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Abstract—As computing system become more complex com-
bining CPUs and GPUs, it is becoming harder and harder for
programmers to keep their codes optimized as the hardware
gets updated. Autotuners try to alleviate this by hiding as many
architecture-based optimization details as possible from the
end-user, so that the code can be used efficiently across different
generations of systems. Several autotuning frameworks have
emerged, but a comparative analysis between these related
works is scarce, owing to the significant manual effort required
to port a tunable kernel from one tuner another.

In this article we introduce a new benchmark suite for
evaluating the performance of optimization algorithms used by
modern autotuners targeting GPUs. The suite contains tunable
GPU kernels that are representative of real-world applications,
allowing for comparisons between optimization algorithms and
the examination of code optimization, search space difficulty,
and performance portability. Our framework facilitates easy
integration of new autotuners and benchmarks by defining a
shared problem interface.

Our benchmark suite is evaluated based on five char-
acteristics: convergence rate, local minima centrality, opti-
mal speedup, Permutation Feature Importance (PFI), and
performance portability. The results show that optimization
parameters greatly impact performance and the need for global
optimization. The importance of each parameter is consistent
across GPU architectures, however, the specific values need to
be optimized for each architecture.

Our portability study highlights the crucial importance of
autotuning each application for a specific target architecture.
The results reveal that simply transferring the optimal con-
figuration from one architecture to another can result in a
performance ranging from 58.5% to 99.9% of the optimal per-
formance, depending on the GPU architecture. This highlights
the importance of autotuning in modern computing systems
and the value of our benchmark suite in facilitating the study
of optimization algorithms and their effectiveness in achieving
optimal performance for specific target architectures.

Keywords-autotuning, benchmarking

I. INTRODUCTION

As computers have become more advanced in recent
decades, there has been a significant increase in their
complexity. Central Processing Units (CPUs) still form the
core of modern computers, but we have seen a growing
use of accelerators like Graphics Processing Units (GPUs)
and co-processors to improve efficiency and performance.
These accelerators can be highly effective, but they can
also make the task of optimizing programs for performance
increasingly difficult.

New data centers and many of the world’s top supercom-
puters, such as the Top500 systems, have increasingly relied
on High-Performance Computing (HPC) systems that use a
combination of CPUs and GPUs [1]. These heterogeneous
systems can make code optimization a challenging task, as
the architectures of the different components change rapidly.

To make programs run efficiently on these systems,
programmers in computer science and related fields spend
considerable efforts in optimization [2]. However, as the
complexity of these systems grows, the task of under-
standing how all the system components interact becomes
increasingly complex. To address this, analytical methods
such as compiler optimization are used to understand the
systems and turn that knowledge into rules for optimizing
programs. These rules can modify large chunks of code
without changing the semantics of the program, but they
can also contain heuristics that may not always lead to the
optimal solution.

As architectures are constantly evolving and different, a
heuristic-based rule cannot always generalize well to the
entire system. In these cases, empirical methods which
search for the optimal solution through trial and error can
be used, this is called autotuning.

One of the main consideration when developing such
solutions is to hide as many architecture-based optimization
details as possible from the end-user, so that the code can
be used efficiently across different generations of systems.
The goal is to provide easy-to-use libraries and APIs that
enable developers to write code that runs well on different
systems without having to understand the intricacies of each
system’s architecture.

In recent years, several studies have been conducted
that present advancements in optimization algorithms for
autotuning [3]. Despite this, comparative analysis between
related works is scarce, owing to the significant manual
effort required to porting a tunable kernel from one tuner
another. In order to effectively study the performance of op-
timization algorithms for autotuning, as well as to facilitate
comparisons between optimization algorithms implemented
in different tuners, it is necessary to have a benchmark suite
that is compatible with all of these tuners.

Existing benchmark suites, such as Rodinia [4],
SHOC [5], PolyBenchGPU [6], are not suitable for this
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purpose as they are not tunable. They typically have hard-
coded thread block dimensions, but even worse, the code is
often written with assumptions that the block dimensions,
parallelizations, and amount of work per thread will never
change. Furthermore, in many cases, the hardcoded numbers
are directly dependent on the input problems, which are
often unrealistically small for modern GPUs. As a result,
tuning these codes requires extensive modifications.

Earlier attempts at creating tunable benchmark suites [7],
[8] are limited regarding studying the effectiveness of op-
timization algorithms. The benchmark suite from Petrovič
et al. [7] only supports one tuning framework, while the
optimization parameters in Sund et al. [8] have limited
performance impact.

