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Abstract—Quantum circuit cutting has been proposed to
help execute large quantum circuits using only small and
noisy machines. Intuitively, cutting a qubit wire can be
thought of as classically passing information of a quantum
state along each element in a basis set. As the number of
cuts increase, the number of quantum degrees of freedom
needed to be passed through scales exponentially. We pro-
pose a simple reduction scheme to lower the classical and
quantum resources required to perform a cut. Particularly,
we recognize that for some cuts, certain basis element
might pass “no information” through the qubit wire and
can effectively be neglected. We empirically demonstrate
our method on circuit simulators as well as IBM quantum
hardware, and we observed up to 33 percent reduction in
wall time without loss of accuracy.

I. INTRODUCTION

While quantum computers can provide exponential
speed-up for certain algorithms, unveiling potential di-
verse and disruptive applications [1], [2], [3], current
quantum hardware lacks the scale and reliability to
execute these quantum circuits. Preskill described such
hardware as Noisy Intermediate-Scale Quantum (NISQ)
computers, and much effort has been focused on in-
creasing qubit fidelity and qubit count [4], [5], [6],
[7]. Meanwhile, algorithmic developments such as vari-
ational quantum algorithms [8], [9], [10] have caught
substantial attention for having the potential to real-
ize quantum advantage utilizing only NISQ machines.
However, there are few results demonstrating provable
advantage for using variational quantum algorithms over
known classical algorithms [11].

A natural question to ask when given limited qubits
is: “Are there ways of simulating large quantum circuits
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using small quantum devices?” Inspired by fragmenta-
tion methods in molecular simulations [12], [13], [14],
[15], Peng et al. has demonstrated that it is possible
to divide quantum circuit into subcircuits, or fragments,
that can be independently executed on small quantum
computers and then recombined [16]. This method does
not impose assumptions on circuits but requires a large
amount of classical computing resources—exponential in
the number of cuts—in order to reconstruct the expected
output of the respective uncut circuit.

Nonetheless, quantum circuit cutting still holds great
promise as an effective tool for realizing quantum al-
gorithms. Most notably, it has been empirically shown
that reducing the circuit size, even when sufficiently
large machines are available, can improve fidelity [17],
[18], [19]. Moreover, tailoring circuit cutting to spe-
cific applications, e.g. combinatorial optimization [20]
and error mitigation [21], can effectively avoid the
exponential classical overhead. Alternatively, stochastic
methods through randomized measurement [22] and
sampling [23] have also been developed to reduce the
postprocessing cost. In recent, state-of-the-art research,
it has been empirically shown that optimization can be
employed to replace traditional tomographic techniques
and significantly reduce the classical resources needed
for reconstruction, though at the cost of additional cir-
cuit evaluations [24]. Circuit cutting algorithms have
also undergone improvement and variations in terms of
performance. Maximum likelihood methods have been
introduced to circuit cutting to formally account for
finite-shot error [19]. Shadow tomography—an efficient
classical representation of quantum states for predicting
expectations of observables [25]—can also be applied to
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individual circuit fragments [26].
Our work contributes in the direction of reducing the

computational resources needed. In this paper, we intro-
duce the idea of a golden cutting point: a cut location
on a quantum circuit where a certain measurement basis
can be neglected, e.g., when the quantum state operates
in a lower-dimensional subspace prior to the cut. Such
reduction lowers the runtime of reconstructing measure-
ment statistics from fragments by approximately 33%
for a single cut and avoids excessive circuit executions.
We experimentally verify our method on both the Qiskit
Aer simulator [27] and superconducting quantum devices
from IBM [28].

The outline of this paper is as follows. Section II
presents the mathematical formulation behind quantum
circuit cutting and the idea of golden cutting points. We
begin with an elaborate three-qubit example in Section
II-A and generalize it to arbitrary circuit bipartitions in
Section II-B. Then, we proceed to conduct numerical
experiments in Section III. Finally, we provide insight
into future directions in Section IV.

