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Abstract—In this paper, we present HEPnOS, a distributed data
service for managing data produced by high-energy physics (HEP)
experiments. Using HEPnOS, HEP applications can use HPC
resources more efficiently than traditional file-based applications.
The file-based model leads to a rigid, chunk-based allocation
of computational resources and limits the number of cores
that can be used concurrently by an HEP application. The
fundamental problem is that organizing domain-specific data into
files inadvertently introduces a single, artificial, conflated tuning
parameter that puts key optimization goals into conflict: larger file
sizes reduce metadata overhead and thus improve I/O efficiency,
but smaller file sizes provide more opportunity for workflow
parallelism and load balancing. In this work, we introduce a
domain-specific data service that decouples that constraint so that
data can be accessed and processed in its natural granularity
while still maintaining I/O efficiency. By removing the constraints
introduced by file handling we are able to obtain better scaling
and make efficient use of more cores for processing a fixed-sized
data sample. We demonstrate the improved scalability by using an
application developed in the file-based paradigm and comparing
it to a version modified to use HEPnOS.

Index Terms—HPC, Storage, Mochi

I. INTRODUCTION

The design of most High Energy Physics (HEP) applications
and workflows is influenced by the grid-based high-throughput
computing and storage facilities that have traditionally been
used in the field. The typical HEP workflow needed to complete
a data processing campaign is broken into several distinct steps,
each performed by the invocation of a different application.1

An HEP workflow running on grid compute nodes uses files
both as the storage technique and to exchange data between
successive processing steps. Because the file written as output
by step n is read as input by step n+ 1, it is common for a
step to “copy forward” data from its input file to its output
file if those data are needed by later steps. This is the case
even when those data are needed only by a possibly much
later step and not by the step doing the copying forward.
Important workflows typically generate thousands to hundreds
of thousands of files. These files can range in size from a few
megabytes to tens of gigabytes. The file size is chosen based on
constraints imposed by the grid processing systems, including

1Often these applications are configurations of a common framework.

the maximum processing time allowable on grid nodes and
the size requirements for archival storage, and the size and
organization of the experimental data stream originating from
the scientific detector systems. File handling features present
within experiments’ data acquisition systems, often impose
stringent constraints on file size due to limited file buffering
and near real-time operational requirements. These sizes and
organizations often percolate through to the higher levels of
grid processing even though the original real-time and hardware
constraints are nolonger present.

In this manner, the file is the atomic unit of processing for the
grid-oriented systems. This unit of dicretization is however in
a sense artificial. It is not a reflection of any unit of processing
inherent in the scientific (physics) content of the experiment
data2. The natural atomic unit of data for the representation of
subatomic interactions with nuclear fields in the experiments
is denoted as the event. An event represents a single readout
of a full detector covering a window of time that is of interest,
typically identified by the experimental apparatus as a potential
subatomic interaction. Events are discrete and atomic in the
sense that each event is assumed to be causally disconnected
from each other event and representative of an independent
trial of the measurement or hypothesis. Under this formal
assumption, each event can be processed independently and in
any order with respect to each other event without inducing
measurement bias. A traditional file can contain any number
of events, from a few tens of events to tens of thousands
of events, but typically contains events that were acquired
over a macroscopic time scale of a few minutes to hours of
experimental detector operations.

Large analysis tasks are run as batch jobs on distributed grid
resources. Batch jobs typically consist of tens to thousands of
concurrent processes, distributed over the grid resources. In
the traditional design, each process works on a series of files;
no two processes work on the same file in order to minimize
redundancy in IO transfers between the storage system and the
compute elements. To support parallelism between jobs, the
files are delivered by a data handling system that allows the

2Information regarding physical calibrations of the instruments is associated
with the file structure but does not drive its organization
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work to be pipelined. When a process is finished processing
one file it requests the next file in the set of files to be processed
by the job. Because the amount of work required to process
each file is not the same, this pipelining allows more efficient
resource usage than would be obtained by dividing the files
equally between processes. Sometimes the processes in a batch
job run several steps in the analysis chain. If there are n steps
in the series, this produces n or more files. There is a limit
to how many steps can be run in such a series, because of
the grid resource constraints both on the allowable duration
of the processes and disk space available on grid nodes. The
complexity of each step can also be limited by the amount of
memory available on the nodes. For a workflow with many
steps which can not fit within the constraints of the grid nodes, a
succession of batch jobs will be run serially. In this succession
of jobs, each one will write out its results to files which
are copied back to the storage system. The next stage in the
workflow’s chain is then run through the batch system and will
retrieve and ingesting that previous stage’s output, writing out
in turn its results.

While this workflow model has been successful for grid-
based processing for decades, in the move to HPC processing it
is less suitable. We note here several issues. The need to “copy
forward” data for use in later steps introduces superfluous IO
traffic that could be avoided if later steps had access directly
to the data from earlier processing steps.