The "BAT 2.0" benchmark suite aims to stimulate autotun-
ing research by offering a set of tunable kernels that are rep-
resentative of those used in various real-world applications,
such as machine learning, image processing, astrophysics,
thermal modeling, microscopy, geospatial information sys-
tems, and radio astronomy.

This benchmark suite facilitates for comparisons between
optimization algorithms from different autotuners by provid-
ing a standardized problem interface for both the autotuners
and benchmarks. The benchmark suite provides general
configuration space and kernel handler classes providing for
easy integration towards Optuna [9], SMAC3 [10], Kernel-
Tuner [11], KTT[7] as well as our own basic reference tuner.
This enables the study of code optimization effectiveness,
search space difficulty, performance portability, and more.
With the creation of this benchmark suite, researchers can
now investigate key questions about code optimization,
search space, and performance portability.

II. BACKGROUND

GPUs were originally designed for fast processing of
graphics, but they have also been found to be effective
accelerators for parallelizable AI and computational science
workloads. After their programming environments facilitated
using them as General Purpose GPUs (GPGPUs) to speed up
a variety of scientific computations, they are now a key com-
ponent in many of the world’s largest computing clusters.
The optimization workload running on GPU architectures
is thus important for a range of fields beyond video game
graphics.

A. Performance Portability

Relative performance* can vary greatly across different
hardware platforms, even if a program functionally behaves
the same on all of them. A problem configuration that runs
well on one GPU may perform poorly on another GPU.
When writing high-performance software, it is essential to
utilize the hardware as efficiently as possible. One solu-
tion to this is to use libraries like ATLAS [12], which

*performance of a code compared to peak performance of hardware

automatically tunes its configuration based on the executing
hardware. This can avoid the manual effort of finding the op-
timal configuration for every hardware platform. FFTW [13]
also used a similar self-tuning approach to optimize its fast
Fourier transforms.

We can measure how portable these configurations are by
finding the optimal configurations for our target platforms
and then examine the relative performance of these optimal
configurations on other systems. We can thus analyze how
sensitive the configurations are to platform changes and
how large the relative performance differences are between
different architectures.

B. Analysing characteristics of benchmarks

1) Feature importance: Feature importance in ML is a
technique to identify influential features of a dataset on a
model’s outcome [14]. Different methods compute feature
importance, e.g. permutation importance, feature impor-
tances from tree-based models, LASSO, etc. These methods
quantify feature importance to understand a dataset’s char-
acteristics, identify redundant/irrelevant features, and guide
feature selection. The feature importance scores express the
dataset’s characteristics and the contribution of each feature
to the model’s performance.

In this study, we use Permutation Feature Importance
(PFI) to evaluate feature importance. PFI measures a model’s
performance decrease when a feature’s values are shuffled
to understand the feature’s importance. We calculate PFI by
training a Catboost [15] Regression model on the original
dataset, shuffling each feature’s values, retraining the model,
and comparing the original and shuffled dataset’s perfor-
mance metric. The PFI score for each feature is the differ-
ence between the two. PFI helps identify important features
for a model’s performance and can detect multicollinearity
among features to prevent overfitting and unstable models.

2) Proportion of Centrality metric: The proportion of
centrality metric introduced by Schoonhoven et al. [3] is a
way to quantify the difficulty of GPU tuning. It is based
on the concept of the fitness flow graph (FFG), which
contains all points in the search space and creates a directed
edge to a neighboring point if the neighbor has lower
fitness. This means that a random walk across the FFG
mimics the behavior of a randomized first-improvement local
search algorithm. The expected proportion of arrivals of each
minimum then gives a metric for weighting reachability of
each minimum. The likelihood of arrival per local minima
is computed using the PageRank node centrality, which was
originally used to determine the relevance of a webpage.
The PageRank values are the values of the dominant right
eigenvector of the adjacency matrix of a directed graph G,
rescaled such that each column adds up to 1. The metric
is a measure of difficulty, it considers how likely a certain
subset of "suitably good" local minima are to be visited by
a local search algorithm relative to the rest. This subset is
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defined by the optimal fitness and the proportion p, taking
the set of nodes consisting of local minima with fitness
less than (1+ p) fopt for minimization problems, otherwise
(1− p) fopt .