II. QUANTUM CIRCUIT CUTTING

Quantum circuit cutting seeks a qubit wire (or multi-
ple qubit wires) such that, upon removing, the circuit
decomposes into several independent fragments. This
is accomplished by performing quantum tomography—
learning a quantum state—on the qubit upstream of the
cut and recreating the inferred state in the downstream
qubit. One can think of tomography as estimating the
coefficient after expanding a quantum state with respect
to some basis set, which we take to be the Pauli basis{
I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)}
(1)

for concreteness. By measuring the quantum state with
respect to each element in the basis, one could piece
together the state prior to the cut. Then, by initial-
izing the downstream qubit incident to the cut into
the eigenstate of each element in the basis, one could
learn the behavior of the circuit given the initial state.
Lastly, reweighting the results obtained through multiple
initializations yields the behavior of an uncut circuit.

If a circuit undergoes K cuts, tomography has to be
performed on all K qubits at the location of the cuts. The
set of length-K Pauli strings is then an appropriate basis
for a K-qubit system and the measurement-preparation
scheme described above must be done for all elements in
the set. Thus, the cost of performing circuit cutting scales
exponentially with the number of cuts. In this section, we
introduce a special class of circuits that contains a golden

cutting point and that enjoys a reduction in measurement
complexity and classical postprocessing cost. We will
demonstrate this via a three-qubit example (Section II-A)
and proceed to formalize the phenomenon for arbitrary
circuit bipartitions (Section II-B).

A. A Three-qubit Example

Consider the following three-qubit state

ρ = U23U12|000〉〈000|U†12U
†
23 (2)

where unitaries U12 and U23 can be arbitrary quantum
gates (Figure 1). Notice that the qubit wire between the
two gates can be cut, in the sense that we can rewrite
the above state as

ρ =
1

2

∑
M2∈B

ρf1(M2)⊗ ρf2(M2) (3)

where the set B = {I,X, Y, Z} is the Pauli basis, and

ρf1(M2) = tr2(M2U12|00〉〈00|U†12), (4)

ρf2(M2) = U23(M2 ⊗ |0〉〈0|)U†23. (5)

Here, M2 refers to applying the operator M onto to the
second qubit. This convention will be held throughout
the manuscript where numerical subscripts denote the
qubit(s) an operator is acting on.

However, as currently presented, the fragments are not
quantum states as Pauli matrices are traceless operators.
To obtain a physical interpretation, consider the eigende-
composition eigendecomposition M = rMr + sMs for
each M ∈ B where r, s ∈ {+1,−1} are the eigenvalues
and Mr,Ms are the eigenstates. Then, we can rewrite
Equation 3 as

ρ =
1

2

∑
M2∈B
r,s=±1

rsρf1(Mr
2 )⊗ ρf2(Ms

2 ). (6)

The eigenstates of M ∈ B have unit trace and can be
regarded as quantum states.

Intuitively, one can understand circuit cutting as clas-
sically passing information through the qubit wire that
is cut. Inside the summation (fix an M2 of choice), the
information stored in the second qubit in the direction
M2 is measured—taking the partial trace in ρf1—and
passed onto the remaining circuit—initializing into state
Ms

2 . Since the circuit fragments ρf1 and ρf2 can be simu-
lated independently, through repeating the measurement-
initialization scheme, we can effectively cut the original
circuit, run fragments in parallel, and combine the results
classically.

We are often interested in finding the expectation of
the quantum state with respect to a quantum observable,
O. Without loss of generality, assume an observable can



Fig. 1: Circuit diagram corresponding to the 3-qubit example

be decomposed as O = O1⊗O23. Then, we can rewrite
the expectation in terms of ρf1 and ρf2 :

tr(Oρ) =
1

2

∑
M2,r,s

rs tr(O1ρf1(Mr
2 ))tr(O23ρf2(Ms

2 ))

(7)

=
1

2

∑
M2,s

s tr(O23ρf2(Ms
2 ))
∑
r

r tr(O1ρf1(Mr
2 )).

(8)

The above summation involves 16 terms. Experimen-
tally, the summation requires measuring the second qubit
in the fragment upstream for each non-identity Pauli
basis and initializing the first qubit in the downstream
fragment to the respective eigenstates.

However, the computation above can potentially be
reduced. Suppose that there exists an M2,∗ ∈ B such
that the last summation evaluates to zero, that is,∑

r=±1
r tr

(
O1ρf1(Mr

2,∗)
)

= 0. (9)

Note that this can happen one of two ways:

(i) Operator O1 is orthogonal to the conditional state
ρf1(Mr

2,∗), i.e., tr(Oρf1(Mr
2,∗)) = 0 for both r =

±1. For example, O1 = X and U12|00〉 = (|00〉+
|11〉)/

√
2, the Bell state.

