
Enabling Multi-threading in Heterogeneous
Quantum-Classical Programming Models

Akihiro Hayashi∗ Austin Adams∗ Jeffrey Young∗ Alexander McCaskey† Eugene Dumitrescu‡

Vivek Sarkar∗ Thomas M. Conte∗
∗Georgia Institute of Technology †NVIDIA Corporation ‡Oak Ridge National Laboratory

Email: {ahayashi,aja,jyoung9,vsarkar,conte}@gatech.edu, amccaskey@nvidia.com, dumitrescuef@ornl.gov

Abstract—While quantum computers enable significant perfor-
mance improvements for certain classes of applications, building
a well-defined programming model has been a pressing issue. In
this paper, we address some of the key limitations to realizing a
generic heterogeneous parallel programming model for quantum-
classical heterogeneous platforms. We discuss our experience
in enabling user-level multi-threading in QCOR [1] as well as
challenges that need to be addressed for programming future
quantum-classical systems.

Specifically, we discuss our design and implementation of
introducing C++-based parallel constructs to enable 1) parallel
execution of a quantum kernel with std::thread and 2)
asynchronous execution with std::async. To do so, we provide
a detailed overview of the current implementation of the QCOR
programming model and runtime, and discuss how we add 1)
thread-safety to some of its user-facing API routines, and 2)
increase parallelism in QCOR by removing data races that
inhibit multi-threading so as to better utilize available computing
resources.

We also present preliminary performance results with the
Quantum++ [2] back end on a single-node Ryzen9 3900X machine
that has 12 physical cores (24 hardware threads) with 128GB of
RAM. The results show that running two Bell kernels with 12
threads per kernel in parallel outperforms running the kernels
one after the other each with 24 threads (1.63× improvement). In
addition, we observe the same trend when running two Shor’s
algorthm kernels in parallel (1.22× faster than executing the
kernels one after the other). Furthermore, the parallel version is
better in terms of strong scalability.

We believe that our design, implementation, and results will
open up an opportunity not only for 1) enabling quicker
prototyping of parallel-aware quantum-classical algorithms on
quantum circuit simulators in the short-term, but also for 2)
realizing a generic parallel programming model for quantum-
classical heterogeneous platforms in the long-term.

Index Terms—Quantum-Classical Programming Models, Par-
allel Programming Models, QCOR, Heterogeneous Computing

I. INTRODUCTION

Quantum computing is a rapidly evolving field that lever-
ages the laws of quantum mechanics for computation. Since
near-term quantum computers are susceptible to significant
levels of noise, a hybrid combination of classical computers
and quantum computers, namely quantum-classical comput-
ers, is explored to mitigate noise while achieving orders-of-
magnitude performance improvements for certain classes of
applications. Such a hybrid combination can be viewed as one
realization of heterogeneous computing where different types

Fig. 1: QCOR Machine Model [3]

of processing elements, including special purpose accelerators,
simultaneously and asynchronously work together.

QCOR [1] is a programming system to realize such a
heterogeneous quantum-classical model. It is based on the
C++-based programming language and a compiler that is
built on top of XACC [4] As shown in Figure 1, QCOR’s
target machine is a heterogeneous system where multiple
CPUs (cores) are connected with quantum devices and other
accelerators such as GPUs and FPGAs.

To program quantum devices in QCOR, the user writes
a quantum kernel (i.e., a function that will be executed on
a quantum device) in quantum computing domain-specific
languages (DSLs), such as XACC’s XASM or IBM’s Open-
QASM [5]. Similar to other GPU-based heterogeneous pro-
gramming models such as CUDA [6], SYCL [7], and
OpenCL [8], QCOR allows the user to write quantum kernels
and CPU control code in the same program. This single-source
programming model greatly facilitates quantum-classical pro-
gramming.

However, one open research question for QCOR and
other quantum DSLs is how to provide well-defined, user-
level multi-threading support. Specifically, as the machine
model in Figure 1 implies, it is possible that multiple CPU
cores might simultaneously utilize one or more quantum de-
vices. Currently, there is no user-facing API-level support for
multi-threading in quantum-classical programming models like
QCOR and DSLs like OpenQASM, although it is typical to
internally use multi-threading for accelerating quantum circuit
simulations [2], [9]–[11].

ar
X

iv
:2

30
1.

11
55

9v
2

 [
qu

an
t-

ph
]

 1
6

M
ar

 2
02

3

Algorithm 1 Shor’s Algorithm (Pseudocode)

Input: N : A natural number to be factorized.
Output: A non-trivial divisor(s) of N .