III. RELATED WORK

In the field of autotuning, the most relevant prior work in-
cludes the benchmark suite developed by Petrovič et al. [7],
Polybench-GPU [6], and Sund et al. [8]. However, these
benchmark suites have issues that limit their usefulness.
The benchmark in PolyBench-GPU has small search spaces,
ranging from 116 to 725 different possible configurations,
which would fall below our threshold for an interesting
autotuning study as many real-world applications have much
larger search spaces. The benchmark suite from Petrovič et
al. only supports a single autotuning framework, while the
optimization parameters in the benchmark suite by Sund
et al. have limited performance impact. To address this
issue, we have selected benchmarks with larger and more
interesting search spaces for this new version of BAT, and
also added several new benchmarks that meet our criteria.
These benchmarks all give significant speedups, with the
performance of the optimal configurations significantly vary-
ing between different systems.

For other related works, the Collective Knowledge frame-
work (CK) developed by Fursin et al. [16] offers a more
generalized approach to benchmarking and reproducibility.
In the area of Hyperparameter Optimization (HPO) several
benchmark suites have been developed, such as the high-
dimensional HPO benchmark suite [17], LassoBench [18],
and HPOBench [19].

IV. BENCHMARKS

A. GEMM

Generalized dense matrix-matrix multiplication (GEMM)
is part of the BLAS linear algebra specification, and is one
of the most widely-used GPU kernels. The GEMM kernel
included in BAT is from CLBlast [20], a tunable OpenCL
BLAS library. GEMM implements the multiplication of two
matrices, A and B:

C = αA ·B+βC

where α and β are scalars and C is the output matrix.
The CLBlast GEMM kernel is tunable with the parameters
shown in Table I. MWG and NWG control the amount of work
assigned to each thread block. MDIMC and NDIMC describe
the size of thread block, while MDIMA and MDIMB control
shared memory usage, VWM and VWN are the vector widths
used for loading from and storing to global memory, and SA
and SB enables or disables the use of shared memory for
elements in A and B.

Table I: Tunable parameters – GEMM kernel in BAT.

Parameter Values #

MWG {16, 32, 64, 128} 4
NWG {16, 32, 64, 128} 4
MDIMC {8, 16, 32} 3
NDIMC {8, 16, 32} 3
MDIMA {8, 16, 32} 3
NDIMB {8, 16, 32} 3
VWM {1, 2, 4, 8} 4
VWN {1, 2, 4, 8} 4
SA {0, 1} 2
SB {0, 1} 2

B. N-body

The N-body kernel computes gravitational forces between
N bodies, typically applied in astrophysical simulations. The
N-body kernel in BAT was created by Petrovič et al. for
use in KTT [7], as a tunable implementation of the code
sample from the CUDA SDK. The N-body kernel follows a
simple quadratic scheme where the forces between all pairs
of bodies are computed every iteration. As such, the kernel
is very compute intensive.

The tunable parameters for the N-body kernel in BAT
are shown in Table II. The inner loop unroll factor pa-
rameters determine the degree to which partial loop un-
rolling is applied for various loops in the kernel. The
outer_unroll_factor controls the amount of work
allocated to each thread. The use_soa parameter specifies
whether the input bodies are stored in an array of structures
or a structure of arrays. local_mem enables or disables
the use of shared memory as a software managed cache.
vector_type is to control the number of elements loaded
from memory in one instruction.

Table II: Tunable parameters – Nbody kernel in BAT.

Parameter Values #

block_size {64, 128, 256, 512} 4
outer_unroll_factor {1, 2, 4, 8} 4
inner_unroll_factor1 {0, 1, 2, 4, 8, 16, 32} 7
inner_unroll_factor2 {0, 1, 2, 4, 8, 16, 32} 7
use_soa {0, 1} 2
local_mem {0, 1} 2
vector_type {1, 2, 4} 3

C. Hotspot

The Hotspot kernel included in BAT is based on the
Hotspot kernel in the Rodinia Benchmark suite [4]. The
kernel is part of a thermal simulation application used to
estimate processor temperature based on processor architec-
ture and simulated power currents. The kernel iteratively
solves a series of differential equations. The kernel inputs
are the power and initial temperatures, the output is a grid
of average temperature values spanning the chip.
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To simplify the indexing scheme and increase the tun-
ability of the kernel, we have re-implemented the Hotspot
kernel in Rodinia from scratch. The main difference of our
implementation with that of Rodinia is that our kernel can be
used with any thread block dimension, can arbitrarily vary
the amount of work per thread, and vary the extent to which
temporal tiling is applied.

