
With the availability of a total of 7 CPU cores, the 4 worker
threads (3 CPU and 1 GPU) and 10 application threads have
more resources to share between them. This reduces the thread
contention compared to the ZCU102. Compared to DAG-
based CEDR in Fig. 8(a) which spawns only 4 worker threads
to execute the workload while under utilizing the available
CPU cores, API-based CEDR better exploits the available
resources through concurrent execution of worker and appli-
cation threads, resulting in reduced execution time in Fig. 8
(b). We further study the thread contention in Section IV-C to
better understand the root cause of this behavior.

For the case of the ETF scheduler on the ZCU102, we
notice execution time reduction, because as shown in Fig. 7
(a) and (b), ETF is most sensitive to the heterogeneity with
the highest scheduling overhead. The benefit of reduced ready
queue size due to API-based execution results with reduction
in scheduling time that is larger in magnitude than the increase
in execution time due to thread contention.
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(b) Jetson: 7 CPU, 1 GPU

Fig. 9: Execution time with respect to injection rate in API-
CEDR using Lane Detection, Pulse Doppler and WiFi TX.

B. Versatility

In this section we expand our experimental evaluations to
demonstrate the versatility of the CEDR framework by intro-
ducing Lane Detection as a new application to the workload,
increasing the number of FFT accelerators on the ZCU102 to
8, and performing execution time performance analysis with
respect to changes in injection rate using the same workload
on the Jetson platform. As discussed in Section III, Lane
Detection has a large number of FFT instances, and we expect
it will stress both the runtime system and the schedulers as
the ready queue size is expected to grow substantially. The
autonomous vehicle workload includes a single instance of
Lane Detection as a long latency job while lower latency
WiFi TX and Pulse Doppler applications arrive dynamically.
Fig. 9 (a) and (b) present the execution time trends of this
workload with respect to injection rate, on the ZCU102 and
Jetson platforms respectively.

In both execution scenarios, across all schedulers we notice
similar saturation trends as observed in Fig. 6. However,
even though number of accelerators has increased from one
to eight FFTs, the runtime now approaches the saturation
point earlier at 100 Mbps on the ZCU102 based emulation
indicating the increase in the complexity of the workload
with the inclusion of the LD that stresses both the runtime
system and the schedulers. In Fig. 9(b), we observe that for
all schedulers the execution time performance shows saturation
after 500 Mbps, showing the Jetson platform’s ability to cope
with the workload better than the ZCU102. While in the best
case, during the saturated region ZCU102 platform achieves
execution time of 2000 ms, the Jetson based execution is in
the range of 600 to 700 ms.
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(b) Jetson 1-7 CPU, 1 GPU; 500 Mbps injection rate

Fig. 10: Average execution time per application with respect
to varying PE configurations.

In both Fig. 9 (a) and (b), RR performs worse than the
other schedulers. The performance of RR degrades relative
to its performance shown in Fig. 6 (b) where the hardware
composition is 3 CPUs and 1 FFT only. RR being a fair
scheduler is not able to exploit the increased resource pool
or heterogeneity. Whereas the sophisticated and heterogeneity
aware schedulers ETF and HEFTRT have more opportunity to
make better decisions, resulting in lower execution time.

The comparative scheduler performance on the ZCU102
and Jetson platforms presented in Fig. 9 (a) and (b) show
different trends. The performance gap between schedulers on
the Jetson is much smaller than the gap we observe on the
ZCU102. Similar to the conclusion presented in Section IV-A,
we believe this is due to the Jetson platform offering richer set
of CPU cores that makes it less prone to the thread contention.
In the following section we will perform scalability analysis
to expose this issue.

C. Scalability

In this section, we study the impact of increasing the
number of processing elements on the application execution
performance in CEDR. Fig. 10 (a) and (b) show the applica-
tion execution time of the autonomous vehicle workload on
the ZCU102 and Jetson platforms respectively. We fix the
workload injection rate to 300 Mbps and 500 Mbps when
executing applications on the ZCU102 and Jetson platforms
respectively, which are the points where these two systems
are in oversubscribed state as observed in Section IV-B. The
X and Y-axes of both Fig. 10 (a) and (b) present the resource
pool and corresponding average execution times respectively.