(ii) The conditional state is in a subspace that “conveys
no information” about the observable, specifically,
tr(O1ρf1(Mr

2,∗)) 6= 0 but the weighted sum in
Equation 9 leads to systematic cancellations. For
example, O1 = |+〉〈+| is a projector to the plus-
state, and U12|00〉 is again the Bell state.

Upon noting the reduction, the number of terms in the
summation drops from 16 to 12. Moreover, since any
term involving M2,∗ is neglected, there is no need to
estimate the expectation in the downstream fragment
(tr
(
O23ρf2(Ms

2,∗)
)
), which saves circuit evaluations that

use the initial state Ms
2,∗. We say that the cut is a golden

cutting point if such reduction occurs.

B. Generalization

We formally extend the above case to more general
bipartitions, but refrain from considering cutting schemes
that result in more than three fragments (c.f. [26] for
general expression of expectations with respect to circuit
fragments). Suppose a N -qubit quantum circuit induces
a state ρ. A set of K cuts, with injective function c map-
ping the i-th cut onto qubit c(i) ∈ [N ] = {1, 2, . . . , N}.
By cutting the K wires, the circuit can be bipartitioned
into fragments f1 and f2. Now, cutting requires passing
information from K sets of basis B through the cutting
point, namely, measuring upstream qubits and preparing
downstream qubits with respect to operators

M =
(
Mc(1) Mc(2) . . . Mc(K)

)
∈ BK . (10)

Furthermore, each operator M admits spectral decom-
position. Letting

r =
(
rc(1) rc(2) . . . rc(K)

)
∈ {−1,+1}K (11)

be a tuple of eigenvalues, we define

Mr =
(
M

r(1)
c(1) M

r(2)
c(2) . . . M

r(K)
c(K)

)
(12)

to be the r-th eigenstate of operator M .
Using the above notation, we can compactly write the

uncut state using the fragment-induced states ρfi(M) for
i = 1, 2. Following Equation 6 gives the reconstruction
formula in this bipartition case:

ρ =
1

2K

∑
M∈BK ,

r,s∈{−1,+1}K

∏
i∈[K]

risi ρf1(Mr)⊗ ρf2(Ms).

(13)

Alternatively, for any desired quantum observable O,
suppose the operator can be decomposed to accommo-
date the two fragments, i.e., O = Of1 ⊗ Of2 up to
appropriate permutation of qubit indices. This is without
loss of generality as expansions using Pauli strings would
yield a linear combination of operators that are qubit-
wise separable. Then, we can arrive at an expression



analogous to Equation 7 in terms of the fragments ρfi
and their respective observables Ofi :

tr(Oρ) =

1

2K

∑
M ,r,s

∏
i∈[K]

risi tr (Of1ρf1(Mr)) tr (Of2ρf2(Ms)) .

(14)

We now formally define the golden circuit cutting point.

Definition 1. A N -qubit circuit amenable to bipartition
with K cuts has a golden cutting point if there exists
k∗ ∈ [K] such that∑

rc(k∗)

rc(k∗) tr (Of1ρf1(Mr)) = 0. (15)

Note that golden cutting points are not necessarily
unique. There can be multiple cuts with negligible bases
and/or multiple negligible bases in one cut. Suppose
there are Kg many golden cutting points and Kr =
K −Kg regular cutting points, the run time complexity
of reconstructing the expectation in this bipartite case
scales as O(4Kr3Kg ). Moreover, there is no need of
preparing the downstream fragments into the respective
eigenstates, reducing the number of circuit evaluations
from O(6K) to O(6Kr4Kg ). It is worth noting that
the eigenstate preparation scheme is overcomplete and
alternative bases, e.g. the symmetric informationally-
complete (SICC) basis, can be used to achieve O(4K)
circuit evaluations without invoking golden circuit cut-
ting formalism. However, employing the SICC basis
would require more involved implementation, namely,
solving linear systems, in order to construct the appro-
priate tensor during reconstruction.