1: procedure MAIN(N)
2: repeat
3: a← random(1, N); . 1 < a < N
4: K ← gcd(a,N);
5: if K == 1 then
6: SHOR(N, a);
7: else
8: return K
9: until a divisor(s) is found or explored all

10: procedure SHOR(N, a)
11: for s = 1, ..., nShots do
12: rs ← SHORKERNEL(N, a)
13: r ← r1, ..., rs . Estimate r from the measurements
14: if r mod 2 ≡ 1 or ar mod N ≡ −1 then
15: return φ;
16: else
17: return gcd(ar/2± 1, N);

In this paper, we explore the possibility of enabling user-
level multi-threading in QCOR, which enables coarser grain
parallelism in quantum-classical programming models. We be-
lieve this is an important step towards realizing an end-to-end
heterogeneous programming system that can work on general
heterogeneous platforms that include quantum computers. This
work makes the following key contributions:

• Design and implementation of multi-threading support for
a heterogeneous quantum-classical programming model.

• Discussion of scenarios and use cases where user-level
multi-threading is beneficial for near-term quantum sys-
tems.

• A demonstration which shows that running two quantum
kernels in parallel using N/2-threads for each kernel
outperforms running the kernel one-by-one using N -
threads, by factors of 1.22× to 1.63× for the evaluated
kernels.

II. MOTIVATION

This section highlights our motivation for enabling user-
level multi-threading in quantum-classical computing by dis-
cussing potential parallelism in quantum-classical programs.

Let us use Shor’s algorithm as a motivating example. In
Algorithm 1, SHOR is a quantum-classical task that invokes
the period-finding quantum kernel (SHORKERNEL) to estimate
exponent r. Notice that SHOR can be called multiple times
until one or more (non-)trivial divisors are found or the entire
search space is explored.

From the perspective of parallel processing, one possibility
of parallelizing this algorithm is to run multiple instances of
SHOR in parallel. Furthermore, since it can require multiple
shots to find r, it would be also possible to further parallelize
the shot loop in SHOR (Line 11). Finally, if the SHORKERNEL

Algorithm 2 Parallel Shor’s Algorithm (Pseudocode)

Input: N : A natural number to be factorized.
Output: A non-trivial divisor(s) of N .

1: procedure MAIN(N)
2: repeat
3: a← random(1, N); . 1 < a < N
4: K ← gcd(a,N);
5: if K == 1 then
6: async SHOR(N, a);
7: else
8: return K
9: until a divisor(s) is found or explored all

10: procedure SHOR(N, a)
11: foreach s = 1, ..., nShots do
12: rs ← SHORKERNEL(N, a)
13: r ← r1, ..., rs . Estimate r from the measurements
14: if r mod 2 ≡ 1 or ar mod N ≡ −1 then
15: return φ;
16: else
17: return gcd(ar/2± 1, N);

is executed on a simulator, there is a massive amount of
parallelism as in [2], [9]–[11]. Algorithm 2 is a pseudo-parallel
version of Algorithm 1. As in the X10 language [12], async
represents parallel task creation and execution and foreach
represents parallel loop creation and execution.

Figure 2 graphically illustrates the potential parallelism in
Shor’s algorithm across these three levels. Based on what
we discussed for Algorithm 2 and observe in Figure 2,
we identify the following multiple levels of parallelism in
quantum-classical programs:
Task level parallelism: multiple independent classical tasks
that can include quantum kernels are executed in parallel.
Shot level parallelism: multiple independent shots are exe-
cuted in parallel.
Inner simulator level parallelism: quantum simulators, in-
cluding state vector and tensor network simulators such as [2],
[9]–[11], are typically parallelized using OpenMP, CUDA, and
the Eigen library to utilize a massive amount of parallelism
on CPUs and/or GPUs.

It is worth noting that the actual amount of available
parallelism depends not only on algorithms but also on the
simulated or physical quantum back ends that are targeted.
One example would be when a user executes their program
on a current-day single QPU system in which there would
be limited parallelism due to the lack of additional physical
hardware. However, in most cases, we believe that allowing the
user to specify all available parallelism for a quantum-classical
task will greatly enhance the performance and expressiveness
of quantum-classical programs because there are plenty of
computing resources (CPUs, GPUs, and FPGAs) that can
accelerate the development of quantum-classical algorithms
even on conventional systems.

Thus, we believe that enabling user-level multi-threading

Task1:
Shor (N = 15, a = 2);

7! ≡ 1	𝑚𝑜𝑑	15
gcd 7" − 1, 15 = 3
gcd 7" + 1, 15 = 5

Found!

Task level parallelism
Sh

ot
 le

ve
l p

ar
al

le
lis

m

Attempt 1:
r = x?

Quantum
Device

Attempt 2:
r = y?

Quantum
Device

Task2:
Shor (N = 15, a = 4);

Attempt 1:
r = z?

Quantum
Device

Attempt 2:
r = w?

Quantum
Device

Task3:
Shor (N = 15, a = 7);

Attempt 1:
r = 4?

Quantum
Device

Inner simulator level parallelism
(when a simulator is used)

Fig. 2: Multi-level parallelism in a quantum-classical program (Shor’s algorithm).