The tunable parameters for the Hotspot kernel in BAT are
shown in Table III. block_size_x and block_size_y
describe the thread block dimensions in x and y, the kernel
uses at least 32 and at most 1024 threads. tile_size_x
and tile_size_y control the number of output ele-
ments computed by each thread in the x and y dimen-
sions. temporal_tiling_factor is the number of
iterations of the stencil operation performed by a single
kernel launch, for more details on the temporal tiling
optimization see Hijma et al. [2]. sh_power enables or
disables the use of shared memory as a cache for storing
the input power currents. blocks_per_sm is used in the
__launch__bounds() directive in CUDA to hint the
compiler to aim for a certain occupancy when running the
kernel, effectively this optimization encourages the compiler
to decrease register usage in the kernel.

Table III: Tunable parameters – Hotspot kernel in BAT.

Parameter Values #

block_size_x {1,2,4,8,32n | 32n ∈
[32,1024]}

37

block_size_y {1, 2, 4, 8, 16, 32} 6
tile_size_x {n | n ∈ [1, 10] } 10
tile_size_y {n | n ∈ [1, 10] } 10
temporal_tiling_factor {n | n ∈ [1, 10] } 10
loop_unroll_factor_t {n | n ∈ [1, 10] } 10
sh_power {0, 1} 2
blocks_per_sm {0, 1, 2, 3, 4} 5

D. Pnpoly

Pnpoly (Point-in-polygon) kernel is used by Goncalves et
al. [21] as part of a geospatial database system for massive
point clouds obtained through airborne LiDAR. The kernel
is used to query all points within a certain outline, for
example points on highways or all points within a city.
Pnpoly has been used as a benchmark kernel for autotuning
in several studies [3], [22]. However, the Pnpoly kernel in
BAT includes only the GPU kernel of the full GPU-enabled
database operator.

The tunable parameters of the Pnpoly kernel in BAT are
listed in Table IV. block_size_x is simply the number
of threads per block. tile_size the amount of points
processed by each thread. between_method selects the
algorithm to use to see if a point lies between two other
points. Similarly, use_method selects the algorithm that
is used to keep track of whether the evaluated point is inside
or outside of the polygon.

Table IV: Tunable parameters – Pnpoly kernel in BAT.

Parameter Values #

block_size_x {32n|32n ∈ [32,1024]} 31
tile_size {1,2n|2n ∈ [2,20]} 11
between_method {0,1,2,3} 4
use_method {0,1,2} 3

E. Convolution

Van Werkhoven et al. [23] have implemented an optimized
and highly-tunable GPU-accelerated library for 2D Con-
volution operations, which has become a commonly used
benchmark in autotuning [3], [7], [24], [25].

A convolution operation computes a linear combination
of weights and a range of the input image for each output
pixel. A 2D convolution of an input image I of size (w×h)
and a convolution filter F of size (Fw×Fh) computes an
output image O of size ((w−Fw)× (h−Fh)):

O(x,y) =
Fh

∑
j=0

Fw

∑
i=0

I(x+ i,y+ j)×F(i, j)

The tunable parameters of the Convolution kernel
in BAT are listed in Table V. block_size_x and
block_size_y describe the thread block dimensions,
tile_size_x and tile_size_y the number of output
pixels processed by each thread in the x and y dimensions.
use_padding controls whether or not to use the padding
scheme in shared memory that is used to avoid shared mem-
ory bank conflicts as described in Van Werkhoven et al. [23].
Padding is only significant when the block_size_x is not
a multiple of number of memory banks in shared memory.
Finally, read_only controls whether or not to load input
elements from global memory through read-only cache.

Table V: Tunable parameters – Convolution kernel in BAT.

Parameter Values #

block_size_x {1, 2, 4, 8, 16, 32, 48, 64,
80, 96, 112, 128}

12

block_size_y {1,2,4,8,16,32} 6
tile_size_x {1,2,3,4,5,6,7,8} 8
tile_size_y {1,2,3,4,5,6,7,8} 8
use_padding {0,1} 2
read_only {0,1} 2

F. Expdist

The Expdist kernel is part of a localization microscopy
applications that implements a template-free particle fusion
algorithm by combining many different observations into
a single super-resolution reconstruction [26]. The expdist
kernel is used as part of the registration process where the
kernel is called repeatedly to quantify the registration of two
particles. The distance between two particles t and m, given
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registration M, is computed as follows:

D =
Kt

∑
i=1

Km

∑
j=1

exp
(
−
‖~xt,i−M(~xm, j)‖2

2σ2

)
The kernel operates directly on the individual localizations
(~xt and ~xm) in each particle rather than pixelated images and
takes the uncertainties in the localizations (σ) into account.
The algorithm is quadratic in the number of localizations
per particle and is as such very compute intensive.