The multiplicity of files introduced by the multi-step work-
flow creates significant file-handling and metadata-tracking
work that would not be necessary if the data were in a single
store. There is also the additional buffering space needed in
the file system for transient data that is needed by downstream
workflow stages. The serial execution of multiple batch jobs
introduces inefficiency in load balancing, resource management,
and overall latency till the final results are available. The
artificially coarse granularity resulting from using the file as
the atomic unit for work (rather than the event) results in a
large scale idling of resources near the end of each stage, when
the uneven distribution of work causes a few processes to be
busy finishing their final round of files, while all other nodes
in the batch ensemble are idled due to lack of files to process.
Wide variation in the size of files, or the number or aggregate
complexity of events in the files, exacerbates this imbalance.

To avoid these issues we have developed a distributed data
service: the High Energy Physics new Object Store, HEPnOS.
Using it, multiple processes can share a dataset with event-
level, rather than file-level, granularity. A unique feature of the
HEPnOS interface is that it follows concepts in High Energy
Physics event processing. The current HEPnOS interface is
a demonstration of this capability. The existing grid-based
systems make it difficult to use more resources for steps of the
analysis that are more computationally expensive. HEPnOS
allows us to use more processes for the slower phases of
the work without entailing the complications of file handling
between the phases, and without arbitrary limits on the number
of processes usable based on the number of files available at
each stage.

A common scenario in many HEP analyses is the iterative
refinement or tuning of the analysis process, based on the
data available. This requires multiple passes through a given
dataset. Having the data available in a distributed data service
not only makes this more convenient, but also spreads the cost
of loading the data over all iterations. On an HPC system,
the distributed service can leverage the system’s high-speed
networking to deliver data faster than file-based IO can. If
the service is able to keep the dataset in memory even better
performance is possible.

In this work, we demonstrate the reading speed and scala-
bility (both weak and strong) of HEPnOS. To do so we have
chosen a use case from one HEP experiment and a limited
dataset to which we were granted access. In section II we
describe HEPnOS. We describe the application in section III.
In section IV we report on our performance measurements.
We compare the speed and scaling behavior of the existing
grid-based application to one that uses HEPnOS to do the
same work. Section V discusses related work. We draw some
conclusions in section VI.

II. HEPNOS

This section presents the design of HEPnOS, its interface,
and how it internally organizes data. HEPnOS was designed
using the Mochi methodology [1], [2], which consists of
relying on reusable, composable building blocks to develop
storage systems that are highly tailored to their applications.
Designing HEPnOS required discussing with HEP scientists
to understand how their applications would interact with it,
and what guarantees of performance, fault tolerance, and
consistency it should provide.

A. Requirements and interface

The targeted HEP workflows were written in C++ and, they
manipulate their data in the form of C++ objects, and persistent
data is stored on files. The first set of requirements for HEPnOS
was therefore (1) to be able to store and load C++ objects
directly rather than going through files, and (2) to provide a
way to ingest existing data from files.

The second set of requirements came from the way scientists
organize HEP data into a hierarchy of datasets, runs, subruns,
and events. Datasets are named containers (similar to folders
in traditional file systems). They can contain other datasets
as well as runs. Runs, subruns, and events are identified by
numbers. Runs contain subruns, and subruns contain events.
Finally runs, subruns, and events can contain zero or more
products (C++ objects), each identified by a label and by a
type.

The third set of requirements for HEPnOS came from the
way HEP applications will interact with it. While traditional
HEP applications do not use MPI, the applications that interact
with HEPnOS will typically be embarrassingly-parallel MPI
programs loading products from HEPnOS in an iterative
manner, performing some analysis, and writing new products
back into HEPnOS. Typical datasets will contain several
millions of relatively small products (from tens of bytes to a few



#include <hepnos.hpp>

// example structure
struct Particle {
float x, y, z; // data members
// serialization function for boost to use
template <typename A>
void serialize(A& a, unsigned long /* version */)
{

ar & x & y & z;
}

};
// initialize a handle to the HEPnOS datastore
auto datastore =

hepnos::DataStore::connect("config.json");
// access a nested dataset
hepnos::DataSet ds = datastore["path/to/dataset"];
// access run 43 in the dataset
hepnos::Run run = ds[43];
// create subrun 56 within this run
hepnos::SubRun subrun = run.createSubRun(56);
// create event 25 within this subrun
hepnos::Event ev = subrun.createEvent(25);
// store data (an std::vector of Particle)
st::vector<Particle> vp1 = ...;
ev.store(vp1);
// load data
std::vector<Particle> vp2;
sv.load(vp2);
// iterate over the subruns in a run
for(auto& subrun : run) {
std::cout << subrun.number() << std::endl;

}

Listing 1. Example of client code using HEPnOS

megabytes). To perform well, HEP programs need a distributed
storage system relying either on compute node memory or on
node-local storage such as SSDs, if more persistence is needed.