On the ZCU102 platform in Fig. 10 (a), the resource pool
configurations consist of a fixed CPU count of 3 as there are
a maximum of 3 ARM cores on the platform, and a varying
FFT accelerator count from 0 to 8. For Jetson in Fig. 10 (b),
we keep the GPU count fixed at 1 as there is one GPU on the
platform, and vary the CPU count between 1 and 7, as there
are 7 CPU cores available. One CPU core on both ZCU102
and Jetson is reserved for the execution of CEDR runtime.

The execution scenario on ZCU102 in Fig. 10 (a) shows
that the least execution time is observed with 3 CPUs and
no FFT accelerators, across all schedulers. Increasing the
FFT accelerator count rapidly increases the execution time.
This increase can be explained by the sharing of limited
CPU cores by larger number of threads. The 3 CPU cores
each accommodate the 3 CPU worker threads, the launched
application non-kernel threads, as well as the accelerator
management threads for the FFTs. As illustrated in Fig. 1, with
the increasing PE count (e.g., FFT), the number of worker
threads sharing each CPU core increases, leading to each
thread waiting for longer periods to get access to the CPU
core. This, in turn, increases the application execution time.
We further notice a gap in the application execution times of
different schedulers as FFT count scales up. The RR scheduler
performs worse than other schedulers, as it tries to use all of
the PEs equally. This maximizes the number of worker threads
competing for the scarce CPU resources, creating contention
and in turn results with poor execution time performance. The
EFT scheduler performs better than RR, as it doesn’t force
the uniform use of all PEs, rather it focuses on assigning
tasks to a subset of PEs that can finish the tasks earliest.
The sophisticated heterogeneity aware schedulers ETF and
HEFTRT further reduce the execution time compared to EFT.
ETF not only attempts to find the most optimal task-to-PE
mapping during scheduling, but also tries to find the most
optimal task to schedule first. This enables ETF to better
choose the subset of available PEs that minimize the execution
time. We find that, in this experiment, HEFTRT narrowly
achieves the best application execution time performance.

We observe an interesting trend in execution time for all the
schedulers on the Jetson platform as we increase the number of
CPU cores as shown in Fig. 10 (b). Here, as the CPU worker
thread count increases from one to five, the execution time
across all schedulers show a downward trend. This reduction
is achieved due to the fact that the Jetson has 7 CPU cores
available, out of which one is dedicated for GPU management,
and remaining 6 CPU cores can accommodate up to 6 CPU
worker threads without needing any processor sharing between
multiple worker threads. Therefore increasing CPU thread
count introduces opportunity for concurrent execution and
reduces execution time. However, this trend is not linear
downward, rather it is polynomial with a minimum execution
time observed at 5 CPU and 1 GPU threads. This trend is
caused by the fact that CEDR-API launches the application
non-kernel threads on all 7 CPU cores regardless of the
number of worker threads. As the number of worker threads
increases from 1 CPU to 5 CPUs, more parallel worker threads



get introduced, and sharing of the CPU resources between
worker and application threads also increases. This causes the
downward execution time to be polynomial rather than linear.
Beyond the 5 CPU 1 GPU configuration, addition of worker
threads increases CPU resource sharing between application
and worker threads to the point where the overhead of thread
sharing diminishes the execution time reduction. Therefore,
the execution time experiences polynomial increase.

In our scheduling overhead analysis with respect to increase
in number of FFTs on the ZCU102 and number of CPU cores
on the Jetson platforms, we observe negligible overhead at
a scale of 0.1% and 0.5% respectively for each hardware
configuration relative to the application execution time. This
supports our earlier analysis, that the increase in execution
time with increasing resource count is primarily caused by
the worker thread contention.

V. RELATED WORK

Many DSSoC design efforts start with simulation-based
modeling in both high level simulation [13]–[15] and cycle
accurate simulation [16]–[18]. In early design space explo-
ration (DSE) scenarios, many of these options are highly
effective at narrowing down the scope of designs that are worth
exploring on hardware. Compared to CEDR, these works
are complementary as the designs that are narrowed down
via early DSE can then be modeled on commercial FPGA
platforms and evaluated to a greater extent with CEDR in order
to collect ground-truth hardware measurements that feed back
into future cycles of chip design.