Listing 1: A 2-qubit Bell kernel implementation in QCOR

1 using namespace std;
2 // the Bell kernel
3 __qpu__ void bell(qreg q) {
4 using qcor::xasm;
5 H(q[0]);
6 CX(q[0], q[1]);
7 for (int i = 0; i < q.size(); i++) {
8 Measure(q[i]);
9 }

10 }
11 int main(int argc, char **argv) {
12 // Create two qubit registers, each size 2
13 auto q = qalloc(2);
14 // Run the quantum kernel
15 bell(q);
16 // dump the results
17 q.print();
18 }

Listing 2: An example output of the Bell kernel (1024 shots)

1 "AcceleratorBuffer": {
2 "name": "qrg_bmQBh",
3 "size": 2,
4 "Information": {},
5 "Measurements": {
6 "00": 513,
7 "11": 511
8 }
9 }

in quantum-classical programming models will 1) accelerate
the development of a quantum-classical algorithm, and 2)
facilitate porting an existing heterogeneous algorithm to a
quantum-classical one. It is also worth noting that the goal of
this work is not optimizing and fine-tuning quantum-classical
parallel programs for a specific target system. Instead, we
look to motivate and introduce concrete parallel programming
constructs (std::thread and std::async) for quantum-
classical programming models.

III. QCOR

QCOR is a C++-based high-level quantum-classical pro-
gramming model. One of the key features of QCOR is that
the user can write both quantum and classical kernels and

Listing 3: A VQE implementation in QCOR

1 __qpu__ void ansatz(qreg q, double theta) {
2 X(q[0]);
3 Ry(q[1], theta);
4 CX(q[1], q[0]);
5 }
6
7 int main(int argc, char **argv) {
8 // Allocate 2 qubits
9 auto q = qalloc(2);

10
11 // Programmer needs to set
12 // the number of variational params
13 auto n_variational_params = 1;
14
15 // Create the Deuteron Hamiltonian
16 auto H = 5.907 - 2.1433 * X(0) * X(1) -
17 2.1433 * Y(0) * Y(1) + .21829 * Z(0) -
18 6.125 * Z(1);
19
20 // Create the ObjectiveFunction
21 auto obj = createObjectiveFunction(ansatz, H, q,
22 n_variational_params,
23 {{"gradient-strategy",
24 "central"},
25 {"step", 1e-3}});
26
27 // Create the Optimizer.
28 auto opt = createOptimizer("nlopt",
29 {{"nlopt-optimizer",
30 "l-bfgs"}});
31 // Optimize
32 auto [opt_val, opt_params] = opt->optimize(objective);
33 std::cout << opt_val << std::endl;
34 }

functions in the same code. This feature is not only anal-
ogous to existing heterogeneous programming models such
as CUDA, OpenCL, and SYCL, but it also also provides a
new programming model for heterogeneous quantum-classical
computing programs that achieve hybrid quantum-classical
workflows. As shown in the machine model in Figure 1, in
theory, the user is free to leverage different kinds of processors
(e.g., CPUs, GPUs, FPGAs, Quantum Devices) that could all
be enabled through a QCOR-style programming model.

Listing 1 shows an example of QCOR program that executes
the Bell kernel. First, on Line 13, the qalloc API is called to
allocate 2-qubits. Then, the kernel written in XASM is invoked
on Line 15. Notice that the kernel is defined on Line 3 - 10.

Listing 4: Simultaneously Launching two Bell kernels
(std::thread)

1 using namespace std;
2 // the bell kernel
3 __qpu__ void bell(qreg q) {
4 using qcor::xasm;
5 H(q[0]);
6 CX(q[0], q[1]);
7 for (int i = 0; i < q.size(); i++) {
8 Measure(q[i]);
9 }

10 }
11 void foo() {
12 // Create two qubit registers, each size 2
13 auto q = qalloc(2);
14 // Run the quantum kernel
15 bell(q);
16 // dump the results
17 q.print();
18 }
19 int main(int argc, char **argv) {
20 thread t0(foo); thread t1(foo);
21 // Other classical/quantum work
22 ...
23 t0.join(); t1.join();
24 }

After the kernel is invoked, the measurement results can be
inspected by printing the content of the quantum register as
shown on Line 17. An example output of the QCOR program
can be found in Listing 2.

In addition to the simple quantum circuit simulation above,
for completeness, we would like to emphasize that QCOR
is expressive enough to write a wide variety of quantum-
classical algorithms such as the variational quantum eigen-
solver (VQE) and the Quantum Approximate Optimization
Algorithm (QAOA). Listing 3 shows a VQE implementation
in QCOR. Note that createObjectiveFunction and
createOptimizer are built-in QCOR helper functions that
facilitate creating and invoking a classical optimizer with a
user-defined objective function with the Deuteron Hamiltonian
and the ansatz kernel. More details can be found in [1], [3].