All these requirements led us to design what amounts to
a distributed key-value store with a C++ interface capable
of serializing and deserializing C++ objects, and with a data
organization in datasets, runs, subruns, and events.

From the scientist’s point of view, HEPnOS is used as
exemplified in Listing 1. This listing shows that navigating
the HEPnOS hierarchy is very similar to accessing a C++
container such as an std::map. HEPnOS uses template
metaprogramming in conjunction with Boost serialization to
handle any C++ object that provides a serialize function
(as well as any native datatype and C++ standard library
container).

B. Design overview

HEPnOS is based on components of the Mochi projects.
These components rely on the Mercury RPC library for
communication [3], on Argobots [4] for threading and tasking,
and on Margo to combine Argobots and Mercury into a simpler
programming model.

HEPnOS’s architecture, shown in Figure 1, is primarily based
on the Yokan component.3 Yokan is a remotely-accessible,

3Our paper presenting the Mochi methodology [1] lists the Bake component,
which has ultimately been removed from the design, and the SDSKV
component, an older key-value storage component which was latter replaced
with Yokan.

single-node key-value storage component. It provides a number
of persistent backends such as RocksDB, BerkeleyDB, Lev-
elDB, etc., as well as in-memory ones (based on C++ standard
library containers such as std::map). The storage side of
HEPnOS is a collection of compute nodes running individual
Yokan instances (or “providers”4) backed up by local memory
or local storage. Through Mercury, Yokan provides access to
key-value pairs through RPC (for single small objects) and
RDMA (for large objects or batches of multiple objects). Yokan
also provides functions to iterate over the stored key-value
pairs. The next section explains how these functions are used
to provide the required data organization for HEPnOS.

The Bedrock component is used for bootstrapping and con-
figuration. It takes a JSON configuration describing the service
and spins up the components according to this configuration.
This description notably contains Argobots information (e.g.,
the number of execution streams and their schedulers and pools),
Mercury configuration (e.g., the type of network to use, the
location of the progress loop thread, in which execution streams
RPCs will be handled), and the list of other providers (e.g.,
Yokan providers in our case) with their respective configuration
(list of database instances) and mapping of providers to
Argobots resources. This high degree of configurability is what
allowed us to fine tune HEPnOS throughout its development
and find configurations that work best for our use-cases, either
via performance analysis and monitoring [5] or ML-based
autotuning [6].

C. Data organization

Yokan stores its data in a flat key-value pairs namespace.
HEPnOS requires data to be organized in a hierarchical manner.
We enable this organization by carefully crafting the keys used
to access containers (datasets, runs, subruns, and events) and
data products, and by placing data on servers in such a way
that we can iterate over them in a coherent manner.

1) Container keys: Since datasets can contain other datasets,
a dataset can be identified by a string representing a full
path, for instance /fermilab/nova for the “nova” dataset
inside the “fermilab” dataset. These full paths are mapped to a
UUID in a separate database. Runs are represented by a 64-bits
number within their dataset. Hence they are uniquely identified
by a key of the form <dataset UUID><run number>
where the run number is converted to big-endian. The same
strategy is applied for subruns and events. HEPnOS consists of
a number of database instances that store either datasets, runs,
subruns, or events. The number of databases for each type
of container is independently configurable. In the key-value
store, container keys do not have an associated value. The
presence or absence of a key is enough to indicate whether
the corresponding container exists.

4The term “provider” is used in Mochi to represent an object capable of
responding to a predefined set of RPCs to provide a specific functionality,
such as storing key-value pairs in a database. A provider may manage multiple
resources (e.g., multiple databases), and be mapped to a specific Argobots
pool in which RPCs are pushed. Effectively, providers are the mechanism
by which the Argobots resources used to execute an RPC (e.g., a CPU), are
decoupled from the resources the RPC is acting on (e.g., a database).
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Fig. 1. Architecture of HEPnOS. HEPnOS is built upon the Mochi suite of building blocks including Margo, which provides Argobots-aware wrappers for
Mercury RPC routines and Yokan, which is a key-value store that can use a variety of backends.

2) Product keys and values: To uniquely identify a
product, its key is built by concatenating the key of
its container with the label and the type of the data
product, separated by a #. For example <DatasetA
UUID><0001><0001><0004>mylabel#Particle is
the key (shortened for space constraints) to a Particle object
with label mylabel in DataSetA, run 1, subrun 1, event 4. The
value associated with such a key is a serialized version of the
C++ object.