The tunable parameters used in the ExpDist kernel are
shown in Table VI. The kernel supports two main implemen-
tations that are controlled by the use_column parameter.
When use_column is set to 1, the kernel reduces the
number of thread blocks used to perform the computation by
using a fixed number of thread blocks in the y dimension, set
by n_y_blocks. use_shared_mem use shared memory
selects the way in which shared memory is used.

Table VI: Tunable parameters – ExpDist kernel in BAT.

Parameter Values #

block_size_x {32, 64, 128, 256, 512,
1024}

6

block_size_y {1, 2, 4, 8, 16, 32} 6
tile_size_x {1, 2, 3, 4, 5, 6, 7, 8} 8
tile_size_y {1, 2, 3, 4, 5, 6, 7, 8} 8
use_shared_mem {0, 1, 2} 3
loop_unroll_factor_x {1, 2, 3, 4, 5, 6, 7, 8} 8
loop_unroll_factor_y {1, 2, 3, 4, 5, 6, 7, 8} 8
use_column {0, 1} 2
n_y_blocks {1, 2, 4, 8, 16, 32, 64, 128,

256, 512, 1024}
11

G. Dedispersion

The Dedispersion kernel in BAT originates from the AM-
BER pipeline for the detection of single pulse astronomical
transients [27]. Dedispersion is the process of reverting the
dispersion of a radio signal transmitted over many frequen-
cies through space. The signal component with the highest
frequency fh is received at time tx, while simultaneously
emitted components with lower frequency arrive at tx + k,
where k is the delay in seconds as by the dispersion equation:

k ≈ 4150×DM×
(

1
f 2
i
× 1

f 2
h

)
The kernel takes samples in time across many frequency

bands (channels) as input and outputs the dedispersed sam-
ples for many different dispersion measure DM values. The
kernel is parallelized such that each thread can work on
multiple samples and dispersion measures, while iterating
over the frequency bands. As input for the BAT Dedispersion
kernel, we are using the parameters from the ARTS survey
on the Apertif telescope [28], which uses a sampling rate of
24.4 KHz, 2048 DMs, and 1536 channels.

The tunable parameters of the dedisper-
sion kernel are shown in Table VII. The

loop_unroll_factor_channel parameter depends
on the input, as any divisor of the number of channels
can be used as a partial loop unrolling factor for the inner
loop in the kernel. When the loop unroll factor is 0, it
is left to the CUDA compiler to decide whether or not
to apply loop unrolling. tile_stride_x controls the
stride used to vary the amount of work per threads. When
tile_stride_x is 0 and tile_size_x is larger
than 1, threads will process tile_size_x consecutive
samples, when tile_stride_x is 1 threads will process
tile_size_x samples that are each block_size_x
apart in the input. tile_stride_y works similarly but
for dispersion measures in the y-dimension.

Table VII: Tunable parameters – Dedispersion kernel in
BAT.

Parameter Values #

block_size_y {1,2,4,8,16n | 16n ∈
[16,512]}

36

block_size_y {4n | 4n ∈ [4,128]} 32
tile_size_x {n|n ∈ [1,16]} 16
tile_size_y {n|n ∈ [1,16]} 16
tile_stride_x {0, 1} 2
tile_stride_y {0, 1} 2
loop_unroll_factor_channel {0, 1, 2, 3, 4, 6, 8, 12, 16,

24, 32, 48, 64, 96, 128,
192, 256, 384, 512, 768,
1536}

21

blocks_per_sm {0, 1, 2, 3, 4} 5

V. EXPERIMENTAL DESIGN

A. Benchmarks, Hardware and Runtime Environment

We ran our benchmarks on four different systems with
four different Nvidia GPUs. These GPUs include the RTX
2080Ti, RTX 3060, RTX 3090 and RTX Titan. For the
Pnpoly, Nbody, GEMM and Convolution benchmarks we
performed an exhaustive search of the entire search space.
For the Hotspot, Dedisp and Expdist benchmarks our results
are based on 10 000 random configurations from the search
space for each architecture.