IV. DESIGN

A. Multi-threading Design Overview

Since QCOR is primarily written in C++, we look to
enable user-level multi-threading in QCOR in a way that
is acceptable to both QCOR and C++ programmers. For
QCOR programmers, our goal is to minimize modifications
to the code required for enabling multi-threading. For C++
programmers, our goal is to provide a threading interface that
is natural to use. To that end, we leverage C++’s standard
threading constructs (std::thread and std::async).
However, in terms of general applicability, our discussions
should apply to other parallel programming systems for C++,
such as OpenMP [13], Kokkos [14], and RAJA [15].

Our current focus is on enabling coarse-grain parallelism
to exploit the full capability of a CPU-QPU system. In one
scenario, the user would like a one-to-one relation between
a CPU and a QPU to simultaneously perform N independent
tasks, where N is the number of CPU-QPU pairs. Another sce-
nario might be a one-to-many/many-to-one relation between

Listing 5: Asynchronously Launching the Bell kernel
(std::async)

1 using namespace std;
2 int main(int argc, char **argv) {
3 std::future<int> f = async(launch::async,
4 [=]() -> int { foo(); return 1; });
5 // Other classical/quantum work
6 ...
7 //
8 f.get();
9 }

CPU(s) and QPU(s). It is worth noting that the QPU part is
not necessarily a hardware QPU device. Since QCOR offers
different backends, the QPU part can be a quantum circuit
simulation on either a local machine or a cloud service and
can also incorporate coarser tasks such as VQE.

B. User-Facing API

1) std::thread: Listing 4 shows an example where two
threads simultaneously run the Bell kernel using thread.
The main function creates two threads (t0 and t1), each
of which executes the foo function. In the foo function, it
first allocates 2-qubits using qalloc, then invokes the kernel
written in XASM in Line 3 - 10, and finally gets the results.
This approach enables the user to overlap other work on the
main thread with the two threads. Also, the main function can
wait on each thread by calling join().

2) std::async: Another example (Listing 5) is asynchronous
execution where the main function asynchronously launches
the foo() function with async. Similar to the thread
example, the user may want to overlap other work with the
launched task. However, one interesting difference is that
async returns a future object, which helps the user to
check the status of the asynchronously launched task and
take further action depending on the return value of the task
(get()).

C. Enabling Thread Safety

Thread safety is usually attributed to a function/routine that
can be safely invoked by multiple threads simultaneously. It is
very common that thread safety is guaranteed in conventional
heterogeneous programming models such as CUDA, OpenCL,
and SYCL. For example, the SYCL specification [16] de-
scribes this in the following manner: “SYCL guarantees that
all the member functions and special member functions of the
SYCL classes described are thread safe.”

It is worth noting that enabling thread safety does not
necessarily mean improving performance because it essen-
tially prevents multiple threads from simultaneously accessing
shared data. In this work, our first priority is to enable thread
safety for QCOR’s user-facing API. For portions where paral-
lelization is important, we explore the possibility of increasing
parallelism in Section V.

V. IMPLEMENTATION

Listing 6: Making qalloc() thread-safe with Mutex Lock

1 mutex m;
2 qbit qalloc(const int n) {
3 lock_guard<mutex> lock(m);
4 ...
5 allocated_buffers.insert({...});
6 ...
7 }

Listing 7: How a QPU instance is declared and created

1 namespace xacc {
2 namespace internal_compiler {
3 // global variable
4 std::shared_ptr<Accelerator> qpu = nullptr;
5 ...
6 }}
7 // Getting an instance of qpp
8 qpu = xacc::getAccelerator("qpp");

This section discusses how we enable user-level multi-
threading in QCOR and XACC.

Since the QCOR and XACC systems include over 200K
lines of code written in modern C++, we focus on discussing
a few common cases that can possibly inhibit user-level multi-
threading. Essentially, these cases are focused on identifying
potential sources of data races when multi-threading is added.

A. Identifying sources of data races

1) Global Variables: Global variables are the most common
source of data races because these variables can be accessed
simultaneously by multiple threads. The following is a global
std::map object that is used to implement qalloc().

// global variable
map<string, shared_ptr<AcceleratorBuffer>>

allocated_buffers{};

Because qalloc() internally invokes map’s insert(),
which is not thread-safe, concurrent invocations of qalloc()
can be problematic.

2) Services: QCOR depends on different software com-
ponents provided by QCOR itself and XACC. Typically,
xacc::getService<T>(...) is used to obtain a shared
pointer to a specific service, namely T in this example.
For services that do not derive xacc::Cloneable, the
xacc::getService<T>(...) always returns a pointer
to the same instance, which can be another source of a data
race. The following is an example where a pointer to the
qpp accelerator, a software simulator in QCOR/XACC (i.e.,
Quamtum++ [2]), which is used to run the Bell kernel in
Listing 4 and Listing 5, is stored into acc.

shared_ptr<Accelerator> acc; // a local variable
acc = xacc::getService<Accelerator>("qpp", ...);

Because Accelerator is not Cloneable,
getService<Accelerator>(...) always returns
the same qpp instance. This can cause a data collision since
multiple threads can simultaneously register their gates to the

Listing 8: QPU Manager Implementation (Simplified)

1 using namespace std;
2 class QPUManager {
3 public:
4 static QPUManager& getInstance() {
5 static QPUManager instance; return instance;
6 }
7 private:
8 QPUManager() {}
9 map<thread::id, shared_ptr<Accelerator>> qpu_map;

10 public:
11 shared_ptr<Accelerator> getQPU();
12 void setQPU(std::shared_ptr<Accelerator> _qpu);
13 };

same accelerator and can thus end up simulating an erroneous
circuit.