3) Placement and iteration: One challenge in our design was
to place container keys in such a way that we could iterate easily
through datasets, runs, subruns, and events. By relying on con-
sistent hashing of the full key for placement, listing the elements
of a container would have required interrogating all the servers
and merge their results. Instead, HEPnOS carefully places the
keys on servers so that iterating over the elements of a container
only involves using the iterator functionalities of one database.
For this, we select the location of a particular container key by
hashing its parent’s key. For instance the location for the subrun
key </fermilab/nova/><33><42> is selected through
consistent hashing of the key </fermilab/nova/><33>.
Because keys are sorted lexicographically inside a database
and numbers are converted to big-endian, this strategy ensures
that (1) all subcontainers directly inside a given container are
located in the same database instance, and (2) they are sorted
alphabetically for datasets and in ascending order for runs,
subruns, and events.

HEPnOS does not enable iterating over products because that
is not a relevant usage pattern for applications. The location
of a product is determined by the consistent hashing of its
parent container key. We chose this method as it allows reading
products in batches when accessing multiple products from the
same container.

Such a placement strategy is in line with the way HEP

workflows operate: individual tasks of the workflow will
generally process events in distinct subruns, hence distributing
the load when iterating over events. The way products are
distributed also ensures some load balancing both in terms of
the amount of data stored, and in accesses.

D. Batching, asynchronous accesses, and load balancing

To improve performance when accessing many small data
items, HEPnOS provides batching and asynchronous access
capabilities. A WriteBatch object can be passed to func-
tions that create containers or store objects. This object will
accumulate the updates in a local buffer, group them by target
database (since not all updates target the same database) and
send batch updates upon destruction.

An AsynchronousWriteBatch object can be used to
issue RPCs in the background and ensure that all the updates
are completed when its destructor is called.

For reading, a ParallelEventProcessor object pro-
vides a high-level interface for a group of processes to iterate
over the events in a given dataset in parallel and in a load-
balanced manner. This interface takes a callable object (which
can be provided by a lambda expression) that will be invoked
on each event. The interface handles loading and distributing
events across participants. It does so by designating a subset
of processes as readers (typically as many readers as databases
to read from). Readers load batches of events from HEPnOS
in the background and place them in a distributed queue from
which all processes pull. The ParallelEventProcessor
object also takes care of prefetching products associated with
an event if requested by the program.



III. OUR EXAMPLE USE CASE

A. The NOvA Experiment

The NuMI Off-axis Electron Neutrino Appearance Exper-
iment (NOvA), is the current running flagship of the United
State’s program in long baseline neutrino physics [7]. The
NOvA experiment is hosted by Fermi National Accelerator
Laboratory and is designed to measure the fundamental
properties of the subatomic particles known as neutrinos.
The experiment measures the worlds most intense beams
of neutrinos and anti-neutrinos, which are produced by the
Fermilab main injector beam facility [8] in Batavia, IL. This
neutrino beam is measured by two separate particle physics
detectors, one placed 103 m underground at a position 1 km
from the beam source, and the second placed on the Earth’s
surface, 810 km from the beam source at a dedicated laboratory
facility in Ash River, MN. The NOvA experiment measures
the manner in which the neutrinos in the beam quantum
mechanically change as they propagate along the 810 km
flight path through the Earth’s crust.

In particular, NOvA measures the rates at which muon type
neutrinos and anti-neutrinos transform through the Pontecovo-
Maki-Nakagawa-Sakata (PMNS) oscillation process into elec-
tron type neutrinos and anti-neutrinos [9]. To make these
measurements, the data from the NOvA detectors are searched
for topologically distinct patterns that are indicative of a
neutrino interacting on a carbon or hydrogen nucleus. These
interaction events, once selected, are then analyzed based on
their measurable physical quantities such as electromagnetic
shower energy depositions, particle trajectories, nuclear breakup
activity, and other observable properties. The analysis of
these quantities is used to determine the quantum mechanical
identity and energy of the incident neutrinos in each interaction.
These ensembles of interactions are then in turn to make
measurements of the oscillation probability P (νµ → νe) and
survival probability P (νµ → νµ) for both neutrinos and anti-
neutrinos.

The difficulties inherent in performing this selection process
arise due to both the size and the complexity of the data.
The NOvA far detector’s real-time data acquisition systems
have produced approximately 1.94 PB of raw data, spread
over 16.8 million individual files, representing a collection
of over 22.6 billion candidate interaction events that have
been collected since its start of physics operations in 2013.
Each of these events is split based on its spatial and temporal
characteristics into regions of interest, colloquially referred to as
“slices,” which represent the candidate neutrino interactions. The
candidate event data is processed and distilled into a collection
of approximately 600 physics quantities which are derived
from algorithms that attempt to reconstruct the individual
particles, their characteristics, and trajectories. The derived
physics quantities are hierarchically organized within any given
slice based on the reconstructable subatomic particle content of
the interaction. Since neutrino-nucleus interactions can proceed
through many different nuclear interaction channels, the final

state topologies of these interactions can differ greatly from
interaction to interaction.