Focusing on application runtimes, we can segment the
literature by works that target accelerator-rich heterogeneous
platforms and those that do not. Prioritizing discussion of those
targeting accelerator-rich heterogeneous platforms, there are
many works of note. Bolchini et al. [19] propose a runtime
controller for OpenCL-based applications on heterogeneous
platforms. It offers many notable features including the abil-
ity to perform cluster-level mapping of tasks on Linux and
monitor power or execution metrics. However, the authors do
not discuss the ability to launch simultaneous applications
or adjust their scheduling policy. Picos++ [20] proposes a
hardware-based runtime that provides support for applica-
tions written with OmpSs or OpenMP. These applications are
mapped with Nanos++ API calls [21] using the Mercurium
Source-to-Source compiler. The current capabilities and status
of this compiler is described in [22]. While the compilation
tooling in this ecosystem is substantial, due to the hardware-
based design of their runtime, they are unable to support
interchangeable and platform-independent scheduling policies.
Kumar et al. [23] present DELTA, an approach for dynam-
ically scheduling Function-as-a-Service (FaaS) computations
to heterogeneous, network-connected computing resources.
The adaptive, resilient nature of their scheduling heuristics
are notable, but distinct from CEDR, their definition of het-
erogeneity primarily focuses networked collections of CPU-
only or CPU-GPU systems. A large unsolved problem in
that area would seem to be development of a FaaS-based

methodology for dispatching work to function-specific accel-
erators like FFTs. Hseih et al. have introduced SURF [24],
a runtime built to allow efficient execution on heterogeneous
SoCs. It follows a similar API-based programming approach
to that discussed here, and each API can have a number
of implementations on heterogeneous resources. However,
their approach would appear to only support linear chains
of kernels and lacks support for parallel dispatch through
a non-blocking execution methodology. Pinto et al. present
StarVZ [25], a performance evaluation framework built on
StarPU [26], a task-based runtime that supports heterogeneous
execution of OpenCL or CUDA-based accelerators. Vasiliadis,
Tsirbas, and Ioannidis [27] propose a device-agnostic, adaptive
scheduling approach for scheduling machine learning kernels
on heterogeneous architectures. Kim et al. [28] present IRIS, a
heterogeneous runtime system that incorporates a unique set of
resource discovery, adaptive scheduling, data movement, and
programming model capabilities.

While a comprehensive review of this domain is infeasible
given page constraints, we believe that CEDR provides a
unique set of functionality through its open source accessibil-
ity; its status as a highly portable, configurable runtime; and its
ability to support rapid DSE for DSSoCs through support for
arbitrary workload injection, scheduler integration, PAPI-level
performance counters, and kernel-specific accelerators.

VI. CONCLUSION

In this work, we present CEDR-API, a new programming
methodology for the CEDR framework that enables more pro-
ductive programming of domain-specific architectures while
supporting concurrent execution of heterogeneous kernels. We
have expanded CEDR-API to the domain of autonomous
vehicles, and we have conducted a number of experiments that
explore the overhead, versatility, and scalability characteristics
of this modified runtime. We have found that, while runtime
overhead is reduced, as systems evolve into highly heteroge-
neous architectures with large numbers of distinct processing
elements, runtime systems should be designed in ways that
allow them to cope with that growth in heterogeneity.

One promising path to address the barrier of CPU availabil-
ity is to leverage progress in big.LITTLE architectures and
exchange a fraction of the heavyweight CPUs with a larger
quantity of lightweight CPUs specialized for worker thread
management. In future work, we will explore the development
of such optimized, core-rich architectures to enable maximal
parallelism across diverse configurations of heterogeneous
accelerators while minimizing the energy and latency that such
configurations otherwise introduce.

REFERENCES

[1] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA: Is CUDA the parallel
programming model that application developers have been
waiting for?” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008,
ISSN: 1542-7730. DOI: 10.1145/1365490.1365500.

https://doi.org/10.1145/1365490.1365500


[2] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel
programming standard for heterogeneous computing systems,”
Computing in Science & Engineering, vol. 12, no. 3, pp. 66–
73, 2010. DOI: 10.1109/MCSE.2010.69.

[3] R. Reyes, G. Brown, R. Burns, and M. Wong, “SYCL 2020:
More than meets the eye,” in Proceedings of the Inter-
national Workshop on OpenCL, ser. IWOCL ’20, Munich,
Germany: Association for Computing Machinery, 2020, ISBN:
9781450375313. DOI: 10.1145/3388333.3388649.

[4] T. Roscoe, “It’s time for operating systems to rediscover
hardware,” USENIX Association, Jul. 2021.