B. Implementation Details

In general, we pursue the following two approaches to
remove data races that inhibit multi-threading in QCOR and
XACC: 1) enabling thread safety and 2) increasing parallelism.
The former goal is achieved by adding safety to multi-threaded
execution with mutex locks. The latter approach explores the
possibility of leveraging multi-threading to accelerate user
programs.

1) Enabling thread-safety: For enabling thread-safety, we
leverage std::mutex or std::recursive_mutex to
enable mutual exclusions. For example, Listing 6 shows
qalloc(), which has a non-thread-safe call in Line 5.
We first create a mutex object in the global scope, and
then the object is used to create a critical section with
std::lock_guard.

2) Increasing Parallelism: For increasing parallelism, we
use a quantum accelerator object (qpu) as a motivating
example. In the original implementation, as shown in Listing 7,
the qpu object is declared as a global variable and is initialized
by calling xacc::getAccelerator(), which internally
calls xacc::getService<Accelerator>(). Thus, this
example includes the two data race scenarios discussed above
in Section V-A.

We remove the data races by i) making Accelerator
cloneable to create different instances every time
xacc::getAccelerator() is called, and ii) providing
a map that maps a current thread ID to the corresponding
accelerator object, the latter of which is called QPUManager.

Listing 8 shows a brief overview of QPUManager.
QPUManager is implemented by using the singleton pattern
and contains the setter and getter functions. The setter function
takes the return variable of xacc::getAccelerator()
and registers the accelerator instance along with a current
thread id to the map. Similarly, the getter function returns
a qpu instance that corresponds to a current thread.

C. Current Implementation Status

We have implemented these changes to enable thread-
safety for QCOR and have created a pull request against the
QCOR [17], QCOR SPEC [18], and XACC [19] repositories.

1.00 0.96

1.30

1.63

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

12 threads 24 threads 2 x (6
threads/task)

2 x (12
threads/task)

One-by-One (Conventional) Parallel (Our approach)

Sp
ee

d
up

 o
ve

r 1
2

th
re

ad
s

2 Bell kernels

Fig. 3: Bell Kernel

For increasing multi-threaded parallelism, we have confirmed
that the examples (Listing 4 and Listing 5) and Shor’s kernel
work in a parallel fashion, and we plan to create another pull
request to share that functionality.

One small limitation of our implementation is that the user
needs to manually call quantum::initialize() API at
the beginning of each thread so the runtime can register its
thread ID to the QPUManager. In the future, we plan to
create a compiler pass that automatically inserts this API
call. Alternatively, we could provide qcor::thread and
qcor::async wrappers for the original C++ constructs that
internally call this initialization function.

VI. PRELIMINARY PERFORMANCE EVALUATION

This section presents the results of an empirical evaluation
of our extended QCOR programming model and runtime
implementation on a single-node platform to demonstrate its
performance benefits.
Purposes: The goal of our evaluation is two-fold:

1) to demonstrate that our extended QCOR programming
model and runtime system with C++ threading model
enables parallel quantum kernel execution.

2) to demonstrate that enabling parallel quantum kernel
execution is beneficial in terms of performance.

Platform: We present the performance results on a single-node
AMD server, which consists of a 12-core, 24-thread Ryzen9
3900X CPu running at 3.8GHz with 128GB of DRAM.
Quantum Kernels:

We use the following quantum kernels written in XASM:

1) Bell Kernel: The 2-qubit Bell kernel shown in Listing 4.
The number of shots is 1024.

2) Shor’s Kernel: The period-finding quantum kernel,
which is based on [20]. The number of shots is 10.

Experimental variants: For kernel simulations, we use the
QppAccelerator backend in QCOR, which uses the Quan-
tum++ library [2].

We compare the following two variants in terms of perfor-
mance:

1.00 1.02

1.20 1.22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

12 threads 24 threads 2 x (6
threads/task)

2 x (12
threads/task)

One-by-One (Conventional) Parallel (Our approach)

Sp
ee

d
up

 o
ve

r 1
2

th
re

ad
s

2 Shor's kernels

Fig. 4: Shor’s Kernel: SHOR(N=15, a=2) and SHOR(N=15,
a=7) from Algorithm 1

1) One-by-One (baseline, conventional): Run the first
kernel with N -threads and then run the second kernel
with N -threads.

2) Parallel: Run the two kernels in parallel, each of which
uses N/2-threads.