Historically these data have been analyzed and searched for
the interactions of interest through a sequential scan of each
event record in a file. The scans as originally implemented
could achieve parallelism down to the level of an individual file.
However, each data file in the NOvA beam dataset contains on
average 9k-12k candidate slices that need to be examined. Data
coming from the cosmic ray samples, which are recorded at a
rate 12 times higher than the beam data, contain on average
108k-144k candidates in each file. This results in an extra 5
orders of magnitude that could be exploited if the artificial
file-based organization was removed from the data analysis
chain. Moreover, the neutrino selection algorithms for the long
baseline analysis measurements perform a down-selection of
the dataset with a rejection ratio of O(109). This sequential
analysis approach has been used for the NOvA measurements
of electron neutrino (νe) appearance and electron anti-neutrino
(ν̄e) appearance, as well as for establishing new constraints on
neutrino mixing [10]–[12].

The NOvA experiment has performed measurements of elec-
tron neutrino and anti-neutrino appearance and muon neutrino
and anti-neutrino disappearance. The most recent results from
the NOvA collaboration [10] were a combined measurement
of all four interaction modes which were combined to provide
the world’s leading measurement of neutrino oscillations and
the first evidence for anti-electron neutrino appearance. These
results were produced using data selection that was run on a
collection of 172,029 files representing five years of data taken
between 2013 and April 2018.

B. Our Example Application

We have constructed a data parallel selection application
using the HEPnOS data service as a mechanism to eliminate
file transfers between computing processes and allow for
parallelism to be exploited down to the level of the individual
events. We did not exploit the greater slice-level parallelism
because we wanted to use the NOvA candidate selection code
that was used for the published analysis with modification only
to allow the parallelism. Since the operative code worked on
one event at a time, we limited our parallelization to the level
of the event.

For our demonstration of the HEPnOS data store we chose
a set of 1929 of the files that were used for the 2018 analysis.
These files represented approximately 4,359,414 triggered
readouts of the detector, and 17,878,347 candidate particle
interactions that would be examined in the analysis. This
represents roughly 1.1% of the full dataset that was used
in the NOvA 2018 analysis. We replicated these files 4 times
in order to simulate a larger sample for our scaling studies.

IV. EVALUATION

We have conducted a number of computational experiments
to compare the throughput of the candidate selection workflow
when using HEPnOS with the traditional file-based approach.
We define throughput as the number of slices per second



processed by the whole program (for the HEPnOS workflow)
or the whole set of processes (for the traditional file-based
workflow). We determine the throughput based on the measured
time between the start of data processing for the first rank
(HEPnOS) or process (file-based) and the end of data processing
for the last rank or process. We have focused on the speed with
which data can be read from an already-prepared data service.
We have studied the scalability with an increasing number of
nodes and also an increasing dataset size.

Both applications, and the workflows in which they are
used, have the same general structure. In each case, the data
need to be prepared in the appropriate fashion to be available
for reading by the application. The applications both use
process-level parallelism to read the data from the already-
prepared input. Each process reads a sequence of events; each
event is read by only one process, and all events are read by
some process. For each event, the relevant process iterates
through all the slices in the event. Each slice is inspected to
determine whether it is accepted or rejected based on whether
or not it appears to contain a neutrino interaction (i.e. it is a
neutrino candidate). The function used for this is part of the
CAFAna [13] library from the NOvA experiment. The IDs of
the accepted slices are accumulated so that we can assure that
the two applications have obtained the same results.

In our experiments, we measured the time taken to run the
applications. We did not measure the time needed to prepare
the data for reading because many of the important uses of
this sort of workflow involve reading the data multiple times;
it is the speed and scalability of this processing that is of
interest to the physicists. For the traditional workflow, we
did not include the time taken to concatenate the returned
results. This concatenation is not fully automated in the NOvA
workflow, and its inclusion would yield somewhat artificially
bad comparisons for the traditional workflow. For the HEPnOS-
based workflow this step is fully automated, and the time taken
is very small. In order to treat both applications similarly,
we also ignore the concatenation time in the HEPnOS-based
application.

A. Details of the traditional workflow

For the file-based workflow, we automated and parallelized
the procedure a physicist would follow to perform candidate
selection with the traditional code. The list of input files,
and their corresponding storage locations, to be analyzed was
specified as a list in a simple text file. This list is used as
input to the CAFAna analysis framework that executes the
routines that perform the actual selection of candidate events.
The configuration of the CAFAna framework is capable of
working upon a custom range of files through a starting and
ending line number in the aforementioned text file. In this
manner the full list of input files can then be decomposed into
blocks of work, and then subsequently scheduled in parallel
using the Python multiprocessing package. For each block
of work the program spawns an independent CAFAna routine
execution, which then operates sequentially on the analysis files
in that subrange block. The Python program is implemented

such that the decomposition of the analysis set into subranges,
and the scheduling of the work across compute resources
can be configured at runtime on a trial by trial basis. This
configuration is based on the number of compute nodes, number
of processes per node, number of files assigned to each process,
and the total number of files. In this manner decomposition
and execution of processes over the distributed resources is
automated but still requires the user to specify the runtime
topology. During execution, each independent routine performs
the event selection and writes the list of neutrino interaction
slices passing the selection to an independent text file. The
processes also measure the time taken to run over all the
specified files using std::clock calls and write the elapsed
time to a separate text file.