VI. RESULTS AND DISCUSSION

A. Distribution of configurations

Fig 1 shows the distribution of configurations centered
around the median performing configuration. The plot ex-
tends from the worst to the best configuration. The first thing
to observe is that the distribution shapes are significantly
different between the different benchmarks, but similar in
shape across GPUs (this agrees with results observed in other
benchmark sets [29]). Most of the benchmarks have a high
density of configurations around the median and then ex-
ponential decay toward the best-performing configurations.
The Hotspot benchmark in Fig. 1b is an outlier among
the benchmarks, with a high density around the median
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(a) GEMM (b) Hotspot (c) Dedisp

(d) Convolution (e) Pnpoly (f) Nbody (g) Expdist

Figure 1: Performance distribution of configuration for all benchmarks on all architectures

configurations, but a cluster of very highly performing
configurations giving more than 10x speedup. The Nbody
distribution in Fig. 1f also shows a distinct high-density
cluster of configurations that perform very poorly.

B. Convergence towards optimum using Random Search
Fig. 2 shows the convergence to the optimum configura-

tion with relative performance (y-axis) plotted against the
number of function evaluations on a Symmetric Log scale
(linear scale from 0 to 1). Results are from random sampling
100 times from exhaustive or partial runs, with the median
of the best evaluation plotted.

We can observe that there is a significant variance in
the convergence between benchmarks, while there is less
difference between GPUs. Again the Hotspot benchmark
in Fig. 2b is a clear outlier, with Random Search quickly
approaching a performance that is close to optimal. We
stipulate that this is the due to the size of the high performing
cluster shown in Section VI-A. This cluster is likely of a
sufficient size such that random search can quickly find a
solution in this cluster, which is then close to optimal.

There are also significant differences in how quickly the
other benchmarks converge towards the optimal. Expdist
in Fig. 2g and Nbody in Fig. 2f achieve a 90% optimum
performance after just 10 function evaluations. For Dedisp
(Fig. 2c) and PnPoly (Fig. 2e) it takes around 100 evalua-
tions to reach the same level. We can also see here how for
the RTX Titan the PnPoly benchmark shows how a single
highly performing configuration can be the source of the
final jump in relative performance.

Lastly Convolution (Fig. 2d) and GEMM (Fig. 2a) require
hundreds of configurations to exceed 90%.

C. Proportion of centrality
We are using the proportion of centrality metric proposed

by Schoonhoven et al. [3] to calculate the search difficulty
of the benchmarks.We did not have sufficient resources to
calculate the metric for the benchmarks with the largest
search spaces, incl. Hotspot, Dedisp and Expdist. The results
are shown in Figure 3. The results indicate that local
search algorithms will generally find better performing con-
figurations on the Convolution benchmark compared with
GEMM and Pnpoly, which are comparatively more difficult
benchmarks under this metric. This is in contrast to the
results from our Random Search results, where all three
benchmarks have similar trajectories towards the optimum.

D. Max speedup over Median
Fig. 4 shows the speedup between the Median perfor-

mance configuration of the search space and the best pos-
sible configuration found. While most of the benchmarks
have speedups between 1.5 - 3.06x, outliers like the Hotspot
benchmark have very significant speedups from 11.12 -
11.97x.

E. Performance Portability
We can analyze the performance portability of configu-

rations to measure the degree to which configurations are
specifically optimized for each architecture. In Fig. 5 we
show the relative performance compared with the optimal
configuration for each architecture as the optimal configura-
tions are transferred to the other architectures. The direction
for this transfer is described by the optimal configuration
for the GPU labeled in each row, being transferred to the
different GPUs labeled on each of the columns.

6



(a) GEMM (b) Hotspot (c) Dedisp

(d) Convolution (e) PnPoly (f) Nbody (g) Expdist

Figure 2: Convergence towards optimum for all benchmarks on all architectures

(a) GEMM (b) Convolution (c) Pnpoly

Figure 3: Proportion of centrality for all benchmarks on all architectures

Figure 4: Max speedup over Median configuration

In Fig. 5b we plot the portability for PnPoly. This shows
that configurations are very portable between the RTX 3060
and RTX 3090, however configurations optimized for the

RTX 3090 transfer poorly to the RTX Titan (58.5% of opti-
mal) and the 2080Ti (67.1%). Similarly for the Convolution
benchmark in Fig. 5a the optimal configuration for the RTX
3060 transfers poorly to the RTX 2080Ti (73.3%) and RTX
Titan (75.0%).