Note that each kernel is executed on multiple physical
cores/threads even in the baseline version because Quantum++
uses OpenMP [13]. For both variants, we appropriately set
the OMP_NUM_THREADS parameter to specify the number of
threads per kernel. However, tuning this parameter for the best
performance is beyond the scope of this paper. Instead, our
goal is to study scenarios where running multiple quantum
kernels simultaneously could lead to performance benefits.
Finally, note that shot-level parallelism is not exploited in these
versions.

A. Impact of Parallel Kernel Execution

Figure 3 and Figure 4 show relative performance improve-
ments over the baseline execution (one-by-one execution with
12-threads). In one-by-one execution, increasing the number
of threads from 12 threads to 24 threads does not improve
performance. In contrast, parallel execution of the two kernels
enables further performance improvements -i.e., 1.63× for the
Bell kernel and 1.22× for Shor’s kernel. Based on an analysis
of this kernel using AMD µProf, we observe that increas-
ing the number of threads increases L1 data cache-related
performance counter numbers such as L1_DC_MISSES. L1
misses get significantly worse, particularly when increasing the
number of threads from 12 to 24, which is why the parallel
12 thread per task version is faster than the original version.

B. Strong Scalability Study

Figure 5 shows strong scalability of two Shor’s kernels with
the one-by-one and the parallel approaches. The numbers are
relative performance improvements over the single-threaded
one-by-one execution. While both approaches show good scal-
ability, the parallel version always outperforms the baseline.

1.72

3.06

4.18

6.53 6.53

1.89

3.27

4.72

7.69 7.82

0
1
2
3
4
5
6
7
8
9

2 threads 4 threads 6 threads 12 threads 24 threads 2 x (1
threads/task)

2 x (2
threads/task)

2 x (3
threads/task)

2 x (6
threads/task)

2 x (12
threads/task)

One-by-One (Conventional) Parallel (Our approach)

Sp
ee

d
up

 o
ve

r 1
 th

re
ad

s

2 Shor's kernels

Fig. 5: Scalability of the one-by-one and the parallel approaches: two SHOR(N=7, a=2) from Algorithm 1

VII. DISCUSSION

As shown in Section VI, we demonstrated a scenario where
running multiple kernels simultaneously is beneficial. The
goal of this section is to summarize difference application
scenarios that we believe are good candidates for user-level
multi-threading:
Shor’s algorithm: As we discussed in Section II, suppose we
factorize N using Shor’s algorithm, we can create p parallel
tasks with a random number ap s.t. 1 < ap < N and
gcd(ap, N) = 1, each of which invokes Shor’s kernel to
estimate rp and checks if rp is even and arp mod N ≡ 1 in
parallel. Algorithm 2 summarizes the parallel algorithm and
Figure 4 shows that running two Shor’s kernels in parallel
outperforms one-by-one execution. We anticipate that the
performance improvement will be more significant if CPUs
with more cores and GPUs are used for simulating Shor’s
circuit.
VQE: VQE [21] optimizes a (Hamiltonian H) cost function
over a parameterized manifold of quantum states |ψ(~θ)〉 =
U(~θ)|ψ0〉 as min

~θ
〈ψ(~θ)|H|ψ(~θ)〉. For QMA-hard Hamiltoni-

ans, dim(~θ) is large but for many interesting models in
physical sciences dim(~θ) may scale (sub-)polynomially, in
which case the optimization problem at hand may still be quite
challenging. The pleasantly parallel nature of the optimization
process can be utilized with multiple asynchronous quantum
kernel instances minimizing over ~θ-space.
Asynchronous Quantum JIT Compilation: Shi et al. [22]
discusses a scenario where a GPU is used to compile and
optimize quantum circuits, which can take several hours.
With user-level multi-threading enabled, it is possible to avoid
blocking computing resources by asynchronously offloading
a compilation task onto a GPU and launching the compiled
kernel on a QPU only when it is ready.
Parallel Quantum-Classical Workflow: As generalizations
of different parallel execution scenarios discussed above, one
can write an entire workflow in which different tasks run on
different processing units including CPUs, QPUs, GPUs, and
FPGAs.

VIII. RELATED WORK

While domain-specific languages (DSLs) for quantum com-
puting significantly facilitate the development of quantum al-
gorithms, many DSLs only focus on the kernel part and do not
provide a system-wide programming model. We believe that
such a system-wide programming model will become more
important in quantum-classical computing because exploiting
classical parallelism such as thread-level parallelism can im-
prove end-to-end performance as discussed in Section VI.
Here, we briefly discuss existing programming models from
the viewpoint of classical parallelism on non-quantum devices.

Qiskit [23] has been one of the most popular programming
frameworks for quantum computing. However, it is not appro-
priate to directly map Qiskit programs to quantum-classical
systems unless there is an AOT/JIT-level smart compiler that
is aware of the underlying parallel hardware because the
Global Interpreter Lock (GIL) may hinder Python-level multi-
threaded execution.