B. Details of the HEPnOS based workflow

The HEPnOS-based application uses MPI. Each rank uses
a ParallelEventProcessor to manage the work of
fetching events from the HEPnOS service, and to pass the
data to an event processing routine encapsulated by a C++
lambda expression. In this routine, the data are deserialized
to recover the NOvA classes which represent the event data.
The event is then given to the event-processing routine from
CAFAna. The lambda expression then returns the IDs of
the selected slices. An MPI reduction is then used to send
those slice IDs to rank 0, which writes them to a file after
the ParallelEventProcessor is executed. The timing
data are collected by recording in memory and for each
rank timestamps obtained from MPI_Wtime. After the event
processing is finished, we write these timestamps to a separate
file for each rank. The data are analyzed offline to determine
the time take to run each step of the process.

Before running the workflow, data needs to be ingested into
HEPnOS. For this work, we focused our effort on the HDF5
format because the data were available in this format. In these
HDF5 files, data is represented as a hierarchy of groups. Leaf
groups are named after the C++ class they store. Inside leaf
groups, products are stored in a set of 1-dimensional tables of
identical length. Three of these tables correspond to the run,
subrun, and event numbers. The rest of the tables correspond
to the values of individual member variables of the C++ class
being stored. For example an HDF5 file containing instances
of the Particle from Listing 1 would have six tables: run,
subrun, event, x, y, and z.

To simplify ingesting such files, we developed a program,
HDF2HEPnOS, which analyzes the structure of an HDF5
file, deduces the class name and its member variables, and
generates the C++ code of the corresponding class along with
functions to load and store instances to and from HDF5, and to
and from HEPnOS. This DataLoader can then be compiled
and run in parallel to ingest a number of files. It becomes
the first step of an HEP workflow, and the only step whose
scalability is constrained by the number of files. The next steps
of an HEPnOS-based HEP workflow can work at event and
product granularity, enjoying the parallelism and load-balancing
capabilities of HEPnOS’ high-level interface.



C. Software stack

We conducted our performance measurements on Theta at
the Argonne Leadership Computing Facility (ALCF). Theta
is a Cray XC40 machine that contains Intel Xeon Phi 7230
processors connected by a Cray Aries interconnect in a
dragonfly topology [14], [15]. The software stack used by
NOvA is based on Scientific Linux 6.5. This is a much older
operating system version than is used on Theta; for this reason,
we created a Docker image containing the NOvA code, which
could be deployed using Singularity on Theta. Using the same
container image that contains the traditional NOvA application
as a base image, we used the Spack package manager [16]
to install an environment containing HEPnOS and all of its
dependencies. We did this to ensure that the HEPnOS-based
application was built with a consistent set of libraries. We made
a native build (not in our image) on Theta of the same source
code version of HEPnOS. This version was used to run the
servers outside of the container while the client processes were
run inside the container. We used an installation of libfabric
[17] with the user-space Generic Network Interface (uGNI) [18]
fabric to harness the full potential of networking bandwidth
afforded by the Cray Aries interconnect on Theta. We injected
the directories containing the installations of HEPnOS and
libfabric (along with other packages required by them) into the
container to enable the client nodes to use the same transport
protocols. Finally, we used protection domains (provided by
the Cray ALPS job manager [15]) to ensure that the client and
server were able to communicate.

All the container images used in this work are publicly
available via the Dockerhub repository organization heponhpc6.
The Docker image is converted into a Singularity image suitable
for use at many HPC facilities.

D. Experimental setup

For both the traditional and HEPnOS-based workflows, we
are interested in measuring how quickly a given dataset can
be processed, using a given allocation of computing resources
(nodes on Theta). We do this for a few different sizes of the
dataset, and for a variety of sizes of allocated resources. For
the traditional workflow, the different size datasets are reflected
as different numbers of files being processed. For the HEPnOS
workflow this is reflected by different numbers of events being
loaded into the data service. We use the same datasets for both
the traditional and HEPnOS-based experiments. The dataset
sizes were 4,359,414, 8,718,828, and 17,437,656 events. The
resource allocations we used varied from 8 nodes to 256 nodes.