We emphasize that golden cutting points as its current
form is strictly a product of circuit design. That is, we
can design circuits that admits golden cutting points at
known locations (c.f. Section III). In reality, the existence
of golden cutting points depends on the choice of the
observable O, how it can be decomposed into form
amendable to cutting, and the the state of the qubit prior
to the cut. It is unlikely that an arbitrary circuit would
exhibit such property without intricate designs, and we
defer further discussion on finding golden cutting points
to Section IV.

III. EXPERIMENTS

We demonstrate the capability of golden cutting points
numerically. Specifically, experiments were designed to
verify two aspects of our work: first, that our method
does not sacrifice the correctness of reconstruction and
second, that our method reduces the overall runtime of
the algorithm. The circuit used in our experiment takes
the form showed in Figure 2 where the sizes of the
circuits were tailored to the size of the device it was

Fig. 2: Example 5-qubit circuit with golden cutting point.
U1 and U2 are randomized circuits. Note that other odd-
number circuit widths were used too, mainly 7-qubits
split into subcircuits of 4 qubits each.

run on. Most commonly, we split 5- and 7-qubit circuits
into fragments of 3 and 4 qubits respectively. In addition
to quantum hardware, we also tested our method on the
Aer simulator from Qiskit [27].

The generated circuits featured collections of RX
gates with the rotation angle θ was chosen uniformly
at random from the interval [0, 6.28], as well as random
gates generated using the random_circuit() func-
tion in Qiskit, denoted by U1 and U2 in Figure 2. In our
experiments, we want to acquire the bitstring probability
distribution generated by repeated measurements in the
computational (Z) basis. Alternatively, to match the
formalism of Section II-B, for all bitstrings b̂ ∈ {0, 1}n,
one can interpret the above as estimating the expectation
of the projector observable Πb̂ = |b̂〉〈b̂| where n = 5, 7
is the number of qubits in a circuit. This observable
decomposes straightforwardly upon cutting:

Πb̂ = Πb̂1 ⊗Πb̂2 (16)

where b̂1 and b̂2 are bitstrings of length bn/2c and
dn/2e respectively such that the concatenation recovers
b̂. By repeating many measurements in the computational
basis and obtaining a bitstring distribution, we can then
estimate the expectation of the projector observables.
The restrictions imposed on our circuit ansatz creates
a golden cutting point. In particular, the contribution of
first fragment to the total expectation (with respect to
the projector operator above, which has only diagonal
components) conditioned on observing each eigenstate
of the Pauli Y operator leads to components of equal
magnitudes. Once weighed by the respective eigenvalues,
the trace terms systematically cancels and induces a
golden cutting point as defined in 15.

A. Verifying Reconstruction Accuracy

We first proceed to verify the correctness of our
golden cutting point method. We performed noiseless
(in the sense of hardware noise) simulations of the



Fig. 3: Comparison of weighted distances for uncut cir-
cuit evaluations and reconstructed meausurements from
fragment data. Each bar was averaged over 10 inde-
pendent trials. Each trial consisted of 10,000 shots per
fragment. Error bars represent 95% confidence intervals.

full uncut circuit to obtain the ground truth distribution
and compared our golden cutting point method to it.
In addition, we ran the same circuits, both uncut and
fragmented, on superconducting IBM Quantum devices
[28]. To compare distributions, we now introduce a
weighted distance function dw:

dw(p; q) =
∑
x∈X

(p(x)− q(x))
2

q(x)
. (17)

for distributions p and q with support X . In the experi-
ment, p was our “test” distribution and q was the “ground
truth.” This weighted distance function penalizes large
percentage deviations more than other metrics such as
the total variational distance.

Using this weighted distance function, we determined
the distance between the ground truth bitstring distribu-
tion from the Aer simulator and the distribution obtained
by running the full circuit on quantum hardware. We then
also determined the distance between the ground truth
distribution and the distribution obtained by running
our golden cutting method on quantum hardware. We
repeated the experiment for machines of two different
sizes—a 5-qubit device would run a 5-qubit circuit
that is split into two 3-qubit subcircuits and a 7-qubit
device would run a 7-qubit circuit split into two 4-qubit
subcircuits. Each circuit configuration was repeated for
10 trials with each trial consisting of 10,000 shots per
(sub)circuit. The results of the experiments are shown in
Figure 3.