Q# is a programming language designed to express hybrid
quantum-classical algorithms [24]. Currently, there is no way
to express the concept of threads in the Q# language itself
[25], nor in the Q# standard library [26]. Additionally, QIR
(Quantum Intermediate Representation), a hybrid quantum-
classical IR based on LLVM IR that is generated by the Q#
compiler front-end, does not explicitly guarantee thread-safety
for any runtime functions [27]. Indeed, the reference QIR
runtime [28] may exhibit data races if used in multi-threaded
code. It is worth noting that QParallel [29] allows the user to
explicitly express parallelism in the quantum kernel part, not
in the classical part.

Other newer platforms for hybrid quantum-classical com-
puting have been proposed like NVIDIA’s QODA [30], which
is designed for the simulation of quantum circuits with GPUs
and QPUs. It is unclear what multi-threaded support model
QODA uses as it is a proprietary product.

IX. CONCLUSIONS AND FUTURE WORK

This paper explores the possibility of enabling user-level
multi-threading in QCOR. We made enhancements to QCOR
to support C++-based parallel and asynchronous execution of

quantum kernels by 1) adding thread safety to QCOR API
routines, and 2) increase parallelism by removing data races
that inhibit multi-threading.

Our preliminary results with the Bell and Shor’s algorithm
kernels show that enabling user-level multi-threading gives
us performance improvements over the conventional baseline
version in which each kernel is still executed by multiple
threads, but is executed one-by-one.

We believe this multi-threading design for heterogeneous
quantum-classical programming models will open up an op-
portunity for rapidly prototyping and developing quantum-
classical programs on conventional systems in the short-
term. At the same time, we envision that this initial design
would be a good starting point for longer-term explorations
of heterogeneous programming systems for future quantum-
classical systems.

In future work, we plan to run other quantum-classical tasks,
such as VQE, with additional quantum simulation and physical
back ends and also use different back ends to demonstrate
where user-level multi-threading is most beneficial.

ACKNOWLEDGEMENT

We acknowledge DOE ASCR funding under the Quan-
tum Computing Application Teams program, FWP number
ERKJ347. We also acknowledge support for this work from
NSF planning grant #2016666, “Enabling Quantum Computer
Science and Engineering”.

REFERENCES

[1] T. M. Mintz, A. J. McCaskey, E. F. Dumitrescu, S. V. Moore,
S. Powers, and P. Lougovski, “Qcor: A language extension specification
for the heterogeneous quantum-classical model of computation,” J.
Emerg. Technol. Comput. Syst., vol. 16, no. 2, mar 2020. [Online].
Available: https://doi.org/10.1145/3380964

[2] V. Gheorghiu, “Quantum++: A modern c++ quantum computing
library,” PLOS ONE, vol. 13, no. 12, pp. 1–27, 12 2018. [Online].
Available: https://doi.org/10.1371/journal.pone.0208073

[3] Oak Ridge National Laboratory Quantum Computing Institute, “QCOR
Specification,” https://github.com/ORNL-QCI/qcor spec, 2022.

[4] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and
T. S. Humble, “XACC: a system-level software infrastructure for
heterogeneous quantum–classical computing,” Quantum Science and
Technology, vol. 5, no. 2, p. 024002, feb 2020. [Online]. Available:
https://doi.org/10.1088%2F2058-9565%2Fab6bf6

[5] A. Cross, A. Javadi-Abhari, T. Alexander, N. de Beaudrap, L. S.
Bishop, S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M. Gambetta,
and B. R. Johnson, “OpenQASM 3: A broader and deeper quantum
assembly language,” ACM Transactions on Quantum Computing, mar
2022. [Online]. Available: https://doi.org/10.1145%2F3505636

[6] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with cuda: Is cuda the parallel programming
model that application developers have been waiting for?” Queue,
vol. 6, no. 2, p. 40–53, mar 2008. [Online]. Available: https:
//doi.org/10.1145/1365490.1365500

[7] Khronos Group, “SYCL Overview,” https://www.khronos.org/sycl/,
2022.

[8] ——, “OpenCL Overview,” https://www.khronos.org/opencl/, 2022.
[9] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai,

J. Chen, K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya,
T. Yamamoto, T. Yan, T. Kawakubo, Y. O. Nakagawa, Y. Ibe,
Y. Zhang, H. Yamashita, H. Yoshimura, A. Hayashi, and K. Fujii,
“Qulacs: a fast and versatile quantum circuit simulator for research
purpose,” Quantum, vol. 5, p. 559, Oct. 2021. [Online]. Available:
https://doi.org/10.22331/q-2021-10-06-559

[10] T. Vincent, L. J. O’Riordan, M. Andrenkov, J. Brown, N. Killoran,
H. Qi, and I. Dhand, “Jet: Fast quantum circuit simulations with parallel
task-based tensor-network contraction,” Quantum, vol. 6, p. 709, May
2022. [Online]. Available: https://doi.org/10.22331/q-2022-05-09-709