For the traditional workflow, the datasets corresponded to
1929, 3858, and 7716 files. For each job, we were able to
specify the number of nodes and cores per node to use via
the Python multiprocessing script, itself executed via the
aprun command. This approach could not take advantage of
MPI or multithreading. In this workflow, all the nodes were

5https://scientificlinux.org/
6https://hub.docker.com/u/heponhpc

used, but for the larger resource allocations, not all cores on
each node could be used.

For the HEPnOS experiment, we allocated one of every 8
nodes to run the HEPnOS services, and the remaining nodes
were used to run the client application processes. Both the
HEPnOS service and the client application are MPI applications
launched with the Cray aprun command. The flexibility
resulting from the component design of HEPnOS allowed us
to tune (partially automatically) the parameters that configure
it.

When using the std::map backend, we used 1 MPI
rank per node and each rank was given access to 64 cores.
When using the the RocksDB backend, we used 16 MPI
ranks per node, each rank was given access to 4 cores.
Hyperthreading was disabled for all the runs. For each
HEPnOS process, bootstrapped via their Bedrock component,
we used 16 Argobots execution streams for handling RPCs
(rpc-xstreams). Each HEPnOS process uses 16 Yokan providers,
each mapped to its execution stream to avoid competing
for access by multiple execution streams and to improve
memory locality. These providers were serving data from
8 event databases and 8 product databases. In the clients, the
ParallelEventProcessor application was configured so
that events are loaded from HEPnOS by a subset of processes
in batches of 16384 events (to produce fewer RPCs but with
a large data transfer payload), then shared among processes
in batches of 64 events (to enable fine-grain load-balancing
once events are loaded into worker memory). For a single
instance of the HEPnOS server, we use 16 Argobots user-
level threads (hereafter ULTs) [4]. This configuration meant
that the execution streams were oversubscribing the 4 cores
assigned to the instance when using the RocksDB backend.
These 16 Argbotos ULTs and execution streams are used to
run 8 event and 8 product databases (together classified as
“bedrock” providers). The loader MPI ranks fetch products in
bulk from the HEPnOS servers and also send these products
to the worker MPI ranks in bulk. Finally, we ran experiments
using both in-memory storage and RocksDB writing to local
SSD for Yokan.

All the experimental data was loaded using same number of
client nodes used for the particular scaling run. This was
necessary because the number of server nodes change in
accordance with the number of client nodes (1 server node
for every 7 client ndoes), thereby preventing us from reusing
servers created for different scaling runs.

E. Results

We first consider the strong scaling behavior of the three
workflows (traditional file-based, HEPnOS using RocksDB,
and HEPnOS using in-memory storage). We used the largest
(7716 file, 17,437,656 event) data sample. We varied the
resource allocation from 16 nodes to 256 nodes, selecting
configuration parameters for the workflow that obtained the
best performance. We ran each experiment several times to
obtain an estimate of the spread of running times. We have
different numbers of runs because some attempted runs resulted

https://scientificlinux.org/
https://hub.docker.com/u/heponhpc


in crashes caused by failures apparently due to oversaturation of
the injection bandwidth of the Aries NIC [15]. This prevented
the re-use of servers between runs, thereby causing us to setup
and shutdown a server instance for each run. 7 Figure 2 shows
the throughput we measured as a function of the number of
nodes used in the processing.
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Fig. 2. Plot illustrating the throughput (in slices processed per second) as
a function of the total number of nodes used for processing the data using
the existing traditional workflow and the HEPnOS based workflows. The
performance of the HEPnOS based workflow is superior across all the different
number of nodes used. The dots have been jittered to reduce over-plotting.

The figure shows that HEPnOS, whether using the in-memory
and RocksDB backend, performs better than does the file-based
workflow. Comparing the in-memory and RocksDB versions
of HEPnOS, we see that at the smaller node counts use of the
RocksDB backend does not cause any inefficiency. However, as
the node count increases beyond 32 nodes we see an increasing
cost. At higher node counts the in-memory back-end achieves
up to twice the throughput. With the in-memory backend
the HEPnOS based workflow achieves 85% strong scaling
efficiency at 128 nodes. For the kinds of real physics analysis
for which this sort of system would be used, the amount of
computing resources to be allocated would be determined by
the calculations to be performed after the candidate selection
was done. For realistic problems, it will almost always be the
case that the dataset would fit in the memory available on those
resources. We note that the size of the dataset used in these
tests is less than 5% of the full dataset used in the related
NOvA analysis. The dataset for this analysis is smaller than
those used in many other NOvA analysis tasks. Comparing
the HEPnOS in-memory performance with the traditional file-
based performance, we observe that the file-based application
is scaling poorly especially after 64 nodes at which point the
number of cores outnumbers the number of file to process.

7In communication with the ALCF staff, we were told that this is a failure
most often seen in the running of benchmark applications, but rarely seen in
applications.