[5] J. Mack, N. Kumbhare, A. NK, U. Y. Ogras, and A. Akoglu,
“User-space emulation framework for domain-specific SoC
design,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2020, pp. 44–
53. DOI: 10.1109/IPDPSW50202.2020.00016.

[6] J. Mack, S. Hassan, N. Kumbhare, M. Castro Gonzalez, and A.
Akoglu, “CEDR: A Compiler-Integrated, Extensible DSSoC
Runtime,” vol. 22, no. 2, Mar. 2023, ISSN: 1539-9087. DOI:
10.1145/3529257.

[7] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting
performance data with PAPI-c,” in Tools for High Performance
Computing 2009, Berlin, Heidelberg: Springer, 2010, pp. 157–
173, ISBN: 978-3-642-11261-4. DOI: 10/b8rf67.

[8] A. AMBA, “AXI4-stream protocol specification,” Volume IHI
51A,

[9] ZCU102 evaluation board, Accessed: 2023-02-09. [Online].
Available: https : / /www.xilinx .com/support /documentation /
boards and kits/zcu102/ug1182-zcu102-eval-bd.pdf.

[10] Jetson AGX Xavier evaluation board, Accessed: 2023-02-
09. [Online]. Available: https : / / www. nvidia . com / en - us /
autonomous-machines/embedded-systems/jetson-agx-xavier/.

[11] T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin, “Accel-
erating convolutional neural network with FFT on embedded
hardware,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 9, pp. 1737–1749, 2018. DOI:
10.1109/TVLSI.2018.2825145.

[12] J. Mack, S. E. Arda, U. Y. Ogras, and A. Akoglu, “Performant,
multi-objective scheduling of highly interleaved task graphs on
heterogeneous system on chip devices,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 9, pp. 2148–
2162, 2022. DOI: 10.1109/TPDS.2021.3135876.

[13] S. E. Arda, A. Krishnakumar, A. A. Goksoy, N. Kumbhare,
J. Mack, A. L. Sartor, A. Akoglu, R. Marculescu, and U. Y.
Ogras, “DS3: A System-Level Domain-Specific System-on-
Chip Simulation Framework,” IEEE Transactions on Comput-
ers, vol. 69, no. 8, pp. 1248–1262, Aug. 2020, ISSN: 1557-
9956. DOI: 10.1109/TC.2020.2986963.

[14] O. Matthews, A. Manocha, D. Giri, M. Orenes-Vera, E. Tureci,
T. Sorensen, T. J. Ham, J. L. Aragon, L. P. Carloni, and
M. Martonosi, “MosaicSim: A Lightweight, Modular Sim-
ulator for Heterogeneous Systems,” in 2020 IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software (ISPASS), Aug. 2020, pp. 136–148. DOI: 10.1109/
ISPASS48437.2020.00029.

[15] A. Vega, A. Amarnath, J.-D. Wellman, H. Kassa, S. Pal,
H. Franke, A. Buyuktosunoglu, R. Dreslinski, and P. Bose,
“STOMP: A tool for evaluation of scheduling policies in het-
erogeneous multi-processors,” arXiv:2007.14371 [cs], Jul. 28,
2020. arXiv: 2007.14371.

[16] J. Cong, Z. Fang, M. Gill, and G. Reinman, “PA-
RADE: A cycle-accurate full-system simulation Platform for
Accelerator-Rich Architectural Design and Exploration,” in
2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), Nov. 2015, pp. 380–387. DOI: 10 . 1109 /
ICCAD.2015.7372595.

[17] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks,
“Co-designing accelerators and SoC interfaces using gem5-
Aladdin,” in 2016 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), Oct. 2016, pp. 1–12.
DOI: 10.1109/MICRO.2016.7783751.

[18] Y. Xiao, S. Nazarian, and P. Bogdan, “Self-Optimizing and
Self-Programming Computing Systems: A Combined Com-
piler, Complex Networks, and Machine Learning Approach,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 6, pp. 1416–1427, Jun. 2019, ISSN: 1063-
8210, 1557-9999. DOI: 10.1109/TVLSI.2019.2897650.

[19] C. Bolchini, S. Cherubin, G. C. Durelli, S. Libutti, A. Miele,
and M. D. Santambrogio, “A runtime controller for opencl
applications on heterogeneous system architectures,” SIGBED
Rev., vol. 15, no. 1, pp. 29–35, Mar. 2018. DOI: 10 . 1145 /
3199610.3199614.
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