Because previous work has found that quantum circuit
cutting has yielded a benefit in terms of fidelity, we
expected similar results. We were surprised to find that

Fig. 4: Runtime comparison of circuits with (in gold)
and without (in red) golden circuit cutting optimization.
Each configuration was repeated for 1000 trials and each
trial involved 1000 shots for each (sub)circuit. Error bars
represent 95% confidence intervals.

such a benefit is non-existent on 5-qubit devices and not
detectable within 95% confidence intervals on a 7-qubit
device. This is likely due to the fact that our circuits
were not particularly deep—only a few gates in each.
As the circuit depth increases we should expect to see
more of a benefit from circuit cutting. Additionally, an
average of only 10 trials was performed, leaving our
uncertainties relatively large. In our future work we will
run more trials, potentially on larger devices, or with
greater depths, to more precisely determine the true
distance for this method. Regardless, in this work, we
have verified that (within error) our method performs as
well as full circuit execution on real hardware in terms
of outputting the correct bitstring distribution.

B. Algorithm runtime

The presented golden cutting point method predicts a
reduction in the number of measurements, thereby low-
ering the runtime of the procedure. In this experiment,
we recorded the time taken for gathering fragment data
and reconstructing them on a randomly generated circuit.
We assumed the golden cutting point was known a priori
(see Section IV for determining the existence of golden
cutting points), and studied the runtime reduction from
exploiting this knowledge. The results are illustrated in
Figure 4.

We then repeated the same experiment using real
devices available through the IBM Quantum Experience
[28]. We report a speedup of 33 percent using our
method as compared to the standard method [18], as
shown in Figure 5. Specifically, we find that the average
time for execution using the standard (without golden



Fig. 5: Circuit cutting runtime with and without golden
cutting point on quantum devices from IBM. Each bar
represents the average runtime of 50 trials and each trial
comprised of 1,000 shots for each (sub)circuit.

cutting point consideration) reconstruction method was
18.84 seconds whereas the golden cutting point method
had a mean of 12.61 seconds. This reduction in run time
is largely attributed to the reduced number of circuit
evaluations. Particularly, we avoided having to execute a
third of the total shots by neglecting one basis element,
bringing the total number of circuit executions down
from 4.5 × 105 to 3.0 × 105. This demonstrates the
applicability of our method: it is simple to implement
and produces a considerable reduction in wall time
needed to perform circuit reconstruction.

IV. CONCLUSION

In this paper, we introduced the idea of a golden
cutting point where elements of a basis set can be
neglected (Section II-B). Neglecting these basis elements
allows for a considerable decrease in the runtime. The re-
duction can be attributed to (1) fewer terms are involved
when combining measurement results from fragments,
and (2) fewer circuit evaluations are needed in the
fragment downstream of the golden cut. We verified
the correctness and demonstrated the lowered runtime
in both simulators and real quantum hardware (Section
III). We observed that golden cutting points do not come
at the cost of accuracy, and a statistically significant
33% decrease in runtime persists in both a simulated
environment and quantum devices.

The introduction of the golden cutting point begs
the question of applicable algorithms that have built-in
golden cutting points. Variational circuits are a potential
candidate due to their flexibility in the circuit ansatz.
Although variational algorithms for combinatorial opti-
mization or chemical simulations have great structural

assumptions given by the Hamiltonian, quantum ma-
chine learning circuits typically do not possess these
constraints and therefore are likely more amenable to
exploiting the golden cutting point formalism.

Moreover, detection of the existence of a golden
cutting point is also an interesting one. In this work,
we assumed the golden cutting point was known a
priori. However, it is not obvious whether a basis can
be neglected without simulating the circuit. Thus, we
suspect there are methods for detecting golden cutting
points “online” during the execution of the circuit cutting
procedure through sequential empirical measurements.
Note that this does not necessarily sacrifice the paral-
lelism of circuit cutting as golden cutting points only
affect the fragments directly incident to the cut. However,
performing such a method would require further statisti-
cal analysis of acceptable error and the amplification of
error through tensor contraction.
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[17] T. Ayral, F.-M. Le Régent, Z. Saleem, Y. Alexeev,
and M. Suchara, “Quantum divide and compute:
Hardware demonstrations and noisy simulations,” in 2020
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2020, pp. 138–140. [Online]. Available:
https://ieeexplore.ieee.org/document/9155024
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