Finally, we consider the throughput as a function of the
dataset size, for a fixed computing resource allocation size.
This is shown in figure 3. We use the 128 node allocation
because, due to techincal issues with the scripts handling the
file-based workflow, we were unable to execute that workflow
using 256 nodes on the 1929 file data sample. We see that, for
the file-based workflow, performance is especially poor for the
smaller datasets. This is because, for the smaller datasets, there
are not enough files to keep all the cores on the allocated nodes
busy. For the 1929 file sample, for example, only 24% of the
cores are busy. It also produces imbalance: even when using
as many processes as files, the duration of the application will
be determined by the duration taken to process the largest file.
This effect is greatly lessened in the HEPnOS workflow. While
in the file-based workflow the size of a “batch” of events to be
processed is determined by the file contents, in the HEPnOS
workflow the size of the batch is a tunable parameter. The
tuning that was done to optimize the throughput resulted in
some residual load-balancing inefficiency.
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Fig. 3. Plot illustrating the throughput of the traditional workflow compared
to the HEPnOS based workflow for varying sizes of datasets using 128 nodes.
We see that constraints set by the performance of the parallel file system
hamper the throughput achieved by the traditional based workflow for smaller
data-sets. The dots have been jittered to reduce over-plotting.

V. RELATED WORK

User-space data services tailored to specific applications have
emerged in the past few years to replace or supplement parallel
file systems. In situ and in transit analysis systems [19] are
examples of such services which aim to provide data analysis
and visualization capabilities for HPC simulations without in-
volving the file system. Storage services aim to leverage storage
capacity available on compute nodes (usually SSDs or memory)
during the execution of an application [2]. Some of these
storage services provide a familiar file system interface (e.g.
POSIX) while relaxing some constraints on consistency that
parallel file systems usually impose. UnifyFS [20], CHFS [21],
and GekkoFS [22] are examples of such services. Other services



have seen their interface tailored to specific application use-
cases. DataSpaces [23], for example, provides a N-dimentional
data model for coupling parallel applications in workflows.
Chumbuko [24] and SEER [25] respectively use a document-
storage and a key/value-storage model to store performance
data. Services like DAOS [26] provide a distributed file-system
interface on top of storage-class memory, but also a lower-
level object-store interface that applications can tailor to their
particular needs.

Overall, HEPnOS adds to a long line of works that shows
how moving from the traditional parallel file systems to user-
space data services can be advantageous to HPC applications.

While the present paper is the first to introduce HEPnOS in
use for its intended purpose, HEPnOS has been used throughout
its development by other teams to study various aspects of
data services, including work on monitoring and performance
diagnostics [5] and AutoML-based autotuning [6]. The former
helped diagnose performance problems in early development of
HEPnOS and led to some of the optimization listed in this work
(batching, parallel event processing). The latter helped us select
and optimize relevant parameters (number of databases, batch
sizes, etc.) in the present work. An early design of HEPnOS
was used to evaluate the potential for storage rescaling [27],
a technique that could further improve HEPnOS’s potential
by allowing users to add and remove storage resources to
it while HEP applications are using it. We expect further
performance improvements in HEPnOS to come out of all
these collaborations.

VI. CONCLUSION

In this work we have demonstrated that a distributed data
service, such as HEPnOS, can be built using the Mochi
methodology and components. Such a service can be tuned
to yield better performance on HPC resources than achieved
by a traditional file-based HEP workflow. We have used a
comparatively simple workflow from a current HEP experiment,
NOvA, to do this. The improvement is largely due to better,
and more tunable, load balancing of the resource usage. The
demonstrated neutrino selection problem exhibits this behavior,
but the imbalances it displays are small relative to other analysis
problems, such as high resolution digital signal processing and
particle trajectory fitting which are common throughout the
HEP neutrino science space.

Current event-processing workflows used by all HEP
experiments use the file-based data distribution paradigm.
Most of the dominant workflows in terms of computational
loads, that are run by experiments are vastly more complex
than the candidate selection example presented here. These
workflows, due to their complexity, multi-stage natures, and
data interchange techniques usually have greater I/O loads
and exhibit large (multi-order of magnitude) spreads in the
time taken to process individual events. This results greater
runtime load imbalances for these complex workflows than
our sample workflow which has near uniform execution time
per event, since the combination of non-uniform file sizes and
content is compounded with highly non-uniform computational

algorithms that the complex workflows are executing. The load
balancing advantage available through a distributed data service
will be even more valuable to these complex workflows and
will permit the averaging out of outliers in the computational
distributions.

Each HEP experiment uses a framework for constructing its
complicated event simulation and event processing workflows.
The designs of these frameworks interfaces to their I/O layers
will need to change in many cases to take full advantage of a
distributed data store and realize the full performance potential
of the data store. In future work we will evaluate the advantages
of the use of HEPnOS in a much more complete HEP workflow
using one of these frameworks.
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