[11] T. Häner, D. S. Steiger, M. Smelyanskiy, and M. Troyer, “High perfor-
mance emulation of quantum circuits,” in SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2016, pp. 866–874.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” vol. 40, no. 10, p. 519–538,
oct 2005. [Online]. Available: https://doi.org/10.1145/1103845.1094852

[13] L. Dagum and R. Menon, “Openmp: An industry-standard api for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998. [Online]. Available: https://doi.org/10.1109/99.
660313

[14] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[15] D. Beckingsale, R. Hornung, T. Scogland, and A. Vargas, “Performance
portable c++ programming with raja,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 455–456. [Online]. Available: https://doi.org/10.
1145/3293883.3302577

[16] Khronos Group, “SYCL 2020 Specification,” https://registry.khronos.
org/SYCL/specs/sycl-2020/html/sycl-2020.html, 2022.

[17] Hayashi, Akihiro, “Initial Thread-Safe Implementation,” https://github.
com/qir-alliance/qcor/pull/157, 2021.

[18] Young, Jeffrey and Hayashi, Akihiro, “Runtime section, multi-threaded
support, reorganization of exec model,” https://github.com/ORNL-QCI/
qcor spec/pull/9, 2021.

[19] Hayashi, Akihiro, “Initial Thread-Safe Implementation,” https://github.
com/eclipse/xacc/pull/455, 2021.

[20] S. Beauregard, “Circuit for shor’s algorithm using 2n+3 qubits,” Quan-
tum Info. Comput., vol. 3, no. 2, p. 175–185, mar 2003.

[21] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, no. 4213, Jul 2014. [Online]. Available: http://dx.doi.org/10.
1038/ncomms5213

[22] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1031–1044.
[Online]. Available: https://doi.org/10.1145/3297858.3304018

[23] A. tA-v et al., “Qiskit: An open-source framework for quantum com-
puting,” 2021.

[24] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q#:
Enabling Scalable Quantum Computing and Development with a
High-level DSL,” in Proceedings of the Real World Domain Specific
Languages Workshop 2018. New York, NY, USA: Association for
Computing Machinery, Feb. 2018, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/3183895.3183901

[25] Microsoft, “Q# Language Specification,” https://github.com/microsoft/
qsharp-language/tree/main/Specifications/Language, 2022.

[26] ——, “Microsoft Quantum Development Kit Libraries,” https://github.
com/microsoft/QuantumLibraries/, 2022.

[27] QIR Alliance, “Quantum Intermediate Representation (QIR) Speci-
fication,” https://github.com/qir-alliance/qir-spec/tree/main/specification,
2022.

[28] Microsoft, “The Native QIR Runtime,” https://github.com/microsoft/
qsharp-runtime/tree/main/src/Qir/Runtime, 2022.

[29] T. Häner, V. Kliuchnikov, M. Roetteler, M. Soeken, and A. Vaschillo,
“Qparallel: Explicit parallelism for programming quantum computers,”
2022. [Online]. Available: https://arxiv.org/abs/2210.03680

[30] NVIDIA, “NVIDIA QODA: The Platform for Hybrid Quantum-
Classical Computing,” https://developer.nvidia.com/qoda, 2022.

https://doi.org/10.1145/3380964
https://doi.org/10.1371/journal.pone.0208073
https://github.com/ORNL-QCI/qcor_spec
https://doi.org/10.1088%2F2058-9565%2Fab6bf6
https://doi.org/10.1145%2F3505636
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.22331/q-2022-05-09-709
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1145/3293883.3302577
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://github.com/qir-alliance/qcor/pull/157
https://github.com/qir-alliance/qcor/pull/157
https://github.com/ORNL-QCI/qcor_spec/pull/9
https://github.com/ORNL-QCI/qcor_spec/pull/9
https://github.com/eclipse/xacc/pull/455
https://github.com/eclipse/xacc/pull/455
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3183895.3183901
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language
https://github.com/microsoft/QuantumLibraries/
https://github.com/microsoft/QuantumLibraries/
https://github.com/qir-alliance/qir-spec/tree/main/specification
https://github.com/microsoft/qsharp-runtime/tree/main/src/Qir/Runtime
https://github.com/microsoft/qsharp-runtime/tree/main/src/Qir/Runtime
https://arxiv.org/abs/2210.03680
https://developer.nvidia.com/qoda

	I Introduction
	II Motivation
	III QCOR
	IV Design
	IV-A Multi-threading Design Overview
	IV-B User-Facing API
	IV-B1 std::thread
	IV-B2 std::async

	IV-C Enabling Thread Safety

	V Implementation
	V-A Identifying sources of data races
	V-A1 Global Variables
	V-A2 Services

	V-B Implementation Details
	V-B1 Enabling thread-safety
	V-B2 Increasing Parallelism

	V-C Current Implementation Status

	VI Preliminary Performance Evaluation
	VI-A Impact of Parallel Kernel Execution
	VI-B Strong Scalability Study

	VII Discussion
	VIII Related Work
	IX Conclusions and Future Work
	References