F. Feature importance

To assess the importance of the different search param-
eters for the benchmark’s objective, we train a Catboost
Regression model over the dataset and analyze this model
to investigate which features it finds useful for prediction.
We use Permutation Feature Importance to then analyze
the impact of each individual parameter on the model’s
predictive power.

Training the model on the datasets the majority of the
benchmarks and GPUs that use our CatBoost model is able
to predict the performance of different configurations very
precisely, with an R-squared score from 0.992 and upwards
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(a) Convolution (b) Pnpoly (c) Nbody

Figure 5: Performance portability for exhaustively searched benchmarks on all architectures

(a) GEMM

(b) Nbody (c) Hotspot

(d) Convolution (e) Pnpoly (f) Dedisp

(g) Expdist

Figure 6: Feature importance for all benchmarks on all architectures

for all benchmarks except Convolution, where it ranges from
0.9268 to 0.9361.

Using this model we can then generate the feature im-
portances in Fig. 6. We can observe that for many of the
benchmarks, especially GEMM in Fig. 6a and Nbody in
Fig. 6b, many of the parameters do not appear to have any
meaningful impact on the model’s predictive performance.
Although the significance of these features may not extend
to GPUs that are vastly different from those tested in this
study, our findings are generally consistent across the various
GPUs examined.

G. Feature importance impact on relevant search space

Given our previous analysis we can reduce the search
space of the benchmarks to only include those parameters
that has at least 0.05 feature importance on any of the
architectures. The results for the cardinality of the search
spaces can be seen in Table VIII. This gives an indication
towards the size of the most interesting parts of the search
space for the tested GPUs. Researchers using this benchmark
can search over the full search space, but use this information
to get better insight into how their models are able to
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Table VIII: Search space sizes of benchmarks in BAT

Benchmark Cardinality Constrained Valid Reduced Reduce-Constrained

PnPoly 4 092 4 092 3 734 - 3 774 4 092 3 734 - 3 774
Nbody 9 408 1 568 1 568 112 70

Convolution 18 432 9 400 5 220 - 5 256 4 700 4 700
GEMM 82 944 17 956 17 956 17 956 17 956
Expdist 9 732 096 540 000 N/A 144 96
Hotspot 22 200 000 21 850 147 N/A 220 000 202 582
Dedisp 123 863 040 107 011 905 N/A 3 870 720 3 327 135

concentrate on the most interesting parts of the search space.

H. Discussion

The results indicate the optimization parameters in our
benchmarks have a significant impact on performance. While
some parameters have more impact than others, the act of
optimizing some parameters interact with other parameters.
We observe this behavior through the Permutation Feature
Importance summing up to a value much greater than 1
for many of the benchmarks. This behavior only occurs
when there are significant dependencies between features.
Thus this provides evidence towards the need for global
optimization as opposed to orthogonal search algorithms.
While the importance of each parameter is generally consis-
tent across GPU architectures, the specific values for these
parameters need to be optimized for the target architecture.
Our portability study shows that simply transferring the
optimal configuration from one architecture to another can
give as low as 58.5% of the optimal performance, while
other configurations can be ported at 99.9% of the optimal
performance. Generally this is the case for GPUs of the same
family of architectures like our RTX 3060 and RTX 3090.

VII. CONCLUSION AND FUTURE WORK

HPC systems with GPU are becoming increasingly more
complex and challenging to hand-tune codes for. Autotuning
framworks provide means that parameterizes kernels for a
range of system parameters. BAT 2.0, the new benchmarking
suite introduced in this study, provides a comprehensive
framework for evaluating the performance of optimization
algorithms in modern computing systems utilizing GPUs.
The results of our analysis reveal that the optimization
parameters have a significant impact on performance and the
need for global optimization. The importance of autotuning
is highlighted in the portability study, which shows that
optimal performance can only be achieved by optimizing
each application for a specific target architecture. The bench-
marking suite facilitates the study of optimization algorithms
and their effectiveness in achieving optimal performance,
positioning it as a valuable tool in modern autotuning
research.

A C++-based interface towards BAT is currently under de-
velopment to support tuners like KTT [30] and CLTune [24].

Future work should thus include a comparison between C++-
based and Python-based kernel tuners.
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